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ABSTRACT 

 

Automatic speaker gender identification is a field of research with numerous practical applications. However, this 

issue has not gained its deserved attention, in particular in the presence of environmental noises. In this paper, 

using the empirical mode decomposition (EMD), some new and improved mel-frequency cepstral coefficient 

(MFCC) features are developed to address the problem of robust speaker gender identification. In the proposed 

approach, EMD is employed as a filter bank to decompose the speech signal into its frequency bands. Furthermore, 

another variant is also developed in which the complete ensemble EMD (CEEMD) supersedes the EMD. 

Moreover, support vector machine (SVM) with radial basis function (RBF) kernel is employed for classification. 

Performance of these methods is examined for gender identification, in noise-free environments as well as in the 

presence of various Gaussian and non-Gaussian noises. Simulation results show that, although with fewer features 

used, utilizing the improved EMD-based cepstral features in noiseless situations leads to the same accuracy as 

that of the original MFCCs. However, in noisy environments the proposed methods outperform the conventional 

way of extracting the MFCCs. 

 

Keywords: Automatic Gender Identification, Empirical Mode Decomposition, Mel-Frequency Cepstral 

Coefficients, Support Vector Machine 

 

INTRODUCTION 

 

In automatic speaker gender identification, gender of the speaker is identified based on the 

speech signal. This issue has numerous practical applications. Such systems can be helpful in 

sorting out the incoming phone calls on the basis of the speaker’s gender in order to provide 

gender-oriented services. Furthermore, as a pre-processing unit, gender identification can 

enhance the accuracy of some recognition models, e.g. within the speaker identification 

(Khelif, Mombrun et al. 2017), speaker verification (Shahin 2018) and speaker diarization 

(Zhang, Weninger et al. 2017) systems. 

Some features that have been studied in the literature for the purpose of gender 

identification are gender-specific features, e.g. pitch frequency (Harb and Chen 2005; Zeng, 

Wu et al. 2006; Levitan, Mishra et al. 2016) and formant (Childers and Wu 1991), as well as 

more general features such as correlation coefficients, Fourier Bessel coefficients (Spoorthy 

and Ramamurthy 2011) and mel-frequency cepstral coefficients (MFCCs) (Yücesoy and 

Nabiyev 2013; Ranjan, Liu et al. 2015; Safavi, Russell et al. 2018). Furthermore, various 

classification methods have been employed for this purpose, e.g. artificial neural networks 

(ANN) (Harb and Chen 2005), Gaussian mixture models (GMM) (Zeng, Wu et al. 2006; 

Yücesoy and Nabiyev 2013; Chen and Gu 2015), linear discriminant analysis(LDA) (Ranjan, 

Liu et al. 2015) and support vector machines (SVM) (Spoorthy and Ramamurthy 2011; Safavi, 

Russell et al. 2018). These studies are summarized in TABLE 1. , in which the adopted features, 

models and datasets are included along with the achieved results. These algorithms have been 
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mostly studied for clean speech signals and mostly result in accuracy rates of about 95%. 

Despite these studies, we can say that the issue of automatic gender identification still requires 

more attention. 

 
TABLE 1. A brief summary of the studies reported on gender identification 

Ref. Features 
Classifier 

and Model 

Accuracy & 

Achievement 
Dataset 

(Childers and Wu 

1991) 

Formant & Fundamental  

Frequencies 
ANOVA 

Formant Freq.: 

98.1% 
Personally recorded data 

Fund. Freq.: 

96.2% 

(Harb and Chen 

2005) 

Acoustic and Pitch 

Features 

Neural 

Networks 
93% 

Recordings from French and 

English radio stations 

(Zeng, Wu et al. 

2006) 
Pitch and RASTA-PLP GMM 98% 

TIMIT and some other 

multilingual speech samples 

(Spoorthy and 

Ramamurthy 2011) 

Fourier-Bessel 

coefficients 
SVM About 72.92% Personally collected data 

(Yücesoy and 

Nabiyev 2013) 
MFCC GMM 96.4% TIMIT 

(Chen and Gu 2015) 
Tone and Energy 

Variations 
GMM 98.9% Lwazi 

(Ranjan, Liu et al. 

