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Selection of protein targets for study is central to structural biology and may be influenced by numerous
factors. A key aim is to maximise returns for effort invested by identifying proteins with the balance of
biophysical properties that are conducive to success at all stages (e.g. solubility, crystallisation) in the
route towards a high resolution structural model. Selected targets can be optimised through construct
design (e.g. to minimise protein disorder), switching to a homologous protein, and selection of experi-
mental methodology (e.g. choice of expression system) to prime for efficient progress through the struc-
tural proteomics pipeline.

Here we discuss computational techniques in target selection and optimisation, with more detailed
focus on tools developed within the Scottish Structural Proteomics Facility (SSPF); namely XANNpred,
ParCrys, OB-Score (target selection) and TarO (target optimisation). TarO runs a large number of algo-
rithms, searching for homologues and annotating the pool of possible alternative targets. This pool of
putative homologues is presented in a ranked, tabulated format and results are also visualised as an auto-
matically generated and annotated multiple sequence alignment. The target selection algorithms each
predict the propensity of a selected protein target to progress through the experimental stages leading
to diffracting crystals. This single predictor approach has advantages for target selection, when compared
with an approach using two or more predictors that each predict for success at a single experimental
stage. The tools described here helped SSPF achieve a high (21%) success rate in progressing cloned tar-
gets to diffraction-quality crystals.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction lise, optimisation typically starts with truncation of the protein
Of all techniques applied in molecular biology, macromolecular
crystallography reveals the most exquisite details about the ma-
chines of life. Advances in X-ray sources, computational methods
and cryo-techniques over the last 20 years have led to a dramatic
increase in the rate at which a protein structure may be deter-
mined once diffracting crystals have been obtained. Unfortunately,
expressing proteins at levels suitable for structural studies and
obtaining crystals that diffract remain the major bottlenecks in
most structural biology laboratories [1–3]. Accordingly, computa-
tional sequence analysis and similar methods are often applied to
increase the chances of success. Common strategies are to seek out
related proteins that might fare better than the preferred target
(e.g. orthologues, pathway members), to ‘‘optimise’’ the target pro-
tein in some way, or to adjust the laboratory approach (e.g. choice
of expression system) [3–13]. If the native protein fails to crystal-
ll rights reserved.
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into likely domains, or the removal of disordered regions, but
may include more sophisticated engineering. These strategies rely
on the application of computational tools for sequence analysis
and alignment in conjunction with the structural biologist’s expe-
rience. Although a single investigator might spend days studying
options to try on their protein, in a high-throughput structural pro-
teomics environment it is necessary to streamline this process by
introducing a higher degree of automation. In this article, we
examine computational approaches for selecting and optimising
proteins for crystallography with emphasis on those developed at
the University of Dundee [12,14–16] as part of the Scottish Struc-
tural Proteomics Facility (SSPF) [3]. Although developed with high-
throughput crystallography in mind, most of the tools described
here are equally applicable to smaller-scale structural studies.
2. Influence of project scope on structural proteomics target
selection

The overall approach to selecting targets is dictated by the
scope of the project. In the subsections below we outline a few
examples of how the research aims may impact on target selection

http://dx.doi.org/10.1016/j.ymeth.2011.08.014
mailto:ian.overton@hgu.mrc.ac.uk
http://dx.doi.org/10.1016/j.ymeth.2011.08.014
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth
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and optimisation. A common principle in target selection is to
identify proteins (e.g. orthologues) that both satisfy the project
aims and are relatively amenable to structural characterisation.
Target optimisation is applicable to almost every project and is dis-
cussed in greater detail in Section 6 of this article. Indeed analyses
enabled by the Target Optimisation Utility (TarO) [12], such as pre-
diction of domain boundaries, are useful in any structural biology
laboratory – even for work that focuses specifically on a single tar-
get. Further information on current structural proteomics projects
can be obtained by exploring links from the International Struc-
tural Genomics Organisation (ISGO) list of active initiatives [17].

