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Abstract. We study the reduction of bounded reachability analysis of
timed automata (TA) to a Mixed Integer Linear Programming (MILP)
problem. While bounded model checking of timed automata has been
explored in the literature based on the satisfiability of Boolean con-
straint formulas over linear arithmetic constraints verified using SAT
Modulo Theory (SMT) solvers, the approach presented in this paper
opens up the alternative of using MILP solvers. We present some pre-
liminary results comparing the two approaches and provide ideas on how
linear optimization can be useful for analyzing the behavior of TA. The
results are supported by a prototype implementation which relies either
on a MILP solver (Gurobi) or an SMT solver (MathSAT). Certain tech-
niques for reducing the search space and improving the performance are
also discussed.

1 Introduction

Timed automata [1] allow the specification of time-dependent behavior and they 
have been used as underlying semantic model for real-world, industry-grade lan-
guages used in the design and analysis of real-time systems, such as SDL [7,14] 
and extensions of UML [11,15,17]. As S. Graf remarked in [14], “at the semantic 
level, it is interesting to have a minimal number of basic primitives allowing 
expression of all concepts” [related to time], and timed automata primitives fill 
this need both for functional design elements and for non-functional aspects.

Since the applications for these models are often safety-critical (e.g., real-
time systems, communication protocols), their formal verification has received 
wide attention in the research literature. There are several mature tools for 
verifying or simulating various flavors of timed automata-based models, including 
[3,8,26,27]. Although timed automata give raise to infinite state spaces due to 
the dense domain of time, both reachability and model checking of various logics 
are decidable based on finite representations of the state space. The tools and 
analysis methods cited above rely on symbolic representations of state sets, such 
as the Difference Bound Matrices (DBMs, introduced in [12]), or more efficient 
ones such as CDDs, RED [18,26].

Bounded model checking (BMC) [5] on the other hand is a successful method 
for analyzing models that yield very large state spaces. It relies on encoding the
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next-state relationship as a logical formula and on instantiating this formula
a bounded number of times to encode all possible runs of depth equal to the
bound. Then, a valid run corresponds to an assignment of the variables that
satisfies the formula. The verification of properties on runs is hence reduced to
the Boolean satisfaction problem (SAT) for the logical formula encoding possible
runs. BMC was initially introduced for discrete state-transition systems and for-
mulas are expressed in plain propositional logic. BMC has also been studied for
timed automata (see Sect. 5), generally based on formulations that use Boolean
constraint formulas over linear arithmetic constraints, i.e., Boolean combinations
of propositional variables and linear relations over real variables that can be fed
to an SMT solver.

In this paper we study an alternative approach to bounded reachability anal-
ysis of timed automata, based on Mixed Integer Linear Programming (MILP).
We propose several formulations that aim to increasingly improve performance
through reducing the search space and we compare these formulations based on
two benchmark examples. Since the formulation is also expressible as a Boolean
constraint problem over linear arithmetic constraints, we are able to compare
the performance of the MILP-based method with one based on SMT. In this
first study we have limited the scope to the verification of simple reachability
properties; the method can nevertheless be extended to bounded model-checking
for more complex temporal properties.

The paper is structured as follows: Sect. 2 provides the definitions for the
version of timed automata used in the paper and introduces MILP. Section 3
discusses different formulations of the bounded reachability as a MILP problem.
Section 4 discusses and compares experimental results for the different variants
and solvers. Sections 5 and 6 discuss the related work before concluding.

2 Preliminaries

2.1 Timed Automata

We rely on a standard definition of timed automata [1]. A timed automaton is a
state-transition graph in which transitions may be guarded with conditions on
clock variables, used to measure the progress of time. Clocks may be reset when
a transition fires and they advance at the same rate.

Let X be a finite set of clock identifiers. A valuation is a function v : X → R

assigning a real value to each clock. A clock predicate ζ over X is a logical
conjunction of conditions of the form x ⊲⊳ c where x ∈ X, c ∈ Z (or c ∈ R when
the integrality hypothesis is not needed) and ⊲⊳ is one of <,≤, >,≥, or =. Our
notation will not distinguish between the predicate and the set of valuations that
satisfy it; thus, v ∈ ζ denotes that the valuation v satisfies the predicate ζ. Let
Cond(X) be the set of clock predicates over X.