2015) 

MFCC-Shifted Delta 

Coefficients 
PLDA 97.63% 

Fisher English (FE) and 

DARPA RATS corpora 

(Safavi, Russell et al. 

2018) 
MFCC & Delta MFCC GMM-SVM 79.18% OGI Kids 

(Levitan, Mishra et 

al. 2016) 
Pitch & Spectral Features 

logistic 

regression 
93.8% HMIHY 

 

The most well-known features, vastly utilized for speech and speaker recognition, are 

the cepstral coefficients, in particular the MFCCs. MFCCs are short-time features extracted by 

applying the cosine transform on the log power spectra estimated over mel-scale-based bands. 

Although cepstral features have vastly and successfully utilized for some applications, the 

performance of these features for gender identification has not received enough attention. 

Moreover, our studies showed that a small amount of research has been conducted to consider 

the effect of noise. The main aim of the current study was to improve the performance of the 

celebrated MFCC features for speaker gender identification by virtue of the empirical mode 

decomposition (EMD). EMD is a robust adaptive time-frequency analysis method for 

representing a non-stationary signal as sum of components, called intrinsic mode functions 

(IMF), each with slowly varying amplitude and phase (Huang, Shen et al. 1998). EMD has 

proven to be quite versatile in a broad range of applications for extracting information from 

data generated in noisy nonlinear and non-stationary processes. Furthermore, it has been shown 

that the EMD essentially acts as a dyadic filter bank resembling those involved in wavelet 

decompositions (Flandrin, Rilling et al. 2004).  Hence, our main idea is to first decompose the 

speech signal into its IMFs and then apply the mel-scale-based filter bank on the IMFs and 

select from the frequency bands of each mode. Moreover, support vector machine with RBF 

kernel is employed for classification. Performance of the proposed methods is studied in noise-

free environments as well as in the presence of various Gaussian and non-Gaussian noises. 

Results of utilizing the proposed EMD-based cepstral features for gender identification are 

compared with that of the conventional way of extraction the MFCCs. 

This paper is presented in the following order. We give a brief description of the EMD and 

SVM in sections 2 and 3, respectively. The proposed EMD-based cepstral features are 



 

73 

 

developed in section 4. Section 5 is dedicated to the simulation results. Finally some conclusion 

remarks are drawn in section 6. 

 

EMPIRICAL MODE DECOMPOSITION AND ITS VARIANTS 

 

EMD is a robust spectral decomposition method first developed by Huang et al. to adaptively 

decompose non-stationary signals into their intrinsic oscillatory components, i.e. IMFs (Huang, 

Shen et al. 1998). Since introduction in its original form in 2009, EMD has received some 

evolutions. Ensemble EMD (EEMD) was introduced as a solution to the mode mixing problem 

that EMD frequently suffers from (Wu and Huang 2009). Another variant is the complementary 

EEMD that possesses the completeness property (Torres, Colominas et al. 2011). 

 
EMPIRICAL MODE DECOMPOSITION 

 

Empirical mode decomposition is based on a simple premise that each signal is made of a 

number of intrinsic mode functions each with the following two conditions: 

1. The number of extrema and the number of zero-crossings must either equal or differ 

at most by one. 

2. At any point, the mean value of the envelopes defined by the local maxima and local 

minima is zero. 

 

These IMFs are extracted through an algorithm known as the sifting process that can be 

summarized as follows: 

1. Identify the local maxima (minima) of the signal, and then form the upper (lower) 

envelope by connecting all maxima (minima) by a curve, usually a cubic spline curve. 

2. Form the mean envelope 𝑚1(𝑡) by averaging these upper and lower envelopes. 

3. Subtract mean envelope 𝑚1(𝑡) form the signal to from the first probable component as: 

ℎ1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡) (1)  

4. Ideally, ℎ1(𝑡) should be an IMF. But, if ℎ1(𝑡) does not satisfy the above definition of an 

IMF, let ℎ1(𝑡) be the new signal and repeat the steps 1-3 until the first IMF is extracted. 

Call the first IMF 𝑐1(𝑡). 

5. Let 𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡). Treat 𝑟1(𝑡) as a new signal and repeat the steps 1-4 to extract 

other IMFs. 

