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Abstract  

The main objective of the present study is to project the future scenario of land use/ 

land cover on the basis of their past pattern of change. Indus basin with its diverse 

physiography is an ideal study area. Remote sensing sources from Landsat (MSS), 

LISS-I and LISS-III (1985–2005), were used to assess the past land use at a scale of 

1:250,000. A statistical driver-based model was used to simulate the land use 

scenarios for 2015 and 2025. The model output was validated by comparing the 

simulated maps with reference ones for 2005 and 2015. All the land use classes 

displayed an overall accuracy of 85–90% with the exception of the classes ―built-up‖ 

and ―wasteland‖. 
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1 INTRODUCTION 
 

Land use and land cover change is the basis for today’s 

alarming rate of global environmental change (Venter et 

al., 2016). It is the most critical issue in the study of 

environmental assessment because of its significant 

contributions to climate change, loss of habitat and 

biodiversity and improving standard of human life 

(Geoghegan et al., 2001). On a global scale, 

approximately 1.2 million km
2
 of land has been 

deforested and converted to various land uses in the last 

three centuries, while the agricultural land has increased 

by nearly 12 million km
2
  (Ramanakutty and Foley, 

1999). Land use land cover dynamics is the major driver 

of any environmental change that has a direct 

implication on the soil moisture and atmospheric heat 

budget—the two most important components that shape 

the climate of a region (Boysen et al., 2014). Hence, 

these adverse environmental impacts of land use 

changes pose a critical challenge for all land use 

planners in designing sustainable economic growth. For 

assessing the impact of land use changes on the 

environment, the International Geosphere and Biosphere 

Program (IGBP) and International Human Dimensions 

Program (IHDP) on Global Environmental Change co-

organized and endorsed research activity on land use 

land cover change scenarios (Geoghegan et al., 2001; 

IGBP, 1995).  

 The primary focus of the current study is modelling 

future land use scenarios based on their past pattern or 

drivers of change. Land use simulation based on their 

driver’s influence will provide a better understanding of 

land use systems identifying their pattern and help in 

prospective land use planning and policy (Soesbergen, 

2015). A detailed understanding of future land use 

scenarios and potential environmental impacts will 

support land use planners and policy makers in making 

sound decisions and encourage them to practice 

sustainable land management so that a steady supply of 

natural resources is assured for future generations and 

the negative impacts of LULC change on the 

environment are alleviated (Aithal et al., 2013). Various
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Landuse change studies in the recent past have dealt 

with the drivers of landuse change to identify their effect 

on future scenarios. Studies by  Zondag and 

Borsboom (2009), Parvez et al., (2015), Arveti et al., 

(2016), Khan and Anderson, (2016), Manu et al., 

(2015), Kumar and Rajan, (2014), Du et al., (2014)  and 

Han et al., (2015) have showcased how the prevalent 

drivers of change play a significant role in simulating 

land use change probabilities. 

In general, the land use/land cover (LULC) of any 

region is defined and shaped by the environmental 

factors, such as climate, relief, vegetation and soil 

attributes (Verheye, 1998). But in recent years, both 

modification and conversion of any land use have been 

driven by human needs rather than natural changes 

(Turner et al., 1993). Thus most land use models have 

three key elements (Agarwal et al., 2001), of which time 

and space are the first two, providing a framework 

where all biotic and abiotic drivers interact. The human 

dimension of decision making is the third element of the 

model. 

Literatures revealed that LULC models can be 

classified into three categories. The empirical-statistical 

models are the first group, such as regression models, 

which are developed by statistical analysis on the factors 

causing land use change (Pei and Pan, 2010). The 

spatially explicit models, are the second types 

simulating change based on transition rules such as the 

cellular automata model that represent transition rule 

based change but lack in their causal representation 

(Asranjani et al., 2013; Vaz et al., 2013). Thirdly, there 

are agent-based models, which simulate future scenarios 

based on factors of change also called agents but due to 

the multi-collinear behavior of the interacting agents, it 

seldom fails to represent the reality (Parker et al., 2003).  

The current study entails a different approach of 

LULC modelling (statistical, spatial and driver-based 

approach) with quantitative simulation of future land use 

scenario at a river basin level, which analyses the 

processes of past decadal land use change (driver based) 

for the years 1985, 1995 and 2005 through statistical 

relations and representing the past pattern of change in 

the future at a temporal and spatial unit (spatially 

explicit approach).  