2.1. Structural proteomics on a specific organism

Some projects seek to provide structural coverage across the
whole proteome of a particular organism, such as Thermotoga mari-
tima [18] or Saccharomyces cerevisiae [10,19]. This kind of genome-
wide approach rules out searching for more tractable orthologues;
however, ranking targets according to their predicted success may
inform experimental strategy. Optimisation of the construct se-
quence may also be productive, for example to minimise protein
regions predicted to be disordered or to adjust codon usage
[11,12,20]. Such optimisation can be useful for all targets, but is
more often adopted as a salvage strategy for targets that flounder
with a standard approach.

2.2. Structural biology projects for drug discovery and biological
chemistry

Some structural proteomics projects focus on targets that might
be suitable in drug discovery against a specific pathogen, for exam-
ple, the Mycobacterium tuberculosis structural genomics consor-
tium [21]; even these consortia may have scope for flexibility
across different targets amongst pathways and sub-networks.
However, prioritisation of druggable targets with favourable prop-
erties, such as control of metabolic flux and therapeutic selectivity,
limits the choice of alternative structural targets and constructs
[22]. Structural characterisation of a biological pathway or a partic-
ular enzyme function enjoys greater flexibility, where exploration
of different orthologues and constructs (e.g. the catalytic domain)
may be helpful.

2.3. Mapping protein structure space

Efforts to extend protein structure space coverage (e.g. [7,23])
have good scope for selecting the most favourable candidates from
groups of structurally similar proteins, at least where structural
Table 1
Estimation of protein characteristics useful for target selection and optimisation.

Protein characteristics

Homology relationships

Matches to known structures/declared targets
Domains

Protein interactions
Disorder/low-complexity sequence
Signal peptide and transmembrane regions
Glycosylation sites
Phosphorylation sites
Secondary structure
Surface entropy
Chemical properties: isoelectric point (pI), molecular weight, charge, sequence length

coefficient, #Methionines, #Cysteines, #Histidines, hydrophobicity, protease sites
Annotated function
Overall tractability (selected to diffraction-quality crystals)
relationships can be reliably inferred. Similar flexibility is available
to efforts that focus on particular classes of proteins (e.g. [24,25]).
As noted above, target optimisation is also useful in these contexts.
3. Useful protein features in target selection and optimisation

In order to identify favourable targets and constructs, signifi-
cant attention has been given to exploring biophysical properties
and investigating protein selection strategies that correlate with
success in obtaining a structure (e.g. [9,14–16,26–30]). To give a
few examples, properties influencing soluble expression include
isoelectric point (pI), hydrophobicity, and sequence length; proper-
ties influencing production of diffraction-quality crystals from
purified protein include surface entropy, disordered sequence,
and protein post-translational modifications [11,26–32]. Many of
these features, as well as relevant algorithms and databases are
summarised in Table 1. Properties that impact on success are often
correlated. For example, regions that participate in protein–protein
interactions have greater hydrophobicity [33,34], and sites of post-
translational modification are enriched for disordered regions [31].
In addition, individual biophysical properties have been shown to
significantly influence multiple pipeline stages. For example,
hydrophobicity affects soluble expression, purification and crystal-
lisation; glycosylation affects soluble expression and crystallisa-
tion; while the sequence length has an impact on cloning,
soluble expression and crystallisation [11,27]. Moreover, selection
or engineering for success at a given experimental stage can hinder
progress at other parts of the structure determination pipeline. For
example, surface entropy and charge are related because several
high entropy residues have charge (e.g. Lys, Glu, Arg). In general,
more surface charge, and consequently higher entropy, favours sol-
ubility; on the other hand lower surface entropy, and consequently
charge, favours crystallisation [28,35]. Therefore, target selection
and optimisation would ideally find protein chains that possess
the correct balance of properties required for successful progres-
sion through all experimental stages leading to a high-resolution
structural model. Indeed, algorithms have been developed with
this goal in mind [14–16,36]. Algorithms are also available to pre-
dict progression at a particular pipeline stage [28–30,37]; for
example PXS aims to predict the crystallisation of ‘well-behaved’
soluble proteins [28]. Section 5, below, gives further discussion of
these and other tools.