6. Repeat the above procedure K times, until 𝑟𝐾(𝑡) is smaller than a predetermined 

threshold or becomes a monotonic function that no more IMF can be extracted from. 

 

Lastly, the signal 𝑥(𝑡) is decomposed into K IMFs 𝑐1(𝑡) … 𝑐𝐾(𝑡) and a residue 𝑟𝐾(𝑡) 

which can be either the mean trend of the signal or a constant. The signal 𝑥(𝑡) is composed by 

summing up all these components as: 

𝑥(𝑡) = ∑ 𝑐𝑘(𝑡) + 𝑟𝐾(𝑡)

𝐾

𝑘=1

 (2)  

 

This procedure can effectively sift the complex signals in time domain. IMF components 

provide valuable information about the signal. FIGURE 1 shows an example of decomposing a 

frame of speech signal into its first 5 IMFs and its residual using the EMD algorithm. 

http://perso.ens-lyon.fr/patrick.flandrin/0004144.pdf
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FIGURE 1. Decomposition of a speech signal into its first 5 IMFs using the EMD  

 
COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION 

 

Ensemble EMD was introduced in 2009 to tackle the mode mixing problem of the EMD. For 

more information about this problem one can refer to (Wu and Huang 2009). EEMD algorithm 

is simple and can be summarized in the following steps: 

1.  Add a white noise to the signal. 

2.  Decompose the noisy signal into its IMFs, using the EMD procedure. 

3.  Repeat steps 1 and 2 with different samples of the white noise. 

4.  Obtain the final EEMD-based IMFs as the ensemble means of the corresponding 

EMD based IMFs in successive trials. 

 

As a result of adding noise to the signal, signal reconstructed from the IMFs of the EEMD 

algorithm contains some residual noise. Furthermore, adding different samples of the white 

noise may lead to different IMFs. These issues are addressed in a modified version of the EMD, 

called complementary ensemble EMD. Now we try to describe this algorithm in brief. To 

distinguish between the IMFs resulted from the EMD and CEEDM procedures, the kth IMF 

based on these decomposition methods are indicated by c𝑘(𝑡) and c𝑘(𝑡), respectively. 𝐸𝑘(∙) is 

also defined as an operator that returns the kth IMF of a signal using the EMD algorithm. 

Furthermore, 𝜔𝑚(𝑡) is assumed to be the mth realization of a zero-mean unit-variance white 

noise and 𝜀 is a constant. Using these definitions, CEEMD can be summarized as follows 

(Torres, Colominas et al. 2011): 

1. Extract the first IMF of the signal 𝑥(𝑡) + 𝜀𝜔𝑚(𝑡) based on the EMD method, M times 

using different realizations of the noise 𝜔. The first CEEMD-based IMF is calculated 

as: 

𝑐1(𝑡) =
1

𝑀
∑ 𝑐1

𝑚(𝑡)
𝑀

𝑚=1
 

(3)  

𝑐1
𝑚(𝑡) is the first EMD-based IMF of the signal 𝑥(𝑡) + 𝜀𝜔𝑚(𝑡) in the mth trial. The first 

residue is then calculated as: 

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡) (4)  

2. For k=2, 3, …, the kth CEEMD-based IMF is calculated as the ensemble mean of the kth 

IMFs of the signal 𝑟𝑘−1(𝑡) + 𝜀𝐸𝑘−1(𝜔𝑚(𝑡)) for M different realizations of the noise 

𝜔, i.e.: 

𝑐𝑘(𝑡)  =
1

𝑀
 ∑ 𝐸𝑘 (𝑟𝑘−1(𝑡) + 𝜀𝐸𝑘−1(𝜔𝑚(𝑡)))

𝑀

𝑚=1
 

(5)  
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3. The residue is defined, at each iteration, as: 

𝑟𝑘(𝑡) = 𝑟𝑘−1(𝑡) −  𝑐𝑘(𝑡) (6)  

This procedure is repeated whilst the residue 𝑟𝑘(𝑡) has more than three extrema. The 

decomposed signal can now be expressed as: 

𝑥(𝑡) = ∑ 𝑐𝑘(𝑡) + 𝑟𝐾(𝑡)
𝑘

1
 

(7)  

 