A timed automaton is a tuple A = (L, linit, X, Inv, Ch, T ) where L is a finite
set of identifiers (the locations), linit ∈ L is the initial location, X is a finite set
of clocks, Inv : L → Cond(X) is a function associating an invariant to to each
location, Ch is a set of identifiers (the synchronization channels), and T is a



set of tuples of the form t = (src, dst, syn, grd, rst) (the transitions) such that:
src, dst ∈ L, syn ∈ {ǫ}∪{?, !}×Ch, grd ∈ Cond(X), rst ⊆ X. The components
of t designate the source/destination location, synchronization action (ǫ for no
synchronization), the guard condition and respectively a set of clocks that are
reset to zero. When several automata are involved, we will use the superscripts
to refer to the components of a particular automaton B, e.g., LB , XB ; for the
components of transition tuples, we will use projection functions having the same
name as the respective component in the definition above (e.g., src(t), dst(t)).

The semantics of a timed automaton is given by its transition system, i.e.
a graph in which vertices are configurations and edges represent transitions. A
configuration is a pair (l,v) where l is a location and v is a clock valuation
such that v ∈ Inv(l). There are two kinds of transitions: elapsing of a duration

δ ∈ R, denoted (l,v)
δ

−→ (l,v + δ) (where v + δ is the valuation such that

(v + δ)(x) = v(x) + δ) and discrete transitions, denoted (l,v)
t

−→ (l′,v′) where
t ∈ T . Time elapsing is conditioned by v+δ ∈ Inv(l). The discrete transition t is
conditioned by l = src(t), l′ = dst(t), v ∈ grd(t) and v′(x) = 0 for all x ∈ rst(t)
and v′(x) = v(x) for all x ∈ X \ rst(t). A path in the transition system is called
a run. A run is in canonical form if it starts and ends with a time elapsing
transition (possibly of duration zero) and the sequence of transitions composing
it strictly alternates time elapsing transitions and discrete transitions. It is easy
to see that any run can be transformed into an equivalent cannonical run by
summing up the delay of successive time transitions and by inserting zero-delay
transitions where needed.

Given a set of timed automata A1, ..., An with pairwise disjoint sets of
locations and clocks, the system of timed automata A = A1 ‖ . . . ‖ An

is defined by its transition system as follows. The configurations are pairs
of the form ((l1, ..., ln),v1 ⊔ ... ⊔ vn), where (l1, ..., ln) ∈ LA1 × ... × LAn

and ⊔ is the union operator for functions with disjoint domains. Time elaps-

ing transitions ((l1, ..., ln),v1 ⊔ ... ⊔ vn)
δ

−→ ((l1, ..., ln),v′
1 ⊔ ... ⊔ v′

n) are

possible iff ∀k, (lk,vk)
δ

−→ (lk,v′
k). Discrete transitions without synchroniza-

tion ((l1, ..., ln),v1 ⊔ ... ⊔ vn)
ǫ

−→ ((l′1, ..., l
′
n),v′

1 ⊔ ... ⊔ v′
n) are possible iff

∃k, (lk,vk)
ǫ

−→ (l′k,v′
k) and ∀j �= k, lj = l′j and vj = v′

j . Discrete transitions
with synchronization are possible only in pairs of an output (!) and an input (?):

((l1, ..., ln),v1⊔...⊔vn)
c

−→ ((l′1, ..., l
′
n),v′

1⊔...⊔v′
n) iff ∃c ∈ ChA1 ∪...∪ChAn , k, l

such that (lk,vk)
!c

−→ (l′k,v′
k), (ll,vl)

?c
−→ (l′l,v

′
l) and ∀j �∈ {k, l}, lj = l′j and

vj = v′
j . This version of non-associative n-ary composition is commonly used in

practice, for example in the UPPAAL tool [3].
The reachability problem for timed automata is known to be decidable [1].

The decision procedure relies on the integrality of constants used in clock predi-
cates. Our bounded reachability method, as well as others proposed in the liter-
ature, can relax this hypothesis and work with real constants (e.g., represented
as floating point numbers). On the other hand, since MILP problems only admit
non-strict linear constraints (see next paragraph), we forbid strict comparisons



in clock predicates. One can replace strict comparisons used in the automata
with non-strict ones by fixing a minimum gap.

