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Abstract 

 

The presence and accumulation of plastic and microplastic (MP) debris in the natural environment is of increasing 

concern and has become the focus of attention for many researchers. Plastic debris is a prolific, long-lived pollutant, 

that is highly resistant to environmental degradation, readily adheres hydrophobic persistent organic pollutants and 

is linked to morbidity and mortality in numerous aquatic organisms. The prevalence of MPs within the natural 

environment are a symptom of continuous and rapid growth in synthetic plastic production and mismanagement of 

plastic waste. Many terrestrial and marine-based processes, including domestic and industrial drainage, maritime 

activities agricultural runoff and wastewater treatment plants (WWTPs) effluent, contribute to MP pollution in 

aquatic environments. MPs have been identified in food consumed by human and in air samples, and exposure to 

MPs via ingestion or inhalation could lead to adverse human health effects. Regulations in many countries have 

already been established or will soon be implemented to reduce MPs in aquatic environments. This review focuses 

on the occurrence, sources, and transport of MPs in terrestrial and aquatic environments to highlight potential human 

health effects, and applicable regulations to mitigate impacts of MPs. This study also highlights the importance of 

personality traits and cognitive ability in reducing the entry of MPs into the environment. 

 

 

Keywords: Microplastics; Microfibres, Marine, Freshwater and terrestrial microplastics; Controlling sources of 

microplastics.  
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1. Introduction 

Since development of the first synthetic resin at the beginning of the 20th century, plastics have become 

indispensable in society (Cole et al. 2011; Sivan 2011). Plastics or synthetic organic polymers are derived from 

natural, organic materials such as coal, natural gas, and crude oil by polymerisation or polycondensation processes 

(Phuong et al. 2016). There has been a significant increase in global production of plastics in the last fifty years, 

with production rising from 1.7 million tonnes in the 1950s to 335 million tonnes in 2016 (PlasticsEurope 2017).  It 

is estimated that 8 million metric tons (Mt) of generated plastic waste on land entered the marine environment in 

2010 alone (Geyer et al. 2017; Jambeck et al. 2015). Trends of global plastic production, consumer-use patterns, 

inappropriate disposal of plastic waste and demographics suggest an increase of plastic use in the future. Plastic 

demand is growing exponentially, and trends of production are expected to quadruple by 2050 (Suaria et al. 2016). 

Although industrial benefits of plastic are widespread, this valuable commodity has become a considerable 

environmental concern for governmental and private sectors, scientists, and general public (Seltenrich 2015). Key 

concerns include: (a) plastic is a non renewable resource; (b) persistent organic pollutants (POPs) are sorbed very 

efficiently to plastics; (c) durability of plastic makes it highly resistant to degradation; (d) plastic debris is vulnerable 

to fragmentation; (e) plastic debris can cause injury and death of marine birds, mammals, fish and reptiles towing to 

plastic entanglement and ingestion (Lopez Lozano and Mouat 2009; Trevail et al. 2015; Van Franeker et al. 2011; 

Wright et al. 2013); and (f) plastic debris can damage maritime equipment (Phuong et al. 2016). Furthermore, the 

presence of macroplastic debris (larger than 5 mm; Driedger et al. 2015) can create aesthetic issues, damage to the 

seabed because of sinking plastic debris, and economic pressures on the shipping sector (fouled motors, lost output 

and repair costs), fishing (lost or discarded nets), and tourism by loss of revenues (Cole et al. 2011). For example, in 

2011 vast amounts of marine debris on the beaches of Geoje Island, South Korea affected the island’s tourism 

industry, with lost revenue estimated at US $29 – 37 million (Jang et al. 2014). 

The term microplastics (MPs), first coined in the scientific literature by Thompson et al. (2004), describes very 

small plastic particulates and fibres. The size definitions for MPs are non-uniform, and include: >1.6 μm (Ng and 

Obbard, 2006), <1 mm (Browne et al. 2007, 2010; Claessens et al. 2011), <2 mm (Ryan et al. 2009), 2-6 mm 

(Derraik 2002), <5 mm (Barnes et al. 2009; Betts 2008), <10 mm (Graham and Thompson 2009). The National 

Oceanic and Atmospheric Administration (NOAA) now defines the term MPs as tiny ubiquitous plastic particles <5 

mm in diameter (Arthur et al. 2009). Origins of MPs can be distinguished as primary and secondary sources (Cole et 
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al. 2011). Primary MPs (microbeads) are defined as plastics produced at a micro-sized scale, including those 

generated for use in industrial and domestic products such as hand and facial cleansers to strengthen cleansing or 

exfoliating functions (Zitko and Hanlon 1991), cosmetics, medicine as drug vectors (Patel et al. 2009) and scrubbers 

in air-blasting (Gregory 1996). Lei et al. (2017) reported the presence of different shapes and contents of MPs, 

mainly polyethylene (PE) in various facial cleansers and shower gels in Beijing, China. Secondary MPs result from 

the breakdown of macroplastics items both at sea and on land (Ryan et al. 2009; Thompson et al. 2004); plastics 

undergo different degradation processes in the environment, including mechanical (erosion, wave action, abrasion), 

chemical (photooxidation, temperature, corrosion) and biodegradation activities, which lead to their fragmentation 

into MP (Andrady 2011; Zettler et al. 2013). It is believed that the fragmentation of plastic debris in coastal 

environment is much faster than in water because plastic degrades mainly via solar UV-radiation-induced oxidation 

and the rate of degradation can be accelerated by the high temperature and UV radiation on the coast surface in 

comparison to the sea surface (Andrady 2015). Also, chemical and mechanical breakdown of plastic debris is 

increased during saltation in coastal environments (Corcoran et al. 2009). 

MPs are generated mainly from land-based sources (~80%), and also from sea-based sources (~20%) (Barboza et al. 

2019), and are able to move great distances throughout the world because of their properties such as lightweight, 

durability, buoyancy, shape, and colour (Fig. 1). MPs are also widespread in the terrestrial environments as a 

consequence of daily human activities. Terrestrial ecosystems are considered as major sources and transport 

pathways of MPs into the marine environment (Horton et al. 2017b). MPs are dispersed into the ocean all over the 

world. Often detected in beaches (Herrera et al. 2017; Imhof et al. 2018; Naji et al. 2017), seabed sediments 

(Karlsson et al. 2017; Van Cauwenberghe et al. 2013), wastewater effluents (Magnusson and Norén 2014; Murphy 

et al. 2016; Ziajahromi et al. 2016), surface waters (Eriksen et al. 2013; La Daana et al. 2017), freshwater systems 

(Horton et al. 2017b) and even sea ice in the Arctic (Lusher et al. 2015; Obbard et al. 2014; Waller et al. 2017), and 

the Antarctic (Waller et al. 2017) transported by ocean and wind.  MPs also have been observed in the atmosphere, 

as well as in indoor and outdoor environments (Dris et al. 2017; Gasperi et al. 2018). Bergmann et al. (2017) found 

high concentrations of MPs (including fibers) in Arctic sea ice, potentially originating from the atmosphere.  

˂Fig. 1˃ 

A potential environmental risk associated with MPs is their bioavailability throughout the food-web (Cole et al. 