An assessment of the existing functional annotation available to
inform structure interpretation is also useful for target selection.
Indeed, new structures are difficult to interpret without some func-
tional knowledge, and so make a less immediate contribution to
Exemplar algorithms and/or databases

Algorithms: BLAST[88], SCANPS [95], MUSCLE [87], Magicmatch
[96]
Databases: eggNOG [55], InParanoid [56], UniProt [78]
PDB [69], TargetDB/PepcDB [68]
Algorithms: HMMER [97], RPSBLAST Databases: Pfam [62], CDD
[63], SMART [98], Superfamily [99], Biozon [100]
PIPS [51], STRING [101]
Disembl [59], RONN [58], GlobPlot [60], SEG [102]
SignalP [91], Phobius [45], TMHMM2 [44]
NetOGlyc [65], NetNGlyc [90]
NetPhos [67], Musite [103]
JPred [61], PSIPRED [104]
SERp [9]

, extinction Bioperl [105], PEPSTATS (EMBOSS) [106]

Gene Ontology [38]
XANNPred [16], XtalPred [36], OB-Score [15], ParCrys [14]
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biological understanding in the scientific community. For example,
target selection in the SSPF included a score to estimate functional
annotation based on the Gene Ontology [3,38].

Correlates of success are less understood for integral membrane
proteins, which represent around 25% of protein-coding genes [39]
but only 1% of proteins with high resolution structures [40,41]. In-
deed, membrane protein expression, purification and crystallisa-
tion are individually very challenging [42,43]. However,
membrane proteins are relatively amenable to computational
characterisation, partly due to physical constraints imposed by
the phospholipid bilayer. Indeed, existing approaches (e.g.
TMHMM2 [44], Phobius [45]) perform well in predicting mem-
brane protein topology, including identification of cytoplasmic
and extracellular regions. Current selection strategies seek to en-
hance membrane protein tractability by avoiding protein disorder
and hetero-oligomeric complexes [25]. Intrinsically disordered
proteins are also thought to represent a significant proportion of
protein-coding genes and are resistant to structural studies; these
multifunctional proteins adopt different conformations according
to protein interactions, environmental conditions (e.g. pH, temper-
ature) and small changes in amino acid sequence [46–48]. Protein
complexes are also typically difficult to work with, and have been a
specific focus of the European ‘SPINE2 complexes’ initiative [49].
Target selection methods have been developed to identify ‘‘low-
hanging fruit’’ for crystallography of protein complexes, however
this area remains challenging [5,13]. Protein interaction databases,
such as MINT [50] and PIPS [51] enable inference of complexes, for
inclusion or exclusion of candidate targets. This article does not de-
tail approaches for these especially difficult classes of targets.
4. Assignment of protein structure and function relationships

A fundamental technique in target selection is to estimate the
relationships in structure and function between the target and
other proteins. This approach allows alternative structural candi-
dates to be identified (e.g. orthologues), as well as supporting effi-
cient coverage of protein structure space [7,23]. In practice,
automated sequence searching is a crucial component for inferring
similarity in structure and/or function across genomes [52,53]. For
example, sequence similarity to human proteins provides a coarse
filter against unsuitable drug targets, or alternatively an inclusion
criterion for targets relevant to human biology. The ‘Rost curve’
[54] is a heuristic for the estimation of protein structural relation-
ships from sequence alignments and provides a formula that com-
bines alignment length and percentage identity/similarity. Target
selection pipelines have employed the ‘Rost curve’ as a means to
obtain proteins that are expected to be structurally similar to a
candidate target in order to: (A) add expected structurally similar
proteins to a pool of candidate targets and (B) determine if struc-
tural information already exists, leading to target deprioritisation
or alternatively to suggest models for phasing by molecular
replacement [3,6,12]. Importantly, the ‘Rost curve’ is algorithm-
dependent and therefore requires calibration, as has been done
for SSEARCH [6].