SUPPORT VECTOR MACHINE 

 

Support vector machines are powerful tools for solving various classification problems. In 

addition to its sound theoretical foundation, SVM is of a good generalization performance in 

many real applications. In binary classification problems, depicted in FIGURE 2, consider the data 

set {𝒙1, 𝒙2, … , 𝒙𝑁} in which 𝒙𝑖s are d-dimensional feature vectors or training patterns, each 

with a class label +1 or −1. SVM searches for an optimal hyperplane H in Rd that separates 

this data space into two distinct sub-spaces, each corresponding to a class. This hyperplane can 

be described as: 

𝐻: 𝒙𝑇𝒘 + 𝑏 = 0 (8)  

where 𝒘 is the perpendicular vector to the hyperplane H and b is the bias of this function. 

 
FIGURE 2. SVM with Linearly separable data 

 

Data points that satisfy the following equalities: 

𝒙𝑖
𝑇𝒘 + 𝑏 ≥ +1  𝑓𝑜𝑟  𝑦𝑖 = +1 

𝒙𝑖
𝑇𝒘 + 𝑏 ≤ −1  𝑓𝑜𝑟  𝑦𝑖 = −1 

(1)  

are on boundary hyperplanes that bounds two classes. The distance between these boundary 

hyperplanes is 
2

‖𝒘‖2
. According to the statistical learning theory, SVM achieves better 

classification ability by maximizing this distance. Hence, the goal of the SVM is to minimize 

the norm ‖𝒘‖2
2, subject to 0(9). 

 

The main problem with this formulation is that if the problem is not linearly separable, 

there might be no solution to it. Emerging kernel methods can alleviate this problem by 

applying the linear algorithm on the transformed data in reproducing kernel Hilbert spaces 

(RKHS) that are nonlinearly related to the original input space (Rojo-Álvarez, Martínez-

Ramón et al. 2014; Chen, Liu et al. 2015). It can be shown that for any RKHS ℋ, one can 

imagine a space, known as the feature space, in which the inner product can be calculated 

through evaluating its kernel function K in the input space. This mapping, denoted by 𝜙 and 
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termed feature mapping, projects the input 𝒙 ∈ 𝒳 as the function 𝜙(𝒙)(∙) = 𝐾(𝒙,∙) ∈ ℋ. In 

other words, representing the function ϕ(𝒙)(∙) as ϕ(𝒙), the kernel 𝐾 corresponds to a feature 

mapping 𝜙 for which 

𝐾(𝒙, 𝒚) = 〈𝜙(𝒙), 𝜙(𝒚)〉 (2)  
 

Equation (10) is known as the kernel trick and states that the inner product in the feature 

space can be expressed in terms of the kernel function evaluation. This property makes it 

possible to calculate the inner products in these implicit high, or possibly infinite, dimensional 

spaces by means of the kernel functions evaluated in the low-dimensional input space. This in 

turn provides an efficient way to implicitly implement original linear algorithms, such as the 

SVM, in high-dimensional feature spaces while remaining in the low-dimensional input space, 

without direct reference to these nonlinear transformations. Therefore, in spite of linearity and 

convexity in RKHSs and possessing the property of universal nonlinear approximation, 

resultant algorithms can be solved in a reasonable complexity. One of the kernel functions often 

used in SVM is the Gaussian radial basis function (RBF) of the following from: 

 

𝐾(𝒙, 𝒚) = 𝑒𝑥𝑝 (−
‖𝒙 − 𝒚‖2

2𝜎2
) 

(3)  

 

CEPSTRAL FEATURES 

 

MFCCs are short-time features extracted by applying the cosine transform on the log power 

spectra estimated over mel-scale-based bands. Nonlinear sub-band decomposition in 

accordance to the mel scale is to cope with the human auditory system. This nonlinear scale 

relates to the linear scale in Hertz as: 

𝑓𝑚𝑒𝑙 = 2595 𝑙𝑜𝑔10 (1 +
𝑓𝐻𝑧

700
) 

(4)  

Based on the commonly used procedure, MFCCs are extracted as follows: 

1. The signal is first segmented into, usually overlapping, frames and each frame is then 

weighted by an appropriate windowing function. Over each frame, following steps are 

taken. 