Various researchers and environmentalists have 

assessed the trends of past land use dynamics and their 

ecological impacts at a local scale in various parts of the 

Indus river watershed. A forest fragmentation model 

was developed to characterize the changes in forest land 

use in the Mandhala watershed, in Himachal Pradesh 

(Ramachandra et al., 2012), from 1982 to 2007. 

Sonawane and Bhagat (2017) used simulation models 

for improved change detection of forested area. In a 

different study, multi-criterion decision analysis 

approach
 
(Singh, and Andrabi, 2014) was utilized to find 

potential sites of urban development in the hilly terrain 

of Solan (HP), located in the current study area. The 

criteria were slope, aspect, elevation, transport network 

and land use/cover. The logistic regression technique 

was used in the land degradation study conducted
 
by 

Gupta, and Sharma, (2010) to assess the impacts of 

various human drivers such as total owned land, land 

fragmentation, various levels of income, migration, 

labour availability, leasing out of land and literacy levels 

on the land degradation of the Himachal Himalayan 

zone. Human-induced factors such as population 

growth, urbanization and government policies were 

highlighted as the main drivers of change in Punjab 

from 1980 to 2010 (Adhikari and Shekhon, 2014). In 

another study, Rashid et al., (2015) confirmed the 

impacts of human-induced climate change on the 

receding glaciers of the Kashmir Himalaya through their 

study of the Kolohai glacier, Lidder valley. Kuchay et 

al., (2016) analysed the spatio-temporal impact of 

population growth and urban sprawl in the mountainous 

ecological background of Srinagar city.  

 Though several studies have been conducted at 

various times in the past at a local scale throughout the 

Indus watershed, the current study was the first of its 

kind in quantifying future land use processes on the 

basis of the past patterns of change, considering both 

physical and human drivers at a watershed level of 

analysis. 

2 STATISTICAL LULC MODELS 

A statistical land use model has been applied in the 

current study, where multiple regressions were used to 

represent the impact of drivers on land use change, the 

transition probability of change was represented using 

Markov chain analysis. The spatial distribution of 

LULC was presented using a grid system with unique 

grid identifiers. The structure of the model is shown in 

figure 1. 

2.1 Transition probability: the first component  

Being a dynamic system, it represents the probability of 

a land use class that will change from one category to 

another or stay in the same, depending on the category 

at the initial time (Eastman et al., 2005). Such a model 

has at its center a transition matrix (A) that explains the 

likelihood of a cell changing from state i to state j (for 

all classes in the same discrete time step) and a vector 

(XT) displaying the frequency of each class at time t. A 

key assumption of transition models is that transition 

rates do not change over time (Peña et al., 2007). In the 

current study transition probability was used to estimate 

the probability of Land use change within a specified 

period of time. 
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Figure 1. Driver-based statistics model 

 

2.2 Correlation Analysis: the second component  

It signifies the degree to which two or more variables 

tend to vary together and therefore has an ability to 

measure the strength and direction of relationship 

between two variables (Torrico, and Janssens, 2010; 

Kozak et al.,  2012). It is estimated by dividing the 

sample covariance of variables by their standard 

deviation and is expressed in terms of the coefficient of 

correlation, r. The value of r ranges from -1 to +1 (i.e., -

1< r < 1). The + and – signs are used for positive and 

negative correlation, respectively, and signify the 

direction of the relation between the variables.  

A correlation matrix between Landuse classes (Y 

variable i.e. effect) with respect to their corresponding 

drivers of change (X variables i.e. causes) was generated 

and applied in the current model to identify the 

significant drivers for each LULC class change. 

2.3 Regression Analysis: the third component  

It represents the relationship between dependent and 

independent variables and is generally used to predict 

the behaviour of a dependent variable with respect to an 

independent one (Campbell and Campbell, 2008). 

Multiple regressions can ascertain that a set of 

independent variables has the ability to explain a 

proportion in a dependent variable at a significant scale 

of analysis and thus evaluate the predictability of the 

independent variables (Rawlings et al., 1998). 

In the current model, regression analysis has been 

implemented to project the best fit relation between 

every landuse class (Y) and its corresponding selected 

set of non-collinear driver variables (X1 to Xn). 

3 STUDY AREA 

The Indus river basin extends over China (Tibet), India, 

Afghanistan and Pakistan, draining an area of 1,165,500 

km
2
. The study area is the part of the Indus basin that 

lies within India (Figure 2). In India, the basin spreads 

over the states of Jammu & Kashmir, Himachal Pradesh 

and Punjab and parts of Rajasthan, Haryana and the 

union territory of Chandigarh. It has an area of 315,608 

km
2
, covering 9.8% of the country’s geographical area. 