Searching orthologous sequence databases (e.g. eggNOG [55],
InParanoid [56]) can be a productive strategy to expand the possi-
ble pool of targets available for consideration. One approach exam-
ined structural similarity to orthologous groups using the Rost
thresholds in order to include the group of putative orthologues
into the pool for further study [12]. However, sequence homology
for non-globular protein segments, such as transmembrane regions
and signal peptides, requires careful consideration because se-
quence relationships in these regions frequently reflect convergent
evolution due to physical constraints [57]. Sequence-based ap-
proaches to infer relationships in protein structure and function
were largely developed from studies of globular proteins and
therefore may not translate appropriately to other protein classes,
even when low-complexity filtering is applied [57]. Visual inspec-
tion of an annotated multiple sequence alignment (MSA), including
examination of sequence feature conservation, is invaluable for
assessment of structural and functional similarity [12]. However,
construction of a MSA is not necessarily straightforward (e.g. for
multi-domain proteins), and so rounds of manual interpretation
and realignment may be required. Informative features for this
purpose include protein disorder [58–60] secondary structure
[61], domains [62,63], motifs [64] and post-translational modifica-
tions (e.g. [65–67]).

Automatically identifying and deselecting a target when signif-
icant progress has been made by a different research group is an
important aspect of structural proteomics work so that effort is
not wasted [8]. Information sharing is crucial in target deselection,
which is typically based on regular searches of TargetDB, PepcDB
and PDB [68,69]. Tools with capabilities relevant to target deselec-
tion include PiMS [70] and SeqAlert [4]. In order to reduce duplica-
tion of effort, the USA Protein Structure Initiative production phase
(PSI-2) has integrated target selection bioinformatics across its four
large-scale centres [23].
5. Predicting success in the structural proteomics pipeline

Having identified a pool of sequences that possess appropriate
structure and function relationships according to the project scope,
the next logical step is to determine promising candidates for
experimental work. As noted above, successful progression of a se-
lected target through to the stage of diffraction-quality crystals is a
critical consideration. Algorithms to estimate this include XANN-
pred, OB-Score, ParCrys, XtalPred, PPCpred and PDPredictor [14–
16,36,71,72]. Approaches focused on key stages of the structural
biology pipeline have also been developed, including predictors
of soluble expression (e.g. PROSO [29], SOLpro [37]) and crystalli-
sation (e.g. PXS [28], SECRET [30]). SECRET is limited to only accept
sequences of length 46–200 residues [30]. Predictors that focus on
a specific experimental stage are particularly useful when protein
targets have already reached the given stage in the pipeline, espe-
cially in target optimisation to propose alternative constructs; the
SERp surface entropy reduction server is an example [9]. Estimat-
ing overall success of selected targets with a single predictor is
much more appealing than using multiple single-stage predictors.
Indeed, a linear combination of multiple predictors suffers from er-
ror multiplication and makes candidate target ranking more cum-
bersome. Consider a strategy combining two predictors to
separately estimate soluble expression and crystallisation propen-
sity. If each predictor gave 75% accuracy individually, accuracy for
progression through both stages would be only 56%. Moreover, bio-
physical properties that are advantageous at one stage (e.g. solubil-
ity) may conflict with properties required for success at another
stage (e.g. crystallisation) [11,28,35]. Accordingly, an attractive ap-
proach applies a single algorithm to select targets with the right
balance of biophysical properties to successfully navigate all stages
of the structural proteomics pipeline. As noted above, this strategy
is available via the algorithms XANNpred [16,73], PPCpred [72,74],
PDPredictor, XtalPred [36,75,76] and ParCrys/OB-Score [14,15,77].
Interestingly, PPCpred provides a single prediction for overall suc-
cess, as well as estimating success at three individual pipeline
stages [72] and so informs on expected point(s) of failure. The sub-
sections below give further discussion on the relative merits of
these methods, with emphasis on those developed at the Scottish
Structural Proteomics Facility (SSPF). Of the algorithms examined,
XANNpred was found to be best-performing (Subsection 5.4 and
[16]).



Fig. 1. An example target selection pipeline. This figure summarises a target selection project conducted in the SSPF, starting with the Comprehensive Microbial Resource
(CMR) database [94] in order to identify tractable targets that were in novel structure space and structurally similar to human proteins. Circles on the left-hand side represent
proteins, circles in the middle electronic analysis and rectangles give selection thresholds. The SOFA (specificity of functional annotation) scoring [3] provided an estimate of
available functional annotation on the candidate targets. The analyses in this pipeline were run within customised scripts developed at the SSPF. Following manual inspection,
targets selected from the ranked lists were analysed using TarO.
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Fig. 2. Comparison of methods for predicting overall success in the structure
determination pipeline. This figure shows receiver operator characteristic (ROC)
curves for the methods XANNpred-PDB, PPCpred, XtalPred and OB-Score on a non-
redundant set of 150 proteins that were developed as an independent blind test for
XANNpred-PDB [16]. Areas under the ROC curve are given in the bottom right-hand
corner. XANNpred performs significantly better than the next best algorithm,
PPCpred.