2.2 MILP

A Linear Programming problem is a mathematical optimization problem in
which constraints are linear inequalities and the objective function is also a
linear. A Mixed-Integer Linear Programming (MILP) problem is an LP problem
in which some of the variables are constrained to be integers [23]. Like SAT,
MILP is NP-complete, but many solvers are capable of solving very large prob-
lems arising in practice and their performance has vastly improved during the
past decades.

Binaries (i.e., integer variables with value 0/1) can be used to represent
Booleans and MILP can encode arbitrary Boolean constraints through inequal-
ities, sometimes more compactly than using the standard logical operators.

In addition to inequalities, some solvers may accept a number of additional
constraint types, such as indicator constraints [16] which have the form b → C

where b is a binary variable and C is a linear inequality that has to be satisfied
by the solution only if b has the value 1. This is the only form of non-linear
constraint that we will use in our formulation of the reachability problem.

3 Formulating Bounded Reachability in MILP

Let A = A1 ‖ . . . ‖ An be a system of timed automata. We discuss here the
way in which reachable states and transitions of the system are encoded as
variables and constraints of a MILP problem. Several options are available for
the encoding, one of the goals of this section being to define the variants so that
their performance can be compared in the experiments section.

Let us remind first that the formulation concerns the states of the system
that can be reached through a sequence of transitions of bounded length. To
simplify the definitions, we consider first that there is a total order between
the states and between the transitions, although this constraint will be relaxed
later on.

3.1 Encoding of State

The state of the automaton Ak at step i is characterized by the location in which
it resides and the values of its clocks. To encode these, we use:

– a set of binary variables, one for each location of Ak:

V LAk

i = {li|l ∈ LAk , 0 ≤ i ≤ B}

– a set of continuous variables, one for each clock of Ak, which will designate
the last time (with respect to a time reference frame) when the clock was
reset:

V XAk

i = {resetxi |x ∈ XAk , 0 ≤ i ≤ B}



Since Ak can only be in one state at a time, the following constraint holds:

∑

l∈V L
Ak
i

l = 1 (1)

To encode the initial state of each automaton, the following constraints have
to hold:

∀l ∈ LAk : l0 = 1 iff l = lAk

init (2)

∀x ∈ XAk : resetx0 = 0 (3)

The global state of the system at step i also includes the time since the
beginning of the run: nowi (with the constraint now0 = 0). For the moment we
consider the case where the transitions of the system are totally ordered in a
sequence, hence we can use a global time reference frame. This will no longer be
the case when the total order constraint is relaxed, later on.

The state of each automaton has to observe the invariant of its current loca-
tion. Since each location invariant is a conjunction of atomic clock conditions,
each of these can be treated as a separate MILP constraint. By notation abuse,
we will write c ∈ Inv(l) when c is an atomic clock condition part of the con-
junction Inv(l). At step i, an atomic condition x ⊲⊳ α is equivalent to the linear
expression nowi −resetxi ⊲⊳ α and an atomic condition x−y ⊲⊳ α is equivalent to
the linear expression reset

y
i − resetxi ⊲⊳ α. Let LEc

i denote the linear expression
corresponding to condition c at step i. Then, the following constraints have to
hold:

∀l ∈ LAk , ∀c ∈ Inv(l) : li → LEc
i (4)

The purpose of the model is to verify reachability of certain states. For
the experiments, we specified the searched state as a conjunction of conditions
on automata locations and clocks values at step B, for which the encoding is
straightforward.

3.2 Encoding of Transitions

To allow for an efficient formulation of the possible runs of the system, our MILP
model allows, by construction, only for canonical runs (in which discrete steps
and time elapsing steps strictly alternate). Thus, a step i is in our case formed
of a time elapsing step (possibly of delay equal to zero) followed by a discrete
step. Thus, when we refer to a sequence of length B, this is actually a sequence
of 2B + 1 steps: B pairs formed of a time step and a discrete step, plus a final
time step in order to allow for time to go on after the last discrete step. Steps
are numbered from 0 to B.

The time elapsing steps are not explicitly encoded, which further simplifies
the model. Instead, we simply add the condition that time has to progress in the
right direction:

∀i : nowi ≤ nowi+1 (5)



With this in mind, nowi designates the current time before the pair (time
delay, discrete transition) of rank i. Thus the discrete transition i takes place at
time nowi+1.