2011; Kolandhasamy et al. 2018). Due to the large presence of MPs in aquatic and terrestrial environments, they 
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would be present in food products that sold for human consumption. Identifying original sources and distribution of 

MPs in terrestrial and aquatic environments will help to identify potential mitigation options to decrease transport of 

MPs into the environment. This review focuses on the occurrence, sources, and transport of MPs in terrestrial and 

aquatic environments to highlight potential human health effects, and applicable regulations to mitigate impacts of 

MP pollution. 

2. Occurrence and pollution of MPs in terrestrial and aquatic ecosystems 

2.1 MPs in terrestrial ecosystems 

A wide range of MPs are found in terrestrial ecosystems owing to a plethora of anthropogenic activities, yet only a 

limited number of studies have explored the abundance of MPs on land; typically, current studies consider terrestrial 

ecosystems only as sources and distribution pathways of MPs to aquatic or marine environments (Horton et al. 

2017b; Jambeck et al. 2015; Lechner et al. 2014; Rillig 2012). Lechner et al. (2014) showed the release of 

substantial amounts of industrial MPs from a production plant into the River Danube, which is legally discharged 

into the river (Lechner et al. 2014). Soils are essential components of terrestrial ecosystems that can experience 

heavy anthropogenic pollution pressure (Walker et al. 2003).  Fragmentation of plastics at coastal areas or in surface 

water occurs as a consequence of direct exposure to UV-radiation from sunlight and physical abrasion processes; 

however, both drivers are mostly missing in soil, therefore fragmentation of plastic in soil could be very slow. Some 

studies reported minimal degradation of synthetic polymers in soil.  Albertsson (1980) detected only 0.1 to 0.4% 

weight loss of PE in soil after 800 days. Another study by Arkatkar et al. (2009) reported only 0.4% weight loss of 

polypropylene (PP) in soil after one-year incubation, while no degradation of polyvinyl chloride (PVC) was found in 

soil after 10 to 35 years (Ali et al. 2014; Otake et al. 1995; Santana et al. 2012). Soil texture is also a key factor that 

affects the rate of polymer degradation. César et al. (2009) found that degradation was enhanced in clay soils when 

compared with sandy soils. De Souza Machado et al. (2018) showed the potential of MPs to disturb vital 

relationships between soil and water due to the effect of MPs on bulk density, and water holding capacity, as well as 

its consequences for soil structure and microbial activity. Studies on the existence of MPs in soil are scarce because 

of the quantification of MPs in soil is a challenge and analytical techniques required for this type of analysis is still 

relatively new. Thus, the identification of MPs in soils needs to be developed before assessing the MPs content of 

different soils. There are three promising methods for characterising MPs in soils published recently; however, they 

have still limitations in their method. For instance, Fuller and Gautam (2016) developed a method based on 
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pressurized fluid extraction (PFE) for measuring MPs in soil samples, but the limitation is inability of the method to 

measure size fractions of MPs. PFE is a standard extraction technique that uses solvents at subcritical temperature 

and pressure conditions, and is commonly applied in environmental laboratories for the extraction of organic 

pollutants from soils, sediments and wastes. Using this method they found that topsoils near industrial areas around 

Sydney (Australia) contain 0.03% to 6.7% of MPs. Shan et al. (2018) showed that hyperspectral imaging technology 

is a novel way to measure and visualize the MPs with particle size from 0.5 to 5 mm on soil surface directly. 

Another study conducted by Zhang et al. (2018) introduced a simple and cost-saving method (floatation and heating 

method) to extract, distinguish and quantify light density MPs (e.g., PE and PP) in soil. In a floatation method, 

distilled water was used to extract the MPs from soil samples with recovery rates of approximately 90%. Then, 

samples were exposed to heat and MPs in the soil samples melted and transformed into circular transparent particles. 

This method is limited to measure light density plastics. On the contrary, Scheurer and Bigalke (2018) developed a 

promising alternative method to analyse size distribution, composition, and concentrations of most commonly 

produced MPs in soils by FT-IR microscopy. 

Many factors affect the amount of deposition, retention and transport of MPs including human behaviours (e.g., 

general littering, dumping of plastic waste, inappropriate waste management), characteristics of  particles (e.g., 

density, shape, and size), weather conditions (e.g., wind, rainfall), and environmental topography (Zylstra 2013). A 

considerable direct input of primary MPs to terrestrial ecosystems and soils have been identified as being through 

areal deposition, sedimented MPs from personal care products or household items, landfills or other surface 

deposits, and sludge application to agricultural land (Horton et al. 2017b; Rillig 2012; Steinmetz et al. 2016). 

Typically, in industrialised countries, landfills are surrounded by fences, and waste is usually covered with soil or a 

synthetic material, which helps mitigate MP run-off from such sites. However, in developing countries, these best 

management practices are often not followed (Duis and Coors 2016). There is a significant plastic waste 

accumulation in soils in many tropical and subtropical countries, also agricultural/municipal plastic wastes are 

buried or disposed in open fields, gardens, or landfills.  In Europe, around 1000 to more than 4000 MPs particles/kg 

of dry mass sludge were found in agricultural and landfill sites (Huerta Lwanga et al. 2016).  In another study by 

Fuller and Gautam (2016), the presence of MPs were observed in various soils from an industrial area in Australia. It 

is estimated that up to 700,000 tons of MPs may enter farmland annually through biosolids application in Europe 

and North America (Nizzetto et al. 2016). 
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MPs from personal care products (e.g., shower gels, hand cleaners, shampoos, facial cleaners and toothpaste) can 

reach the environment through wastewater treatment plants (Duis and Coors 2016). Industrial abrasives such as 

polystyrene (PS), polyester (PES), melamine can end up in the environment, if not used properly in closed systems. 

Other sources of primary MPs including plastic resin pellets/flakes and plastic powder/fluff can reach the 

environment after improper handling (Duis and Coors 2016). Similarly, residues from plastic processing and plastic 

recycling plants can end up in the environment (Andrady 2011; Duis and Coors 2016). The presence of high 

concentrations of raw materials used for the manufacture of plastic supplies were often observed on beaches nearby 

to plastic producing/processing sites (Duis and Coors 2016). 

Some organisms including earthworms could contribute in formation of secondary MPs by grind up brittle plastic 

debris in their gizzard (Rillig 2012). Collembola or mites may also contribute to breakdown of plastics by scraping 

or chewing off pieces of plastic. Similarly, digging mammals could contribute to abrasion and incorporation of 

plastics into the soil (Rillig 2012). MPs could sorb chemical contaminants from the soil and concentrate them in the 

soil. Additionally, MPs could alter physical properties of the soil. Rillig et al. (2017) showed the downward 

movement of PS MPs from the soil surface to the soil profile via earthworms. According to the study by Rillig et al. 

(2017), there are several possible implications to carry MPs down the soil profile via available organisms: (a) 

Decomposition of organic material in the deep part of the soil is generally much slower due to few populations of 

microbes. It would mean that MPs may have longer durability in greater depths in the soil profile; (b) MPs after 

passing through the soil profile could potentially reach groundwater and lead to adverse effects on in other aquatic 

environments; (c) MPs may convert to nano-sized material due to further fragmentation in the soil, which poses 

different environmental risks. 