Fig. 3. Outline of TarO workflow. This figure outlines the major steps involved in
the TarO workflow. Protein input sequences provide the starting point for
homologue searching. The input and all matched homologues are then annotated
in the sequence characterisation step. An initial ranking is automatically provided
within the user interface, but human analysis of the presented results is an
important step.
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5.1. The OB-Score

The OB-Score built upon findings about the correlation between
hydrophobicity, isoelectric point (pI) and crystallisation success in
the T. maritima proteome [26]. Three clusters were identified; clus-
ter A which contained 75% of crystallised proteins and 60% of the T.
maritima proteome, cluster B (27% crystals, 20% of proteome), and
cluster C (a single crystal, 10% of proteome) [26]. The OB-Score pro-
vides a measure of similarity for a protein’s pI and hydrophobicity
to that of previously crystallised proteins in the PDB [15]. Briefly, a
redundancy-filtered set of PDB structures and UniRef100 [78] pro-
vided the basis for developing a Z-score matrix, and validation was
performed against available information from structural proteo-
mics consortia [15]. Software to calculate the OB-Score is available
for download from [79] and predictions are also available from a
webserver [77]. Notably, the OB-Score is fast to calculate and
therefore easily applied to large datasets, within a multi-criterion
target selection pipeline as shown in Fig. 1.

5.2. ParCrys

ParCrys extends the number of features considered in the OB-
Score and implements them within a non-parametric statistical
framework to estimate a density function from PDB structures
without requirement for negative examples [14]. Parameterising
the density function only on a set of positive examples has the
advantage of avoiding complications around defining ‘non-crystal-
lisable’ targets. Feature selection was done with public data from
structural proteomics consortia [68] to identify single amino acid
frequencies (S, C, G, F, Y, M) as predictive features additional to
hydrophobicity and isoelectric point. Therefore, ParCrys represents
a more sophisticated algorithm than the OB-Score and was found
to perform well on several non-redundant blind test datasets,
including specific construct sequences taken from the PepcDB
database [14]. ParCrys predictions and data used for training and
benchmarking are available at [77].

5.3. XANNpred

Structural proteomics consortia routinely apply sequence-based
selection constraints on their targets, which influence the compo-
sition of the associated databases (e.g. PepcDB, TargetDB). With
this in mind, a pair of algorithms named XANNpred-SG and XANN-
pred-PDB were respectively developed using data from PepcDB
and the PDB [16]. The XANNpred algorithms utilise a large number
of features for prediction, including dipeptide frequencies, pre-
dicted disorder [58], transmembrane regions [44] and secondary
structure [61]. In contrast to ParCrys [14] and XtalPred [36], each
of the XANNpred algorithms were robust to either predicting over
data taken from the whole PDB or predicting over structural pro-
teomics datasets (PepcDB) [16]. Additionally, XANNpred can gen-
erate windowed graphs of crystallisation propensity over a
protein sequence in order to assist construct design. XANNpred
predictions are available from [73]. Both XANNpred-SG and XANN-
pred-PDB were found to outperform other publicly available algo-
rithms (PXS [28], XtalPred [36], OB-Score [15], ParCrys [14]) over
several non-redundant blind test datasets [16]. Section 5.4, below
extends this comparison to a recently published algorithm, PPC-
pred [72].