A first consequence is that the constraint (4) given above models the satis-
faction of location invariants before the time step i but not after. In order to
ensure the satisfaction of the invariant after the step i (and hence, between the
two, since invariants are convex), we need an additional constraint. Let LEAc

i

denote the linear expression corresponding to condition c after step i. It is easy
to see that LEAc

i can be built similarly to LEc
i , based on nowi+1 (time after the

delay step i) and on the values of resetxi (reset dates before the discrete step i).

∀l ∈ LAk , ∀c ∈ Inv(l) : li → LEAc
i (6)

For each discrete transition we will use an auxiliary binary variable that
models the fact that the transition is triggered at step i. While this is not usually
done in other formulations used for BMC, we find that this makes it easier to
express the constraints and to reconstruct the sequence of transitions when the
solver finds a feasible solution. Thus:

V TAk

i = {ti|t ∈ TAk , 0 ≤ i < B}

Except for synchronization which is discussed in the next section, the other
necessary conditions for a discrete transition are given below. To simplify the
formulas, the components of a transition t (i.e., src(t), dst(t),...) will also be
denoted by src(vt), dst(vt), ..., for any vt ∈ V TAk

i that corresponds to t.

∀t ∈ V TAk

i : t → src(ti) ∧ dst(ti+1) (7)

∀t ∈ V TAk

i , ∀c ∈ grd(t) : t → LEAc
i (8)

∀t ∈ V TAk

i , ∀x ∈ V XAk

i s.t. x ∈ rst(t) : t → (resetxi+1 = nowi+1) (9)

∀t ∈ V TAk

i , ∀x ∈ V XAk

i s.t. x �∈ rst(t) : t → (resetxi+1 = resetxi ) (10)

Instead of a discrete transition, an automaton Ak may perform a special
“skip” transition at step any i, without changing either the state or the values of
reset variables. In the following section we will discuss some additional conditions
that ensure that skip steps of individual automata are only used under certain
conditions, so that the global system runs continue to have the canonical form.
To represent the skip transitions, a binary variable skipAk

i is introduced for each
i and Ak, along with these constraints:

∀i,∀x ∈ XAk : skipAk

i → (resetxi+1 = reseti) (11)

∀i,∀l ∈ LAk : skipAk

i → (li+1 = li) (12)

Skip transitions are also useful for encoding the fact that a bounded sequence
of length B may be followed by one final time step: we extend the length of the
sequence by one and we require that the last discrete step (numbered B) be a
skip.



3.3 Relaxing the Order of Transitions and Handling Synchronization

From this point on, several variants of the model will be considered. They all
share the variables and constraints described previously and differ essentially
in the way in which transitions of individual automata are ordered within the
global run and in how synchronization between automata is handled.

A first variant (denoted SS for sequential steps) is to consider that transitions
are ordered sequentially. At each step, only one automaton may fire a discrete
transition. In order to account for synchronization, the constraints ensure that
an input on some channel can only be executed by an automaton immediately
after an output on the same channel was executed by a different automaton (i.e.,
in the next step and so that now does not change between the two). To preserve
the canonical form of runs, a constraint ensures that, once a skip transition
appears, all subsequent transitions are skips. Let inputs/outputs designate the
set of all transitions that specify an input (resp. output) synchronization and
conjugated(t) be a function that gives the set of all transitions t′ which specify
an output synchronization with the same channel name as t. We do not formally
define these, but it is relatively easy to see how they are syntactically derived
from the definition of a system. The formulation is as follows:

∀i :
∑

k

(skipAk

i +
∑

t∈V T
Ak
i

t) = 1 (13)

∀i,∀t ∈ outputs : ti →
∑

t′∈conjugated(t)

t′i+1 = 1 (14)

∀i > 0,∀t ∈ inputs : ti →
∑

t′∈conjugated(t)

t′i−1 = 1 (15)

∀i.0 < i < B,∀t ∈ inputs : ti → (nowi = nowi+1) (16)

By experimenting with this formulation, one rapidly concludes it is inefficient,
mainly for two reasons. Firstly, since only one automaton is allowed to step at
a time, one has to choose a relatively large bound B, which in itself penalizes
performance. Secondly, if the model is used for establishing the unreachability of
some configuration (as it is the case when one tries to verify a safety property), a
positive result is achieved when the model is infeasible (the term used by MILP
solvers, meaning unsatisfiable). However, the difficulty of proving infeasibility
is generally correlated with the size of the Infeasible Irreducible System (IIS,
equivalent of the UNSAT-core in SAT/SMT). Experiments show that with the
SS formulation, the IIS is generally the entire model (i.e., no constraint can be
removed without breaking infeasibility) – and therefore establishing infeasibility
is hard.