However, some sewage treatment plants are effective at removing the majority of MPs (up to 99.9% removal of MP 

debris) from wastewater, but a significant number of MP debris will be retained within the sludge (Gies et al. 2018; 

Mintenig et al. 2017; Prata 2018a). In Portugal, more than 87 % of the total amount of sewage sludge is applied as 

agricultural fertiliser (using biosolids) either directly or after composting (Alvarenga et al. 2016). Additionally, in 

the European Union (EU), between 4 and 5 million tonnes of sewage sludge (dry weight) are used to agricultural 

land every year. Zubris and Richards (2005) showed soils that received sludge products had significantly higher 

concentrations of synthetic fiber compared to field site soil which had not received sludge products. In some land 

sites, synthetic fibres were found after 5 years sludge application. 
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2.2 Sources and transport of MPs into aquatic environments 

In the early 1970s, the first reports of plastics litter in the marine environment drew the minimal focus of the 

scientific society (Carpenter and Smith 1972; Colton et al. 1974). In recent decades, direct or indirect indiscriminate 

disposal of waste items to the marine environment and associated ecological impacts of debris has increased 

sustained research interest (Walker et al. 1997). Early studies focused on the entanglement of marine fauna such as 

whales (France 2016), fur seals (Boren et al. 2006), turtles (Mascarenhas et al. 2004), seabirds (O’Hanlon et al. 

2017), and cetaceans (Baulch and Perry 2014) in net fragment litter or via ‘ghost fishing’. More recently, studies 

showing ingestion of MPs by marine biota including fish, mussels, shrimps, have become extensively documented 

(Catarino et al. 2018; Devriese et al. 2015; Neves et al. 2015; Rummel et al. 2016). Further, toxicological studies of 

MPs and chemical co-transport on marine organisms are assessed for these multifaceted stresses (Akhbarizadeh et 

al. 2018; Batel et al. 2016). MPs are transported and dispersed throughout the oceans, including beaches, in deep-sea 

and coastal sediments, and on surface waters from the Arctic to the Antarctic from remote locations (Barnes et al. 

2010; International Maritime Organization 2015). Recently, a predominant abundance of PE and PP MPs were 

found in subsurface waters in the coastal area of the Ross Sea (Antarctica) (Cincinelli et al. 2017). Plastic particles 

also detected in sediments collected in Terra Nova Bay (Ross Sea, Antarctica), which fibres were the most frequent 

type of plastics debris found (Munari et al. 2017). Waller et al. (2017) reviewed several sources of MPs within the 

Southern Ocean: (a) MPs are discharged from wastewater in scientific research stations (52% of research stations 

had no wastewater treatment systems); (b) fishing and tourist ships; (c) MPs may release into the Southern Ocean 

from personal care products and laundering synthetic fabrics because of human presence in the region, scientific 

research stations, and vessels; (d) MPs from degradation of floating debris pollution originating in the Southern 

Ocean due to high UV levels; (e) Plastics originating outside the Southern Ocean due to major current systems of the 

Southern Ocean. Another study by Bergmann et al. (2017) showed high quantities of MPs including chlorinated PE 

(38%), polyamide (PA) (22%) and PP (16%) in Arctic deep-sea sediments from the HAUSGARTEN observatory. In 

2016, a field survey was conducted to collect MPs with sizes <5 mm in the Southern Ocean. Of the 44 fragments 

found in this study, 29 were made of PE, PP, and PE combined with unidentified polymers. However, 14 of the 

remaining 15 MPs were made of PS, and 1 was made of PVC (Isobe et al. 2017). High level of MPs was also 

observed in Arctic seabird, the northern fulmar (Fulmarus glacialis), which highlight the risk to seabirds and other 
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sea ice animals from plastic pollution (Trevail et al. 2015).  Similarly, a recent study by Avery-Gomm et al. (2018) 

also showed plastic ingested by F. glacialis (with an average of 0.151 g/bird) from the southeastern Canadian waters 

of the Labrador Sea. Also, Provencher et al. (2018) found MPs in 47% of the faecal precursor from F. glacialis, 

which suggest that seabirds are acting as vectors of MPs in the marine environment through guano deposition near 

their colonies. 

It is generally considered that 75–90 % of marine plastic originates from land-based and the rest (about 10–25 %) 

originates from ocean-based sources (Andrady 2011; Duis and Coors 2016; Walker et al. 2006). The MPs debris 

present in cosmetics such as scrubbers in cleaning products, exfoliating creams, air blasting media, and fibres from 

laundry can enter the aquatic environment through industrial and domestic drainage systems. Wastewater treatment 

plants (WWTPs) are one of the  dominant point sources of MPs to the marine environment (Magnusson and Norén 

2014; Mintenig et al. 2017; Murphy et al. 2016). High concentrations of MPs release every day at WWTPs (Prata 

2018a). Recent cases reported by Cesa et al. (2017) also showed synthetic fibers from textile produce MPs sheds 

which originated from domestic washing and WWTPs. Although, WWTPs have an up to 95% removal of MPs 

(Prata 2018a; Talvitie and Heinonen 2014; Talvitie et al. 2017) and tertiary treatment can remove a 90% of debris in 

a size larger than 10 μm (Wardrop et al. 2016), however, there is a significant amount of MPs being discharged into 

aquatic environment through WWTPs. Gies et al. (2018) estimated that 1.76 (0.3) trillion MPs were discharged from 

a WWTP annually in Vancouver, Canada, of which 1.28 (0.54) trillion MPs settled into primary sludge, 0.36 (0.22) 

into secondary sludge, and 0.03 (0.01) trillion MPs were released into the marine receiving environment. Thus, this 

corresponds to a retention of MPs of up to 99% in this WWTP. A recent study by Mason et al. (2016) studied the 

effluent samples of 17 WWTPs across the United States (US) and predicted that the average discharge of MPs 

particles was 13 billion pieces/day. In Finland, an annual estimate of 154,000 to 411,000 kg of PES and cotton 

microfibers are released in washing machines (Sillanpää and Sainio 2017). Browne et al. (2011) compared MPs 

found in shoreline sediment samples with MPs detected from samples of marine wastewater effluent disposal site 

and showed mostly PES and acrylic fibres in both sample types. Further, a study by Talvitie et al. (2015) suggested 

that wastewater effluents act as a transport pathway for MPs to be released in the environment as they found similar 

types of MPs (mostly fibres and synthetic particles) in both effluent from a WWTP in Finland and seawater from the 

Gulf of Finland. 
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MPs get into the aqueous environment through storm sewers runoff, wind advection and currents (Murphy et al. 

2016; Zalasiewicz et al. 2016). Additionally, storm drains from roads may also transport plastic debris such as 

fragments of road-marking paints (Horton et al. 2017a) and tyre wear particles into natural water (Galgani et al. 

2015). Another direct source of MPs to terrestrial and marine environments is fragmentation of plastics that are used 

in agricultural lands. For example, plastic mulches are used to increases yields, fruit quality, water-use efficiency, 

control temperature and moisture in agricultural and horticultural applications, however, MPs are the potential 

pollution by plastic mulches (Steinmetz et al. 2016). Additional products applied in agriculture are silage and 

fumigation films, anti-bird, fertiliser sacks, and containers, all of which have the potential for dispersion of MPs 

within the environment (Muise et al. 2016; Scarascia-Mugnozza et al. 2012). Large amounts of plastic debris can 

also enter the marine environment during natural disasters such as hurricanes, tsunamis and strong sea (Desforges et 

al. 2014).  