5.4. Evaluation of current methods to predict overall success of
selected targets

Fig. 2 gives comparison of the methods XANNpred-PDB [16],
XtalPred [36], PPCpred [72] and OB-Score [15] on a nonredundant
dataset of 150 proteins that were controlled to be an independent
blind test of XANNpred-PDB performance [16]. Briefly, the blind
test dataset includes 75 proteins from the PDB [69] and 75 proteins
from PepcDB that had been cloned but where work was stopped
before crystals were obtained [16]. Predictions for PPCpred were
obtained from [74], data for the other algorithms were taken from
[16]. XANNpred-PDB gave Matthew’s correlation coefficient (MCC)
of 0.63 and area under the receiver operator characteristic curve
(AROC) of 0.854, performing significantly better than the next best
algorithm PPCpred (two-tailed p < 0.0091); PPCpred had AROC of
0.718 and best possible MCC of 0.37. XtalPred performs similarly
to PPCpred (AROC 0.707, best possible MCC 0.37) followed by the
OB-Score (AROC 0.612, best possible MCC 0.23). This test dataset



Fig. 4. Key features of TarO user interface. This figure shows snapshots of several TarO user interface pages. Dashed arrows (red in online figure) indicate navigation by
clicking on the relevant links. The TarO guest user ’Home’ page is shown at the top, clicking on the ’New Query’ link circled (red in online figure), navigates to the new query
submission form; clicking on the ’Query Results’ link, circled (red in online figure), navigates to the ’Input Sequences’ page for the relevant query. Links on the ’Input
Sequences’ page enable navigation to the homologues page (’H’), circled (red in online figure), and display of the multiple sequence alignment. Please note that the tables
shown in this figure are truncated, and have many additional results columns.
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was controlled by stringent approaches [16] to enable an indepen-
dent blind test of XANNpred-PDB performance. However, esti-
mates for the other algorithms (PPCpred XtalPred, OB-Score) are
likely inflated due to some degree of overlap between their train-
ing data and the test data studied here. Even so, XANNpred per-
formed best and appears to be the method of choice for
estimating targets’ overall success in the structural biology
pipeline.
6. Single point of reference resource for target selection and
optimisation

As discussed above, numerous computational approaches are
relevant to target selection and optimisation. The task of running
these calculations, as well as integration, management and visual-
isation of the resultant information represents a significant chal-
lenge. Single point of reference resources have been developed in
order to address these issues. The Oxford Protein Analysis Linker
(OPAL) [4] was an early resource for this purpose, and collected
information from several websites that performed individual anal-
ysis steps. However OPAL does not provide integration or storage
of results. Other similar resources are also available but without
a structural biology focus, such as ExPASy, Dasty3 and ANNIE
[80–82]; analysis with these tools becomes very laborious over
large numbers of alternative targets (e.g. orthologues, constructs).
The XtalPred [36] website provides some level of results integra-
tion for relatively few algorithms, but does not include display of
results on a multiple sequence alignment (MSA). Greater integra-
tion over a user-supplied MSA is offered by MACSIMS [83] which
also propagates annotations by homology inference. However,
MACSIMS is not focused on structural biology and no ranking of se-
quences is given. Also, MACSIMS returns a limited subset of anno-
tation types and only annotation that is amenable to display on a
MSA. The Target Optimisation Utility (TarO) [12], developed within
the Scottish Structural Proteomics Facility (SSPF) has advantages
over the above tools in that it provides for more sophisticated anal-
ysis, integration and visualisation of a large number of results.
6.1. The Target Optimisation Utility (TarO)

TarO [12,84] takes a protein sequence(s) as input, and searches
for homologues to generate a pool of potential alternative targets
for structural work. The input and associated homologues are ana-
lysed in several annotation steps, and the results stored in a data-
base. The TarO website provides an interface for access to results,
integrating closely with the Jalview [85] program to visualise com-
plex annotation over a multiple sequence alignment (MSA). The
TarO workflow is outlined in Fig. 3 and key features of the user
interface are summarised in Fig. 4. A guest account is available
for unrestricted access to TarO and information about obtaining a
private account for academic use is given at [86]. Guest queries
are deleted from the server after a minimum of eight days. Login
to a private account or navigating to the guest area displays a
‘Home’ page that summarises the submitted queries (Fig. 4). The
‘New Query’ link navigates to an easy to use web form for query
submission, and a maximum of 20 sequences are accepted. The