This finding led us to seek more efficient formulations. A first variant (MS1
for multi-step with unique time basis) is to allow for multiple automata to trigger
discrete transitions within the same step. This also allows a simpler handling of



input/output synchronization, which can now be performed within the same
step. The formulation is as follows:

∀i,∀k : skipAk

i +
∑

t∈V T
Ak
i

t = 1 (17)

∀i,∀t ∈ outputs : ti →
∑

t′∈conjugated(t)

t′i = 1 (18)

∀i,∀t ∈ inputs : ti →
∑

t′∈conjugated(t)

t′i = 1 (19)

This formulation is more efficient as it allows to use a lower value for the
bound B, since several automata can trigger during a step. However, the use of
a unique time basis for all automata (the nowi variables) introduces dependencies
between their behaviors. As a consequence, even when a safety property could
in principle be proved locally on one or a small subset of the system’s automata,
the actual IIS is still usually the entire model, and therefore infeasibility remains
hard to prove.

A solution to this problem can be to de-correlate time progress in the dif-
ferent automata forming a system. As long as an automaton progresses without
synchronizing with others, it can use its own value of now which can be differ-
ent from the others’, in a way similar to what was proposed in [20]. Only when
two automata synchronize, they must agree on their respective value of now. To
encode this we replace each nowi variable by a set of variables nowAk

i , and the
constraints (4), (5), (6), (8) and (9) are rewritten to refer to the local now of
the concerned automaton. Of course, this implies that an automaton can only
read/reset its own clocks.

In this model, there are several ways to achieve input/output synchronization.
A first variant (denoted MSm for multi-step with multiple time bases) will rely
on the same constraints as MS1, i.e., (17), (18) and (19), while adding two more:

∀i, j, k,∀t ∈ V T
Aj

i ,∀t′ ∈ V TAk

i s.t. t′ ∈ conjugated(t) :

t ∧ t′ → (now
Aj

i+1 = nowAk

i+1) (20)

meaning that local nows agree in case of synchronization, and

∀j, k : now
Aj

B
= nowAk

B
) (21)

meaning that local nows agree at the end of the sequence.
To ensure that we obtain a canonical run with MSm, we can add a constraint

enforcing that, if all automata perform a skip at step i, they will continue doing
the same for all steps j > i. However, even with this constraint, an individual
automaton may still perform a skip at step i and some discrete transition at
a later step. As this seems to be a source of combinatorial explosion, we have
sought to remove it, by no longer relying on the fact that inputs/outputs have to



take place in the same step (constraints (18) and (19)). This opens up interesting
possibilities:

– The steps of the different automata forming the system are completely de-
correlated. The run is no longer a unique sequence of (multi-)steps but a set
of sequences, one for each automaton.

– The sequences can be of different length. One can imagine fixing the
depth bound B differently for each automaton (e.g., depending on its own
complexity).

– Each individual sequence can be constrained to be in canonical form, i.e., no
more spurious skip transitions (except at the end of each run).

However, this also raises new challenges, as the global coherence of the model
still has to be ensured. A solution is to use a matrix of auxiliary binary variables
to represent the fact that step i of an automaton An synchronizes with step j

of Am. Constraints were added to ensure that synchronizations take place at
the same time (similar to condition (20)), and that message overtaking does not
occur. Details are omitted here, they can be found in the code of the prototype.
Henceforth, this variant of the formulation will be denoted ISs (independent-
steps with synchronization).

3.4 MILP Objective

The difference between an SMT-based bounded model checker/reachability ana-
lyzer and one based on MILP is that the latter may integrate an optimization
objective. The objective has the form of a linear expression on model variables
(depending on the solver, other forms of expressions, such as quadratic forms,
may also be used). The objective proves to be useful for selecting a system run
out of the set of feasible ones based on minimizing/maximizing various criteria.
For example, for model debugging it is often convenient to obtain the shortest
run that leads to the searched state, i.e. the run that contains the smallest num-
ber of (non-skip) discrete transitions. This can be obtained by minimizing the
objective:

obj =
∑

i,k

t∈V T
Ak
i

t

Other examples of uses for the objective function include searching for runs
that optimize the time of residence in certain locations. It is also easy to
extend the model to handle weighted timed automata [6], which add costs on
states/locations, so as to search for runs that optimize the total cost.