Anthropogenic activities along the coast enter significant amount of MPs to the marine environment such as 

harbours, recreational, shipping and fishing activities (Driedger et al. 2015). For example, material lost or discarded 

from fishing ship, aquaculture facilities, and merchant ships are the sources of marine litter. Many ship paints 

contain synthetic polymers such as polyacrylate, PS, alkyds, and epoxy resins, which is in direct contacts with water 

(Sundt et al. 2014). MPs were also found in seven intertidal mangroves habitats of Singapore due to the degradation 

of marine plastic debris (Mohamed Nor and Obbard 2014). 

To date, ingestion has been widely accepted as the common pathway for a wide range of aquatic organisms to 

uptake MPs (Ferreira et al. 2016; Rochman et al. 2013). Bivalves (Mathalon and Hill 2014; Li et al. 2015), 

zooplankton (Cole et al. 2013), fishes (Rummel et al. 2016), shrimps (Devriese et al. 2015), oysters (Green 2016), 

sea cucumbers (Graham and Thompson 2009), polychaete worms (Wright et al. 2013), and whales (Fossi et al. 

2012) have been reported to ingest MPs. Ingestions of MPs by marine animals lead to adverse health effects 

including decreased food consumption, false satiation, decreased growth rate, reproductive complications, behavior, 

oxidative stress, decreased immune response, weight loss, pathological stress, blocked enzyme production could 

potentially threat marine populations and living resources (Fossi et al. 2016; GESAMP 2016; Lusher et al. 2017; 

Rochman et al. 2015; Sutton et al. 2016).  

Despite the large and growing literature regarding the abundance, sources, and impacts of MPs in the marine 

environment (Galgani et al. 2015; Sundt et al. 2014; Waller et al. 2017), little information exists on MPs in 
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freshwater aquatic ecosystems. Freshwater and terrestrial ecosystems are recognized as a main source and transport 

pathways of plastics to the marine environments (Su et al. 2018). A handful of recent studies have examined MPs in 

lakes (Driedger et al. 2015; Eriksen et al. 2013; Free et al. 2014; Imhof et al. 2018), lakeshore (Imhof et al. 2013; 

Zhang et al. 2016) sediments, pelagic MPs in rivers (Dubaish and Liebezeit 2013) and the ingestion of MPs by 

freshwater fauna (Pazos et al. 2017; Sanchez et al. 2014). Eriksen et al. (2013) show that plastic microbeads, which 

commonly used in facial cleansers and other personal care products, are a significant MPs pollutant in the Great 

Lakes. In the study conducted by Su et al. (2018), the level of industrialisation and hydrological conditions were 

proposed as important contributors to MPs pollution in Taihu Lake, China. High concentration of MPs across the 

Rhine River, one of the largest European rivers, reflecting various sources and sinks of MPs to the river such as 

wastewater treatment plants, effluents of industries, tributaries, and weirs, also highlights the important contribution 

of this river to the MPs mass in the North Sea (Mani et al. 2015). 

Because of differences between freshwater and marine ecosystems including the close vicinity of point sources in 

freshwaters, proximity to urban centers, the smaller size of freshwater ecosystems, human population density 

proximal to the freshwaters, and differences in the spatial and temporal conditions in the mixing/transport of 

particles by physical forces, may lead to differences in the type and quantity of MPs present in freshwaters 

compared to marine systems (Eerkes-Medrano et al. 2015). Eriksen et al. (2013) found a major fraction of MPs in 

the surface waters of Lakes Superior, Huron, and Erie are most likely microbeads that are used in consumer 

products, such as exfoliating creams, soaps, shampoos, toothpastes, sunscreens, and deodorants. Also, Pelagic MPs 

in the highly populated Great Lakes of North America were significantly higher than particle counts for the less 

populated Lakes (Eriksen et al. 2013). The Rochman laboratory is currently studying the fate and transport of MPs 

in the Great Lakes and is also investigating rates of plastic microfibers shedding from textiles during washing cycles 

and their accumulation in aquatic environments. Additionally, there are ongoing studies in this laboratory 

(https://rochmanlab.com) on the transfer of chemical contaminants (e.g., PCBs and PAHs) and metals from plastic 

debris. 

2.3 Sources and dispersion of airborne MPs  

Vast data exist in the literature on the presence of  MPs in the marine environment (Andrady 2011; Auta et al. 2017; 

Cesa et al. 2017; Cole et al. 2011; Wang et al. 2016; Wright et al. 2013), whereas there is a gap of knowledge on 

MPs in the air (Dris et al. 2017; Gasperi et al. 2018). The most important sources of airborne MPs are determined to 

https://rochmanlab.com/
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originate from synthetic textiles, erosion and abrasion of synthetic rubber tires, city and household dust (Prata 

2018b). A single item of clothing may be responsible for the discharge of around 1900 fibers per wash (Browne et 

al. 2011). Other sources of airborne MPs may include construction materials, waste incineration, landfilling (Dris et 

al. 2016), industrial outflows, roadway particles, resuspension of particles (Dris et al. 2015), synthetic particles such 

as PS peat, which applied in horticultural soils, use of sewage sludge in agriculture as a fertiliser, and tumble dryer 

exhaust (Prata 2018b). Dris et al. (2016) investigated the presence of fibrous MPs in the total atmospheric fallout at 

an urban site and suburban site in the Paris Megacity. Chemical characterization appeared that 29% of the fibers 

measured in total atmospheric fallout are synthetic (e.g., made with petrochemicals), or a composition of natural and 

synthetic materials. 

Factors affecting MPs behavior and transport in the atmosphere may also be similar to those of fine particulate 

matter including vertical pollution concentration gradient (higher concentrations close to the land), wind speed 

(increasing of wind speed lead to a decrease in concentration), wind direction (downwind, upwind, and parallel 

directions), precipitation, temperature, and humidity (Kaur et al. 2007; Zhao et al. 2014).  Also, urban topography 

(e.g., tall buildings, trees, and space between buildings) can affect wind modulation and distribution of air pollutants 

in urban environments (Fernando et al. 2001). Lighter polymers can be transported easily by the wind and further 

contaminate the terrestrial and marine environments (Horton et al. 2017b).  

Indoor air is another important source and the main place of exposure to airborne MPs due to lower removal by 

dispersal mechanisms (Prata 2018b) and people spend around 70-90% of their time inside (Alzona et al. 1979). The 

behavior of indoor airborne MPs depends on room partition, ventilation, and airflow (Alzona et al. 1979). Catarino 

et al. (2018) compared the potential exposure of humans to household dust fibres and MPs in caged mussels 

(Mytilus edulis). The result showed the risk of plastic ingestion through consumption of mussel is minimal compared 

to fibre exposure during a meal through household dust fallout. The MPs from the indoor air could contaminate the 

outside air, because they are diluted in the atmosphere (Dris et al. 2017), while only 30% of outdoor particulate 

matter can enter indoors in a closed room (Alzona et al. 1979). Fibres are the most common microplastic type 

observed in sediments (Claessens et al. 2011), surface seawaters (Lusher et al. 2014), aquatic biota (Rochman et al. 

2015) as well as atmospheric fallout (Dris et al. 2016) and in indoor environments (Dris et al. 2017).  