2. The spectrum of the input signal over each frame is estimated using the DFT. 

3. The estimated power spectrum is mapped onto the mel scale, by applying a filter bank, 

with triangular overlapping frequency responses. The bandwidths as well as the central 

frequencies of these bandpass filters are distributed in accordance to the equation (12). 

The frequency responses of these filters are illustrated in FIGURE 3. 

4. Logarithm of the averaged power spectrum over each band is calculated. 

5. Discrete cosine transform (DCT) is applied on the resultant log power spectra over all 

bands. The first coefficient is usually discarded and the remaining coefficients make up 

the MFCCs. 
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FIGURE 3. Triangular filter bank used in the original procedure of MFCC extraction 

 

It is known that the MFFC features are very sensitive to additive noise. Studies have 

been done to alleviate this sensitivity and improve the robustness of these features in some 

applications, e.g. speaker identification (Faragallah 2018) and speech recognition (Khelifa, 

Elhadj et al. 2017). In this section, using the EMD, we develop some new and improved MFCC 

features to address this problem. 

It can be shown that EMD, as well as its variants, acts as a dyadic filter bank in which 

the high-frequency contents of the signal reside mostly in the first IMFs and the last modes are 

usually of slowly-varying nature. This fact is illustrated in FIGURE 4 in which zero-crossing rates 

of the extracted IMFs of three signals with different frequency contents are depicted. It can be 

seen that going from the first IMFs to the last ones, the zero-crossing rates, as an evidence of 

the frequency contents of the IMFs, declines. This is in turn another proof of the fact that the 

EMD acts as a filter bank. 

 

   
FIGURE 4. Zero-crossing rates of IMFs of three signals with different frequency contents 

 

Based on these observations, in this paper a modification is made on the above 

procedure. In the proposed approach the speech signal is first decomposed into its IMFs. The 

EMD-based MFCCs are then extracted by applying the DCT on log power values calculated 

over some specific bands of the IMFs, chosen according to each mode’s spectral contents. The 

developed algorithm can be summarized as follows: 

1. Each (windowed) frame of the signal is first decomposed into 5 IMFs, using the EMD. 

This is because most speech signal frames can be efficiently decomposed into 5 IMFs 

with a negligible residue. Since common noises are usually of high frequency, the first 
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IMF is excluded from consideration. This exclusion improves the performance of the 

algorithm in presence of contaminating noises. 

2.  Over each IMF, steps 2-4 of the original MFCC procedure are applied. But, instead of 

all bands, log power values are only calculated over some selectively chosen bands. 

3. The selected log power values over all IMFs are concatenated in order of the 

corresponding IMFs and the proposed EMD-based MFCCs are subsequently extracted 

by applying the DCT on these log power values. 

 

To further improve the robustness of the EMD-based cepstral features, another scheme 

is also proposed in which a variant of the EMD, called complementary ensemble EMD 

(CEEMD), supersedes the EMD. 
This procedure can be better followed using the block diagram of  

FIGURE 5. It should be noted that in the current study frame length is set to 256 samples 

and a Hamming window is used for windowing. The speech signal is decomposed into 5 IMFs, 

over each frame. As it has been stated above, the first IMF is discarded. Each of the 4 remaining 

IMFs is decomposed into 15 band, using a mel-scale triangular filter bank. On the other hand, 

the most efficient configuration of frequency bands as well as the total number of selected 

bands over all IMFs is set according to the frequency contents of each mode and validated 

through some experiments that will be reported in the next section. 
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FIGURE 5. Procedure for extraction of the improved EMD-based cepstral features 

 
RESULTS 

 

Selected sets from train and test sections of the DARPA TIMIT database (TIMIT 1993) are 

used respectively for training and testing the algorithms. The selected training and testing sets 

contain 180 and 120 speech files, respectively. In each set, half of the speech files are uttered 

by female speakers and the others belongs to male speakers. Support vector machine (SVM) 

with radial basis function (RBF) kernel with σ=2.67 is employed for classification.  For each 

algorithm, the classifier is first trained using all 180 training signals and then the trained model 

is tested over all 120 test files. Our developed methods for cepstral feature extraction using 

EMD and CEEMD, with M=10 and 𝜀 = .002, are compared with the original MFCC extraction 

procedure in both noise-free and noisy environments. 