4 Experimental Results

The method described in the previous section was implemented in a prototype1

written in Python and using Gurobi [16] as back-end MILP solver. In order to

1 https://www.irit.fr/∼Iulian.Ober/brat.



allow comparisons, the prototype can also encode the reachability problem as an
SMT problem over linear arithmetic constraints, and use MathSAT [21] as back-
end (via the pysmt API). Both formulations use exactly the same constraints,
therefore providing an interesting basis for comparison. The automata are speci-
fied programmatically directly in Python; however, the format is relatively close
to the textual format of UPPAAL, to the point that we could adapt some bench-
mark generation scripts2 to generate models for our experiments. Experiments
were performed on a Linux machine with 8 Intel Core 2.4 GHz CPUs and 16
GB of memory. Note that the version based on Gurobi exploits the platform
parallelism, whereas the one based on MathSAT only uses one of the processors.

4.1 Examples Used

Several examples have been built in order to exercise the prototype. We will con-
centrate in the following on two of them: the now-classical Train-Gate-Controller
(TGC) example [1] and the CSMA/CD (Carrier Sense, Multiple-Access with
Collision Detection) protocol, based on the model included in the UPPAAL
benchmarks [22]. The CSMA/CD protocol allows to assign a broadcast network
channel to one of several competing transmitters. A detailed description is given
in [27]; let us note that the model is parametric in the number of transmitters.

4.2 Results for Feasible Models (Reachable States)

In the first experiment reported here, we search for a state for which we know
that it may be reached at a certain depth. In the CSMA/CD example, for a
model with N transmitters, an interesting candidate is the state bus collisionN

of the automaton corresponding to the bus, since we know that it may be reached
at a minimum depth of N + 1. For each value of N two tests are performed, one
with a depth bound B = N + 1 and another one with a larger bound. For each
combination of N and depth, the different variants of formulation presented in
Sect. 3.3 have been tried, both using the MILP encoding (Gurobi) and the SMT
encoding (MathSAT). The quantitative results are listed in the Fig. 1; the green
background designates the solver which produced faster results for a particular
configuration. In all experiments the time limit was set to 1000 s.

On this experiment the speed of the two solvers is generally comparable,
with a slight advantage for the MILP solver for lower values of B and for the
SMT solver for larger ones. It is worth noting however that the MILP encoding
provides results that are qualitatively more interesting: we have set the objective
of finding traces with a minimum number of (non-skip) discrete transitions. In
the case where the bound is strictly larger than N +1, the runs provided by the
SMT solver contain many more transitions than necessary for reaching the goal
state, while the runs provided by the MILP solver have exactly N +1 transitions.
Thus, when reachability analysis is used for model understanding and debugging
purposes, the MILP solution provides more interesting results.

2 https://www.it.uu.se/research/group/darts/uppaal/benchmarks.



Fig. 1. Experiment 1 (CSMA/CD) – times in s.

As the numbers in Fig. 1 indicate, the CSMA/CD example does not benefit
from the partially ordered runs afforded by the MSm and ISs variants. This
is caused by the centralized nature of the example, as all the transitions of the
transmitting stations synchronize with a transition of the bus, whose behavior
is essentially sequential.

We proceed with a second experiment which exhibits an increased degree of
parallelism. Based on the TGC example [1], we build a system composed of N
Train-Gate-Controller triplets. In order to demonstrate the interest of having
multiple time bases (the case of the MSm and ISs variants), the waiting delay
before the Controller sends the signal to raise the Gate is set to a different value
in each triplet. The reachable configuration that will be searched is one in which
every Gate is in state raising, after a train has passed.

Fig. 2. Experiment 2 (TGC) – times in s.

The search times for different values of N are given in Fig. 2. Note that for
the MS1 variant, N+5 steps are necessary to reach the search state, whereas for
the variants that use a separate time basis for each automaton (MSm and ISs)
the same state can be reached in a constant number of steps (5). This explains
the wide difference in performance between the three variants. It is also to be
noted that the relative performance of the solvers is widely different depending



on the variant: the SMT solver is orders of magnitude faster on MS1 while the
MILP solver is up to 50 times faster on MSm and ISs.