3. MPs and potential human health impacts 
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As an emerging area of concern to MPs is that they can also enter the human food chain  through ingestion of 

seafood and terrestrial food products causing potential human health impacts (Rist et al. 2018; Wright and Kelly 

2017) (see Table 1). The presence of MPs in the guts and tissues of aquatic species including some commercially 

important bivalves (Mathalon and Hill 2014; Li et al. 2015; Naji et al. 2018), crustaceans (Bos et al. 2018), and fish 

(Bessa et al. 2018a, 2018b; Neves et al. 2015) is well documented. Key factors contributing to the bioavailability of 

MPs are size, density, abundance, and colour (Wright et al. 2013). The small size of MPs makes them available to 

the lower trophic organisms, which can capture anything of appropriate size. The density of the MPs will determine 

bioavailability in the water column; therefore, the type of plastic debris ingested may vary between organisms. An 

increase in the abundance of MPs in the marine environment will also affect its bioavailability because the chance of 

organisms to encounter MPs is enhanced (Wright et al. 2013). In a study by Moore et al. (1998), the uptake of latex 

spheres (1 μm) from the water in rainbow trout (Oncorhynchus mykiss) were observed in the surface and subsurface 

epidermal cells and underlying phagocytes of the skin and gill surface. This highlights the importance of epithelial 

cells in the adherence and entry of MPs to the fish body. Thus, consumption of the skin or gill tissue could also be a 

direct route of human exposure to MPs even ≥1 μm. In a study recently performed on the soft tissue of mussels 

strongly suggested that adherence is a novel way for organisms to accumulate MPs beyond ingestion 

(Kolandhasamy et al. 2018).  

In addition to seafood, MPs have been reported in other food products, such as sea salt. The presence of MPs in sea 

salt has recently been reported through studies by Iñiguez et al. (2017), Karami et al. (2017a), and Yang et al. 

(2015). Karami et al. (2017a) investigated concentration of MPs from 17 brands of salt originating from 8 different 

countries and the number of MPs in salt was nil, in the range 0–10 MPs/kg. On the contrary, the amounts of MPs 

found in different Chinese and Spanish table salt were in the range of  7–680 MPs/kg and 50–280 MPs/kg, 

respectively (Iñiguez et al. 2017; Yang et al. 2015). Differences between the studies may be related to the errors in 

the experimental procedures used to extract the MPs. Therefore, further studies are required to improve the reliable 

method for quantifying MPs in salt. Additionally, both honey and sugar have been found to contain a small number 

of fibers and fragments (Liebezeit and Liebezeit 2013). An average of 174 (kg/honey) fibers and 9 (kg/honey) 

fragments, and an average of 217 (kg/sugar) fibers and 32 (kg/sugar) fragments were found. Authors suggested that 

the sources of synthetic MPs to contamination of honey are airborne. In contrast, a similar study on honey samples 

did not find a notable contamination of MPs (Mühlschlegel et al. 2017). Previous research has indicated that the 
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methodology used in the studies on honey, sugar and beer (Liebezeit and Liebezeit 2013, 2014) was questioned due 

to the background contamination and wrong identification of plastic particles (Lachenmeier et al. 2015).  

Recently, MPs have been found in tap water (Kosuth et al. 2017) and bottled water (Schymanski et al. 2018).  MP 

contamination were investigated in tap water from six regions on five continents. Plastic particles were found in 

83% of analyzed samples (the range was between 0 and 57 particles/L) (Kosuth et al. 2017). However, the results 

lack a thorough analysis in the confirmation of synthetic origin of the particles. On the contrary, in the study on 

bottled water, a precise analysis was conducted, and the  average MPs content was 118  particles/L in returnable and 

14 particles/L in single-use plastic bottles that suggested found particles correlated with the materials the bottles 

were made of (Schymanski et al. 2018). There are thus still many uncertainties in methodology and analysis of MPs 

which should be improved by further researches. 

A recent study by Karami et al. (2018) examined the potential presence of micro- and mesoplastics in canned 

sardines and sprats. Results showed the MPs were absent in 16 brands from 20 analyzed brands of canned sardines 

and sprats, and between 1 and 3 plastic particles per brand were found in the rest.  The authors suggested that food 

safety management systems are urged to place test of MPs in their guidelines because of the possible increase in 

loads of MPs in canned fish.  

Table 1 lists examples of studies on the presence of MPs in products consumed by humans which have mostly been 

conducted since 2016, because several jurisdictions such as the UK, US and Canada have passed legislation to bans 

MPs (specifically microbeads) at or around that time (Schnurr et al. 2018; Xanthos and Walker 2017). The 

consumption of MPs contaminated foods is a potential source of human MPs intake. Recent studies showed the most 

commonly plastic polymers found in food products are polyethylene-terephthalate (PET), PP, PE, PES, PVC, PS, 

PA, and nylon (Table 1). Plastic particles can impact on human health, with effects mainly related to toxicity of the 

chemical that absorbs from the environment or additives that are used in plastic materials. Non enzymes are reported 

to be available to degrade the synthetic polymers in any organism (Wang et al. 2016). Based on the UN Globally 

Harmonised System, more than 50% of plastics are accompanied with hazardous monomers, additives, and chemical 

by-products (Lithner et al. 2011). PET is commonly used in the production of drink bottles, plastic film, 

microwavable packaging, pipes, and insulation molding, which is considered as a potential human carcinogen (Li et 

al. 2016). PS is also commonly used in the production of Packaging foam, disposable cups, plates, tableware, CD, 

tanks, and building materials (insulation). PS and PVC have been shown to release toxic monomers that lead to 
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cancer and reproductive abnormalities in humans, rodents, and invertebrates (Wang et al. 2016). Additives in PVC 

could transfer from medical supplies to humans and indicate that additives could accumulate in the blood (Mettang 

et al. 1996). In a study conducted by Forte et al. (2016), PS nanoparticles affected cell viability, inflammatory gene 

expression, and cell morphology of human gastric adenocarcinoma epithelial cells.  

˂Table 1˃ 

Uptake of plastics specially MPs by humans through inhalation has the potential to cause adverse health effects by 

particle toxicity, chemical toxicity, and pathogen and parasite vectors (Vethaak and Leslie 2016). The common 

mechanism of MPs uptake and clearance in the lung is thereby several factors, including hydrophobicity, surface 

charge, surface functionalisation, the associated protein corona, and particle size, which cause lung injury (Rist et al. 

2018). The translocation of smaller particles within the gastrointestinal tract is likely more efficient since 

nanoparticle PS microspheres found in the blood and organs of rat (Jani et al. 1990). Many of the findings from the 

particulate materials studies support the notion that micro- or nanometer size of plastic particles could adversely 

affect human health. Two previous studies observed cellulosic and plastic fibers in human lung tissue which taken 

from patient with different types of lung cancer (Pauly et al. 1994,1998). Recently, in a study conducted by Chan et 

al. (2017), a questionnaire survey of 46 workers who used different types of 3D printers by the most frequent 

printing materials including polylactic acid (64%), acrylonitrile-butadiene-styrene plastic filaments (27%) and nylon 

(23%) showed respiratory symptoms in 57% of participants who worked more than 40 h/week. A work-related 

interstitial lung disease that induces coughing, dyspnea, and reduction of lung capacity was observed in 4% of 

workers from nylon flock plants in the US and Canada (Boag et al. 1999; Eschenbacher et al. 1999). The health 

impact of MPs exposure has shown in Fig. 2.  