Fig. 5. Annotated multiple sequence alignment. This figure shows a portion of an annotated multiple sequence alignment, visualised with Jalview [85]. The different shades
(colours in online figure) on the aligned sequences represent different annotation types. The lightest grey (lilac) corresponds to a Pfam domain. Predicted GlobPlot [60] and
Disembl [59] disorder are show in medium greys (slate blue, light/dark orange, green). Predicted post-translational modifications (PTMs), phosphorylation [67] and N-linked
glycosylation [90] are respectively shown in dark grey (red) and medium grey (blue). Jpred [61] predicted secondary structure for the input sequence is shown on the line
entitled ‘jnetpred’ that runs towards the bottom of the figure. Related annotations are grouped and may be selectively displayed in order to enable visualisation and
interpretation of the information. The TarO annotation groupings are viewed inside the Jalview ‘Features Settings’ box. For example, Disembl and GlobPlot disorder are
grouped together, whilst Pfam domains and RONN disorder are in a separate group. There is also a group for protein disorder predicted by Disembl and RONN. From the
‘Feature Settings’ box, the user can change the display of the various groups in order to customise the presence or absence of annotations on the MSA. The order of annotations
displayed is also specified within the ‘Feature Settings’ box. For example the annotation layer for PTMs is best displayed on top of the other annotations in this figure.
Therefore the medium grey (slate blue) GlobPlot disorder annotation on the sequence region ‘TGGTTG’ is displayed underneath the dark grey (red) predicted phosphorylation
site annotation on the second threonine residue of the ‘TGGTTG’ sequence. The row at the bottom of the figure shows the alignment conservation and is automatically
calculated by Jalview.
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query submission form also gives the opportunity to specify the
maximum number (default 100) of matched sequences included
as input for MUSCLE [87] to generate the MSA. Ideally the MSA
would include enough sequence diversity to enable identification
of conserved residues, whilst excluding sequences unrelated in
evolution and so generate a meaningful alignment. When multiple
input sequences are submitted to TarO, we recommend that these
are related (e.g. orthologues) in order to help produce a more use-
ful MSA. From the ‘Home’ page, clicking on the ‘Query Results’ link
navigates to the ‘Input sequences’ page, which includes a table to
track progress of calculations in a ‘Query Status’ table according
to a traffic lights system; orange shows the step has been initial-
ised, green indicates completion and red means that the calcula-
tion failed. The ‘Input sequences’ page also summarises results
for the input sequence(s) in a table (Fig. 4) and gives a link to dis-
play an annotated MSA in Jalview [85]. The Jalview full application
enables DAS annotation lookup for the aligned sequences linking to
significant additional information such as Gene Ontology terms
[38]. Table column headings link to relevant parts of the help doc-
umentation, which provide more explanation of the information
presented. This table gives various sequence statistics (e.g. molec-
ular weight), including summaries of BLAST [88] searching Target-
DB [68], PDB [69] and UniProt [78]. Links within this table enable
display of further details including RPSBLAST search results and al-
low navigation to the Dasty and UniProt resources [81].

6.2. Exploring alternative homologues and constructs in TarO

In order to investigate alternative targets, clicking on the link la-
belled ‘H’ in the ‘Input Sequences’ table (Fig. 4) navigates to a page
of annotated putative homologues tabulated and ranked by esti-
mated crystallisation success (ParCrys [14]) and functional similar-
ity (PSIBLAST expectation value [88]). Additional information
relevant to estimating success in obtaining diffracting crystals is
supplied, including sequence length, predicted transmembrane
segments, secondary structure, and protein disorder. Results are
presented from BLAST [88] searching the homologues against the
PDB and TargetDB. In the results table, the ‘‘99%qcov’’ column
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shows a true/false value (i.e. 1/0) to indicate if the top BLAST hit
covers 99% of the query (homologue) sequence; the ‘‘99%qco-
v + 99%id’’ column shows a true/false value (i.e. 1/0) to indicate if
the query sequence has both 99% coverage and at least 99% se-
quence identity to the top hit. These indicators allow rapid evalu-
ation of pre-existing work in structural genomics consortia on the
target of interest, and reveal whether a high-resolution structural
model has been deposited in the PDB. Annotated status of the
matched target as recorded in TargetDB can be retrieved by click-
ing on the ‘T’ link in the results table, under the TargetDB section
‘More’ column; similar information for the PDB search is available
by clicking on the ‘P’ link under the PDB Top Hit section ‘More’
column.