4.3 Results for Infeasible Models (Unreachable States)

When reachability analysis is used for verifying a safety property (i.e., that some
“bad state” is never reached), the MILP model (respectively the SMT problem)
will be infeasible (unsatisfiable) when the property is verified. Experiments show
that the performance of the solvers is not uniform whether the purpose is finding
scenarios in a feasible model or proving that the model is infeasible. This section
is dedicated to experiments for the latter case.

For the TGC example, a safety property is that the Gate cannot be in a
state other than closed when the Train passes the Gate. We try to prove this
property holds up to a “reasonable” bound for depth. The choice of the bound is
somewhat arbitrary, but is informed by the results of experiment 2, which show
that a full cycle of gate lowering – train passing – gate raising can be achieved
in N+5 steps for MS1 and in 5 steps for MSm and ISs. The bound is thus
chosen to be 2*N for MS1 and respectively 10 for MSm and ISs.

The computation times for deciding infeasibility are given in Fig. 3. Notice
that the SMT solver performs significantly better on this task than the MILP
solver. The MSm and ISs formulations also perform much better than MS1
for large models, ISs being the only formulation for which the MILP solver can
handle larger systems in a reasonable time.

Fig. 3. Experiment 3 (TGC with unreachable end state) – times in s.

5 Related Work

Applying bounded model checking [5] to timed automata has been the subject
of many studies in the past, beginning with [2,24,25]. The problem is reduced
to satisfiability of formulas in a decidable first order logic (e.g., propositional
logic with linear arithmetic constraints or difference logic). Most recent works
rely on SMT solvers, which have made significant progress in the past years and
are able to handle large specifications. To our knowledge, Mixed Integer Linear



Programming has not yet been explored for formulating bounded model-checking
problems, except in the realm of linear hybrid automata [13]. The authors of
[13] concentrate on the integration of a DPLL-based SAT solver with a linear
programming routine in order to benefit from the capacity of the LP routine
to solve large conjunctive systems of linear inequalities over the reals. Although
the method proposed by [13] could be adapted to fit our needs, we have chosen
to rely on an off-the-shelf MILP solver and we concentrated on making the
formulation as efficient as possible and on comparing the MILP solution with
one based on SMT.

The idea of reducing the length of runs (and hence the size of the search
space) by allowing several automata to make discrete transitions in the same
(multi-)step has been explored in [20]. It follows up on work on partial order
reductions for timed automata [4,19]. We take the multi-step idea two steps
forward, first by allowing the clocks of different automata to be de-synchronized
in the same multi-step, and then by allowing synchronizing transitions to take
place in different steps, which allows to separate the representations of the runs
of different TAs and use different bounds on the run length for each automaton.
A similar approach was presented in [9] in the context of linear hybrid automata.

6 Conclusions

The results presented in this paper show that there is a place for MILP-based
bounded reachability analysis in the spectrum of analysis methods used for timed
systems. While the SMT-based method outperforms it when there are no satisfy-
ing runs, which makes SMT a better candidate for approaching model-checking
problems, the MILP-based method proves to be relatively fast for finding satis-
fying runs when they exist. Moreover, the method allows to search for runs that
optimize certain criteria. Since different criteria may be encoded in the opti-
mization objective, such as run length or time of residence in certain states, our
approach provides a convenient method for exploring behavior, model under-
standing and debugging.

The paper also discusses certain techniques for reducing the size of the search
space based on allowing as much as possible independent progress of the different
automata forming the system. Several different formulations of the reachability
problem are presented and we provide experimental data allowing to compare
their relative performance. One formulation (ISs) is particularly interesting,
both from the point of view of raw performance, and because it separates the
representations of the runs of different automata, which allows to set different
bounds on their respective length. We think that this should allow to handle
more efficiently large systems that mix components of varying complexity.

The prototype implemented for this study handles only a minimalist commu-
nicating timed automata model. Future work is needed for enriching the model,
e.g., with local/shared data, data communication over synchronization, shared
clocks, location and transition weights [6], etc. Although we do not aim for a
full-fledged bounded model checker, it would be interesting to provide counterex-
ample generation for more complex temporal logic properties.
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