˂Fig. 2˃ 

Toxic chemical additives in the plastic which are a palpable concern for human health include phthalates, bisphenol 

A (BPA), brominated flame retardants (BFR), triclosan, bisphenone, and organotins (Galloway 2015). Little 

information is available on the leaching of additives into biological tissues directly, although Koelmans et al. (2014) 

showed that additives including nonylphenol (NP) and BPA could leach from plastics ingested by marine organisms. 

BPA has received considerable press and scientific attention in relation to human health implications (Galloway 

2015). At present, BPA is the main chemical used as a monomer for polycarbonate (PC) plastics and in the epoxy 

resins lining layer of food and beverage cans (Crain et al. 2007). BPA can also be used as an antioxidant or as a 
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plasticizer in other polymers (e.g., PP, PE and PVC) (Rani et al. 2015). Several studies have shown that BPA can 

migrate out of PC and contaminate foodstuffs and drinks (Calafat et al. 2008; Galloway 2015; Guart et al. 2013), 

and lead to liver function alternation, changes in insulin resistance, development of offspring in the womb of 

pregnant women, reproductive system and brain function (Srivastava and Godara 2017). BPA acts as an agonist for 

the estrogen receptors, inhibits thyroid hormone mediated transcription by acting as an antagonist (Moriyama et al. 

2002), altered pancreatic beta cell function (Ropero et al. 2008). Adverse human health effects including the onset of 

obesity and cardiovascular disease (Cipelli et al. 2014; Lang et al. 2008; Melzer et al. 2012) and with numerous 

reproductive and developmental outcomes (Galloway 2015) were observed in exposure to BPA at levels around 0.2–

20 ng/ml (In the general population with measured urinary BPA). Phthalate esters are applied as plasticizers to 

enhance the flexibility and durability of various materials and also used in manufacturing of PVC polymers and 

plastisol (Gómez and Gallart-Ayala 2018). Phthalate esters are potentially harmful when exposed to humans, which 

may possible cause abnormal sexual development and birth defects (Cheng et al. 2013). Additionally, USEPA 

classified butyl benzyl phthalate (BBP) and di-2-ethylhexyl phthalate (DEHP) as probable and possible human 

carcinogens (USEPA, 2007). 

4. MP regulations  

Despite the global attention to plastic pollution and its environmental effects in recent years, there are currently no 

regulations established yet to manage impacts of secondary MPs. In contrast, many regions have established or 

implemented regulations to ban production and use of primary MPs, including microbeads, which could reduce MPs 

entering the aquatic environment (Beat the Microbead 2016; CEPA (Canadian Environmental Protection Act) 2016; 

Legislative Assembly of Ontario 2015; Pettipas et al. 2016; United States Congress 2015; United Kingdom 

Department for Environment Food and Rural Affairs 2016), as well as bans or limits on use of single-use 

macroplastics (e.g. drinks bottles, carrier bags). The first country that declared its intent to produce microbead free 

cosmetic products was the Netherlands, with a target of 2016. The province of Ontario, Canada, passed legislation to 

ban the microbeads production in 2015 (Legislative Assembly of Ontario 2015), and since the Canadian federal 

government classified plastic microbeads as a toxin under the Canadian Environmental Protection Act (CEPA 

2016). In December 2015, national legislation was passed by the US Congress to control microbead plastics in the 

US (United States Congress 2015). Yet, secondary MPs are the major contributors to environmental MP pollution, 

and therefore, we advocate that new legislation and management policies need to be established to control 
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widespread MPs in the environment. In 1973, the International Convention for the Prevention of Pollution from 

Ships (MARPOL 73/78) was signed, however, a complete ban on the disposal of plastics at sea was not enacted until 

1988. Despite the presence of 134 countries to eliminate the plastics disposal at sea, studies have revealed the 

increasing problem of marine debris since MARPOL 73/78 was signed. Reasons vary depending on jurisdiction, but 

are most often related to mismanaged waste on land (Xanthos and Walker 2017). The United Nations Environmental 

Programme (UNEP) has called for immediate action to rid the oceans of MPs as they have noted that MPs are 

consumed by a wide number of marine organisms, and this leads to both physical and chemical harm (Jiang 2017; 

UNEP 2014). Therefore, UNEP developed a program by 40 million people from 120 countries, which set up 

educational procedures to make awareness and encourage the decrease of plastic use, recycling, and evaluate 

disposal facilities. The United Nations Environment Program/Mediterranean Action Plan (UNEP-MAP), the 

Oslo/Paris convention (for the protection of the marine environment of the North-East Atlantic (OSPAR), and the 

Baltic Marine Environment Protection Commission-Helsinki Commission (HELCOM) also have expanded 

guidelines to evaluate marine litter such as MPs (Jiang 2017). Non-Governmental Organizations (NGOs) have also 

presented plans to increase awareness and aid to quantify the level of MPs pollution and their impacts at the national 

and international scales. For example, the 5 Gyres Institute and the Joint Group of Experts on the Scientific Aspects 

of Marine Environmental Protection engage in awareness campaigns  (Xanthos and Walker 2017). Also, on Earth 

Day 2018, an End Plastic Pollution campaign was launched in response to the substantial increase of plastic waste 

on our planet. This campaign used the high profile of Earth Day to increase awareness about the issue of plastic 

pollution and to highlight the issue on the global agenda to demand effective action from governments and 

individuals for reducing and managing plastic, specifically single-use plastic (Earthday Network 2018). Similarly, 

there have also been recent studies aimed at highlighting various global strategies to reduce single-use plastic use at 

national, regional and municipal levels of government, corporations and at the individual level (Schnurr et al. 2018; 

UNEP 2018). Single-use plastic bag interventions (e.g., bans or levies) have been reported to reduce plastic bag use 

between 33-96% which help mitigate single-use plastic marine pollution (Schnurr et al. 2018).   

The US and France are the first and second countries respectively to ban MPs from rinse-off cosmetic products with 

Microbead-Free Waters Act (Kentin 2018; McDevitt et al. 2017). Similarly, this legislation is proposed in Taiwan, 

South Korea and Sweden, which is waiting for approval and adoption (Kentin 2018). According to the REACH 

Regulation in the European Union, hazardous substances are regulated to have a high level of protection to human 
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health and the environment (European Chemical Agency 2017). Under REACH Regulation any new substance must 

be registered and evaluated, then can be authorised or restricted, but polymers do not have to be registered so far 

(Vaughan 2015). The European Commission has to review the exemption by strict criteria to include polymers in the 

REACH Regulation. 