In step 2 of the proposed algorithm, the selection of the frequency bands is done based on 

the frequency contents of each IMF. In fact, over each IMF, the mel-frequency bands with a 

considerable level of energy are retained and other bands are discarded. Furthermore, some 

analytical experiments have been conducted to study the performance of various combination 
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forms of the frequency bands over all IMFs. Average results for some of these schemes are 

tabulated in TABLE 2. As one can see, the best possible result is obtained if bands 3 to 8 of the 

second IMF, bands 3 and 4 of the third and fourth IMFs and bands 2 and 15 of the fifth IMF 

are selected. These log power values construct a vector that the final proposed features are then 

obtained by applying the DCT on it. The resultant feature vector contains 12 coefficients. 

 
TABLE 2. Identification accuracy for various combination forms of the frequency bands 

 

Selected Bands Total No. 

of Features 
Accuracy 

IMF1 IMF2 IMF3 IMF4 IMF5 

5 to 15 3 to7 4 3 1, 2 and 15 20 96.66% 

9 to 14 6 to 8 5 3 and 4 1, 2 and 15 14 95.83% 

--- 3 to 8 3 to 4 3 and 4 1, 2 and 15 12 99.16% 

       

Results obtained in noiseless situation for various feature extraction methods are 

summarized in TABLE 3. As one can see, in spite of fewer features used, utilizing the proposed 

EMD-based features leads to the same result as that of the commonly used MFCCs. However, 

for clean speech signals, the CEEMD-based feature extraction method has a slightly lower 

accuracy. These algorithms have also examined in the presence of various noise signals to 

assess the robustness of these features to environmental noises. Averaged results, obtained in 

the presence of white Gaussian noise as well as factory natural noise at several signal-to-noise 

ratio (SNR) levels, are presented in TABLEs 4 and 5. Results obtained in present of some other 

non-Gaussian noises, e.g. pink, babble, F16 aircraft, destroyer engine and high frequency 

channel noises, were overall same as that of the factory noise. These results reveal the better 

performance of the proposed methods in noisy environments, as compared to the original 

procedure for cepstral feature extraction. 

 
TABLE 3. Identification accuracy in noise-free environment 

 

Method Number of Features Accuracy 

MFCC 14 99.16% 

EMD-MFCC 12 99.16% 

CEEMD-MFCC 12 96.66% 

   
TABLE 4. Identification accuracy in the presence of Gaussian white noise 

 

SNR (dB) MFCC EMD-MFCC CEEMD-MFCC 

0 50% 50% 64.16% 

3 50% 50% 79.16% 

5 51.66% 50% 80% 

7 57.5% 50% 72.5% 

    
TABLE 5. Identification accuracy in the presence of factory noise 

 

SNR (dB) MFCC EMD-MFCC CEEMD-MFCC 

0 50.00% 71.66% 50.00% 

3 67.50% 87.50% 69.16% 

5 82.50% 92.50% 79.13% 

7 89.16% 95.00% 80.00% 

 
CONCLUSION 
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The main goal of the current study was to improve the robustness of the commonly used 

features known as MFCCs, in speaker gender identification. To address this issue two new 

methods were developed for extracting the cepstral-based features, using the empirical mode 

decomposition. It was shown that the EMD essentially acts as a dyadic filter bank. Hence, in 

the proposed approach the speech signal is first decomposed into its IMFs. The proposed EMD-

based MFCCs are then extracted by applying the DCT on log power values calculated over 

some specific bands of the IMFs, chosen according to each mode’s spectral contents. 

Moreover, to further alleviate the sensitivity of the proposed method to noise signals, another 

scheme was also developed based on a specific variant of the EMD algorithm, known as the 

CEEMD. Our simulation results showed that, in spite of fewer features, our proposed EMD-

based cepstral features lead to a higher accuracy in presence of Gaussian as well as non-

Gaussian noises. These results show the potential ability of the EMD, which is an adaptive 

time-frequency analysis method, in extracting the time-varying features of speech signals. This 

ability can be utilized in other application, in particular for speech-based emotion recognition, 

speaker identification and verification. 
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