As part of assessing targets’ functional similarity we recom-
mend manually inspecting the patterns of sequence annotation
and conserved residues across a multiple sequence alignment
(MSA). TarO generates an annotated MSA from the input sequence
and top-scoring putative homologues, aligning with the MUSCLE
algorithm [87]. Fig. 5 shows part of a MSA produced by TarO,
and viewed in Jalview [85]. Please note that in order to access
the Jalview applet from TarO, a correctly installed Java Runtime
Environment is required. As well as providing for assessment of
functional similarity, this MSA is useful in construct design for tar-
get optimisation. Annotated features include predicted protein do-
mains [62,89], secondary structure [61], post-translational
modifications (PTMs) [65,67,90], signal peptide [91], transmem-
brane regions [44], and disorder [58–60] (Fig. 5). Of course con-
struct optimisation generally seeks to minimise unfavourable
features in the target protein (e.g. disorder, signal peptide, trans-
membrane regions). Design of truncated constructs, for example
to remove disordered N- or C-termini or to isolate a domain(s) re-
quires careful inspection of predicted protein disorder and domain
boundaries and should avoid disruption of any secondary structure
element. Inspection of the MSA annotated with results from sev-
eral disorder prediction algorithms enables a consensus view over
the aligned sequences, which is helpful for determining construct
boundaries. Where no domains are found by database searching,
one practical strategy for N- or C-terminal truncation to improve
crystallisation success is to conservatively remove any continuous
region of predicted disordered sequence from the terminus up to
the start of the first predicted secondary structure element, possi-
bly testing several constructs with alternate boundaries. The anno-
tated MSA is also useful as a sequence analysis tool, assisting
identification of conserved functional residues.

Different visualisations of sequence features can be selected
using the Jalview [85] ‘Feature Settings’ window that appears
when the MSA is displayed. It is important to note that the MSA
display requires some initial adjustment to ensure visibility of all
sequence features. For example, some fraction of annotated post-
translational modifications (and signal peptide) is frequently hid-
den underneath other annotation (e.g. domains); therefore we
strongly recommend ensuring all annotations are visible, which
is done by unchecking and rechecking the ‘PTMs_ + _SignalP’
tick-box at the top of the Feature Settings window. The same is
true for transmembrane regions (‘TM_regions’ tick-box). By default
the MSA display initialises to show domains (Pfam [62]), disorder
(RONN [58]), post-translational modifications (various), signal
peptide (SignalP [91]), and transmembrane regions (TMHMM2
[44]); however, additional disorder annotations can be shown by
checking the appropriate boxes in the Feature Settings window.
A key practical consideration is that annotations for the most re-
cently checked tick-box will be always be displayed on top of all
other annotations. Further discussion and recommendations for
the annotated MSA are given at [92]. TarO also supplies informa-
tion relevant to particular pipeline stages. For example frequencies
of key amino acids are given, including Cys and Met which are rel-
evant to solubility as well as phasing by anomalous dispersion. A
tutorial is also available from the TarO website, please contact us
(taro@compbio.dundee.ac.uk) for login details.
7. Concluding remarks

Some of the current approaches in target selection and optimi-
sation were discussed, as well as how these approaches can miti-
gate the non-trivial task of successfully navigating the various
stages in the structural proteomics pipeline. The tools TarO [12]
and crystallisation propensity predictors (OB-Score, ParCrys,
XANNpred) [14–16] were employed within the Scottish Structural
Proteomics Facility (SSPF) and partly contributed to a good rate of
success where 61 (21%) of the 295 targets taken into expression tri-
als lead to diffraction-quality crystals [3]. Indeed, the XANNpred
predictor was found to outperform other available methods on
independent blind test data [16] including PPCpred [72], PXS [28]
and XtalPred [36,76]. Combining experimental measurements
and protein sequence information (e.g. [93]) is an interesting ap-
proach. However experimental characterisation requires purified
protein, therefore predictions would be focused on crystal growth
and not available for decision-making during initial target selec-
tion. Also, we have highlighted benefits in selecting targets with
a single algorithm to predict successful progression through all
stages leading to a high-resolution structural model, rather than
combining multiple results arising from different predictors for
each key stage of the structural proteomics pipeline.
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