In 2015, the Group of 7 (G7) including Canada, France, Germany, Italy, Japan, the UK, and the US discussed plastic 

pollution in marine environments and confirmed that marine litter, especially plastic litter, poses a global challenge, 

which affects aquatic ecosystems and potentially also human health (G7 2015). Hence, they are trying to develop an 

action plan to combat marine litter and reduce waste from land- and sea-based sources. One of the priorities of the 

G7 action plan is "Investigating sustainable and cost-effective solutions to reduce and prevent sewage and storm 

water related waste, including MPs entering the marine environment" (Brennholt et al. 2018). A unique opportunity 

was provided by Canada’s G7 presidency to accelerate domestic action and demonstrate international leadership for 

reducing use and recycling of single-use plastics to ameliorate marine pollution effected by plastic litter (Walker and 

Xanthos 2018). In 2018, the ocean plastics charter was adopted by five-member nations of the G7 (Canada, France, 

Germany, Italy, and the UK) which includes 23 specific actions in five broad categories: (1) sustainable design, 

production and after-use markets; (2) collection, management and other systems and infrastructure; (3) sustainable 

lifestyles and education; (4) research, innovation and new technologies; and (5) coastal and shoreline action. The 

ocean plastics charter includes increasing recycling by at least 50% in plastic products by 2030, recycling and reuse 

of at least 55% of plastic packaging by 2030,  and to recover 100% of all plastics by 2040, and developing research 

and technologies to remove plastics and MPs from waste water and sewage sludge (G7 2018). In October 2000, the 

European Union Water Framework Directive (WFD) has been enacted by the European Commission and focuses on 

“maintaining and improving the aquatic environment in the Community". A Pollution Management and 

Environmental Health (PMEH) program was established by the World Bank in 2015, which covers technical 

assistance and financing to decrease pollution and improve health. The Joint Group of Experts on the Scientific 

Aspects of Marine Environmental Protection (GESAMP) advocates cost-effective way to conduct urgent action to 

reduce the volume of plastics releasing the ocean by adopting the 3Rs (reduce-reuse-recycle circular 

economy)(GESAMP 2015). Current Circular economy principles have been extended to include the 6Rs (reuse, 

recycle, redesign, remanufacture, reduce, recover) (Liu et al. 2018). In this way, the flow of technical materials is 

returned via society for remanufacturing by a material recovery of products and packaging designed, repair and 
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reuse, and where these cases are not suitable, a biological material such as bioplastics may substitute. Today, 

bioplastics or plant-based plastics are viewed with new interest, which create reliable resources, decoupled from 

fossil fuels (Bioplastic Feedstock Alliance 2018). 

The Packaging and Packaging Waste Directive 94/62/EC (PPWD), and the amending Directive (EU) 2015/720 are 

about use and reuse of plastic bags and reducing the consumption of lightweight plastic carrier bags (Xanthos and 

Walker 2017). There are three main directives relevant to the regulation of waste and recycling of plastic bags 

including the Waste Framework Directive 2008/98/EC (WFD), the Directive on the Landfill of Waste 1999/31/EC 

and Urban Waste Water Treatment Directive 91/271/EEC. The WFD conduct the Member States on the correct 

management of their wastes (European Parliament and the Council 2008). It introduces the waste hierarchy, which 

prioritizes prevention as the first and most important waste management part, followed by reuse/recycling, and 

finally, disposal/landfilling (European Parliament and the Council 2008). Furthermore, new recycling and recovery 

purposes for plastics are set with the aim of reusing and recycling at least 50% of the total plastic waste of 

households by 2020 (European Parliament and the Council 2008). In 1999, the Directive on the Landfill of Waste 

1999/31/EC was implemented to eliminate adverse impacts of the landfills to aquatic ecosystems and human health. 

At present, there are no restrictions to the quantity of plastic wastes, which deposit as non-hazardous waste in 

landfills within the Directive of Landfill of Waste (The Council of the European Union 1999), however, the Member 

States have individually implemented threshold restrictions for disposal of plastic wastes in landfills (PlasticsEurope 

2015). In the last decades, several Member States (Germany, Denmark, Sweden, and Austria) banned landfilling of 

the plastics, which led to significant increase in the recovery of plastic waste in these countries (Steensgaard et al. 

2017). The Urban Waste Water Treatment Directive (91/271/EEC) was implemented to maintain and protect aquatic 

ecosystems, setting thresholds for the discharge of wastewater to the environment to prevent adverse effects such as 

eutrophication (European Commission 1991). 

Extended producer responsibility (EPR) is a public policy strategy that manufacturers are responsible legally and 

financially to mitigate the environmental impacts of their products throughout its life cycle stages. EPR emerged in 

Sweden and Germany in the early 1990s and had several desirable and interrelated goals including creating 

motivations for eco-design of packages and products, using the private sector expertise to reach public targets, 

internalizing the waste management costs into prices of the products, and shifting waste management costs from 

municipalities and taxpayers to producers and consumers (Lifset et al. 2013). The EU’s Waste of Electrical and 
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Electronic Equipment (WEEE) Directive is an example of EPR whereby producers have to return and recycle 

electronic equipment (Eriksen et al. 2018). 

Previous studies revealed significant relationships between personality traits and cognitive abilities with waste-

management behaviours (Karbalaei et al. 2013, 2014, 2015). For example, Swami et al. (2011) showed that 

individuals with less machiavellian, less politically cynical, and more conscientious traits showed better waste 

management behaviours. This may be because conscientiousness is associated with intellectualism and attend to 

acting based on the dictates of conscience. To the extent that, waste management is realized as a morally-appropriate 

behaviour, thus, highly conscientious individuals are more responsible to recycle, reuse, and reduce their waste. 

Similarly, another study conducted by Karbalaei et al. (2015) revealed that individuals with higher spiritual 

intelligence and lower machiavellianism were more likely to have a positive attitude towards waste-prevention 

behaviours. Therefore, waste management strategies need to consider personality traits and individual differences 

that affect environmentalism and could also be considered as a promising strategy to mitigate MP pollutions in the 

marine and terrestrial environments by improving positive personality traits in consumers, private and government 

sectors through education. This also could be achieved by education of students in schools and universities as it can 

provide a long-lasting solution to the environmental problem. 

A continued relationship between science and policy can contribute to solutions for mitigation of MPs in the 

environment. Also, new scientific understanding could help scientists and policymakers to conduct policy-relevant 

research. Some regulations mentioned in this study are the results of the collaboration between scientists and 

policymakers which lead to establishing positive changes toward mitigation of MPs. Legislation to ban plastic 

microbeads is a good illustration of this collaboration because researchers showed that release of microbeads could 

be easily curbed, and therefore risk to marine life mitigated. Therefore, legislation to ban this source of plastic 

contamination has been introduced in the US, Canada, the European Union, and Australia (Rochman et al. 2016). In 

response to this legislation, some manufacturers have agreed to voluntarily remove plastic microbeads from their 

products (Schnurr et al. 2018). Recently, scientists have developed biodegradable cellulose microbeads from a 

sustainable source that could be a promising replace of persistent plastics microbeads in a range of applications from 

personal care products to abrasives (Coombs Obrien et al. 2017) and this could be obliged through legislation in the 

future. The report of plastic pellets in the oceans, on beaches, and in the digestive systems of seabirds lead to a 

response of both policy and industry to resolve this problem by Operation Clean Sweep, which was initiated by the 
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plastics industry to reduce the loss of plastic pellets to the environment (Rochman et al. 2016). Thus, further studies 

are required in the area of MPs in order to be able to develop and implement effective management strategies. 

Biodegradation of plastic polymers by some organisms such as bacteria, fungi and mealworms are reliable and 

environmentally safe action plan to tackle plastic pollution that will enable the management of MPs without 

negative effects. A recent study by Bombelli et al. (2017) showed fast bio-degradation of PE by larvae of the wax 

moth Galleria mellonella, producing ethylene glycol. Similarly, low-density polyethylene (LDPE) MP particle 

decayed with isolated bacteria from the gut of the earthworm (Lumbricus errestris) (Lwanga et al. 2018). Therefore, 

these organisms have prompted significant optimism about the use of “plastic eating organisms” in waste 

management. Governments need to fund most significantly additional researches and innovations to find organisms 

that will break down plastic more efficiently. 

Collectively, all these strategies help to mitigate the presence of MPs in the terrestrial and aquatic environments. 

Industry plays a critical role in mitigation of MPs throughout the supply chain. As an example, IKEA has used EPR 

strategy in its business model by promoting reuse and recycling of materials throughout its supply chain (INGKA 

Holding 2017). Also, in 2017, Adidas sold 1 million shoes made from plastic debris, equivalent to 16.5 million 

plastic bottles and 14.3 t of nylon gill nets (Kharpal 2018). Improvements of circular economy principles such as 

recycling and waste management strategies can also be a catalyst in the reduction of plastic consumption with strong 

direct and indirect socioeconomic and environmental implications. Plastic pollution mitigation through coastal and 

ocean cleanups are important immediate activities that are needed to help reduce marine plastic pollution. Plastic 

bag bans can effectively reduce overuse of single-use plastic and following that mitigating plastic and MPs 

pollutions if properly implemented and managed (Schnurr et al. 2018). Besides, plastic manufacturers must ensure 

that their products are standardized and labelled properly to facilitate recycling. Furthermore, increasing awareness 

through universities, school, organizations and networks about MPs issues by campaigns and educate personal 

responsibility of individuals for mitigating plastic and MPs pollution by choosing to reject, reduce, reuse and 

recycling of plastics. Educational intervention (e.g., marine litter education) to children boosts their awareness, 

perceptions of consequences and self-reported action (Hartley et al. 2015). 

 

6. Conclusion 
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MPs are very tiny particles of plastics that find their way into the environment through primary and secondary 

sources. The presence of MPs in air, soil, and particularly in aquatic environments have become the focus of a 

dearth of environmental pollution research.  This, combined with recent discoveries of MPs in plates of seafood, sea 

salt, canned fish, bottled water, tap water, honey, and sugar is an emerging area of concern related to the potential 

impacts of this plastic debris to human health. Potential health concerns have been related to the toxicity of harmful 

chemicals sorbed from the environment or from additives that are used in the plastic production process itself. As 

this review showed, lack of studies on MPs impacts on humans highlight the need for more studies focusing on 

human health risk assessment of MPs. Recently, some national regulations have been proposed or established to 

help reduce MPs in the environment. However, there are currently no regulations established to manage impacts 

from secondary MPs (fragments from larger plastic items). Involving the general public, the media, the socio-

economic sectors, tourism, and companies is necessary to tackle the issue. New propose, new national and 

international regulations should be established to prevent the exceeding critical environmental threshold 

concentrations. Implementing internationally harmonized regulations across developed and developing countries 

such as the circular economy could help proper waste management. Policies to reduce single-use plastics including, 

bans of single-use plastic bags, drinking straws, deposit and return plans for plastic bottles, and EPR, which makes 

manufactures responsible for the entire product life-cycle, are positive steps that should be widely implemented. 
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Fig 1. How microplastics contaminate the Earth’s ecosystems 
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Fig 2. Summary of potential human health impacts of microplastics exposure. 
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Table 1. Studies that have detected microplastics in products consumed by humans. 

Products Concentration  Plastic polymer References 

Yellowfin bream (Acanthopagrus 

australis) 

Sea mullet (Mugil cephalus) 

Silverbiddy (Gerres subfasciatus) 

 

mean 0.6 MPs per fish  

mean 2.5 MPs per fish 

mean 0.1 MPs per fish 

PET, PP 

 

(Halstead et al. 2018) 

Drinking water 50 (52) particles/L PET, PP, PE (Schymanski et al. 2018) 

Canned sardines 1 and 3 plastic particles 

per brand  

PP, PET, PVC, PE (Karami et al. 2018) 

Commercial fish species 

 

0-3 MPs per species PP, PE, PS, PVC  (Baalkhuyur et al. 2018) 

European sardine (Sardina 

pilchardus)  

European anchovy (Engraulis 

encrasicolus)  

 

0 to 3 items per fish PET, PA, polyacrylamide (Compa et al. 2018) 

Mussels (Mytilus edulis) 

 

3.0 (0.9)/g PET, PUR, Polyether (Catarino et al. 2018) 

Oysters (Saccostrea cucullate) 1.4 to 7.0 items per 

individual 

 

PET, PP, PS, PA, PVC (Li et al. 2018) 

Sea bass (Dicentrarchus labrax) 

Seabream (Diplodus vulgaris)  

 Flounder (Platichthys flesus) 

 

0.30 (0.61) MPs per fish 

3.14 (3.25) MPs per fish 

0.18 (0.55) MPs per fish 

PES, PP, Polyacrylonitrile, PE, 

 PA, nylon  

 

(Bessa et al. 2018b) 

Sea salts 50–280 MPs/kg PET, PUR, PP, PE, PMMA, PA, PVC (Iñiguez et al. 2017) 

Honey 1760/kg and 8680/kg PET (Mühlschlegel et al. 2017) 

Flounder (Platichthys flesus) and 

European smelt (Osmerus eperlanus) 

 

75% European flounder 

and 20% smelt 

PA, Acrylic, Nylon, PE, and PET (McGoran et al. 2017) 

Dried fish 61 particles  PP, PE, PS, PET, Nylon (Karami et al. 2017b) 

Sea salt 72 particles  PP, PE, PET, Nylon6, PS, 

Polyacrylonitrile 

(Karami et al. 2017a) 

Demersal (cod, dab, 

flounder/pelagic fish 

(herring and mackerel) 

 

54 particles mg
−1

 PE, PA, PP, PS, PET, PES, PUR (Rummel et al. 2016) 

Nile perch (Lates niloticus) and Nile 

tilapia (Oreochromis niloticus) 

 20% of each fish species PE, PES, PP, PU (Biginagwa et al. 2016) 

Japanese anchovy (Engraulis 

japonicus) 

 

mean 2.3 MPs per 

individual 

PE, PP, PS (Tanaka and Takada 2016) 

Atlantic cod (Gadus morhua) 18.8% MPs PES, PP, PVC, PS, Nylon, PE (Bråte et al. 2016) 

Table salts 

Lake salts 

Rock salts 

 

550−681 particles/kg 

43−364 particles/kg 

7−204 particles/kg 

PET, PE, cellophane (Yang et al. 2015) 

Commercial fish 19.8% of fish from 26 

species 

PP, PE, Alkyd resin, Rayon, PES, Nylon 

and Acrylic 

(Neves et al. 2015) 

Marine fish 2.6% of fish  PE, PP, PET, SA (Foekema et al. 2013) 

Marine fish 1.90 (0.10) particles/fish PS, PES, PA, Rayon (Lusher et al. 2013) 
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Marine fish 7.9% of the fish  PA (Dantas et al. 2012) 

Catfish species  

(Cathorops spixii) 

(Cathorops agassizii) 

(Sciades herzbergii) 

 

18% of individual fish 

18% of individual fish 

33% of individual fish 

 

PA 

(Possatto et al. 2011) 

 

    

PET: Polyethylene-terephthalate; PP: Polypropylene; PE: Polyethylene; PS: Polystyrene; PES: 

polyester; PUR: Polyurethane; PVC: Polyvinyl chloride PA: Polyamide; PMMA: Polymethyl-

methacrylate; SA: Styreneacrylate  

 