The basin is located between longitudes 72°28ʹ and 

79°39ʹ E and latitudes 29°8ʹ and 36°59ʹ N. It covers a 

length of 756 km and a width of 560 km. The basin is 

surrounded by the Himalaya, in the east, the Karakoram 

ranges, in the north, the Kirthar and Sulaiman ranges, in 

the west, and the Arabian Sea, in the south (Indus 

River). 

The major part of the basin is covered with 

agricultural land, which accounts for 35.8% of the total 

area, and 1.85% of the basin is covered by waterbodies. 

The upper part of the basin consists mostly of mountain 

ranges with steep slopes and narrow valleys in the states 

of Jammu & Kashmir and Himachal Pradesh. The lower 

part of the basin is situated in Punjab, Haryana and 

Rajasthan and consists of vast plains covered with fertile 

alluvium. The major soil types found in the basin are 

sub-montane, alluvial soils and brown hill. The 

cultivable area of the basin is about 9.6 million ha, 

which forms 4.9% of the total cultivable area of the 

country. 

The important urban centers and towns in the basin 

are Chandigarh, Srinagar, Ambala, Patiala, Bathinda and 

Shimla. Industrial growth in the basin is based on 

agricultural equipment and agriculture-based products 

such as textiles, wool, sugar and paper. Being a hill 

economy and given its distance from the main markets 

in India, transportation costs are high. Intensive 

cultivation is practiced because of the constraints of the 

cultivable land available. Irrigation and high-yielding 

seeds are important for cultivation. Both the human and 

livestock populations directly depend on the forest for 

survival. Under the pressure of urbanization, the 

increasing population encroach the forest for housing 

and agriculture purpose. Tourism is the most popular 

service industry of the state depending on its aesthetic 

beauty of mountains, valleys, lakes, and the coniferous 

canopy. The fragile ecology and the high cost of 

accessibility in the northern part of the basin hinder the 

growth of any large-scale industry.  
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Figure 2. Study area: the Indus river basin in India 

 

Due to the high variability in the climatic parameters 

(temperature ranging from 30°C to sub-zero 

temperatures, rainfall ranging from as low as 15 mm to 

3000 mm) and topographic features (rugged Himalayan 

topography to level land) and variations in the spatial 

and temporal impacts of human influence, the Indus 

basin is ideal for studying the effects of natural and 

human drivers on the changing land cover of the Earth. 

No attempt to study and identify the significant land use 

and its drivers of change to assess its environmental 

impact of the Indus basin in India has been undertaken 

earlier. 

4 MATERIALS AND METHODOLOGY 

4.1 Data input for the model 

4.1.1 Past Land use/land cover dataset  

The vector LULC database created from the geo-

rectified satellite data of Landsat MSS, IRS LISS-I and 

IRS LISS-III, were used to produce raster LULC 

datasets (Figure 3) for the years 2005, 1995 and 1985 (at 

decadal interval), at a spatial resolution of 125 m. Based 

on IGBP level II classification scheme 13 landuse/ 

landcover classes were identified during the period 

(Built up, crop land, plantation, evergreen forest, 

deciduous forest, mixed forest, scrub land, grass land, 

permanent wetland, barren land, waste land, waterbody 

and snow and ice). 

4.1.2 Driver datasets 

The physical (elevation, slope, soil depth, mean monthly 

temperature, mean annual rainfall and drainage density) 

and human (taluk wise total population and socio 

economic parameters like working population, literacy 

rate, drinking water facility, sex ratio, road length 

represented as socio economic index ) drivers’ data were 

collected,  and organized for those corresponding years 

of 1985, 1995 and 2005 from various sources (Digital 

Elevation Model, National Bureau of Soil Survey & 

Land use Planning Soil map, Indian Meteorogical Data, 

Digital Chart of the world, Census of India, India stat 

report) and in different resolutions. To analyse and 

assess them in a model set-up, it was necessary to 

convert each driver data to raster format (example 

shown in figure 4 and 5 with a 125m spatial resolution. 

Thereby to avoid the modifiable aerial unit problem and 

for the sake of  unbiased analysis, data were resampled 

at a uniform spatial level and was aligned in the same 

format, having the same projection and resolution 

parameters as those of the LULC raster maps. 

4.1.3 Grid mesh (vector layer) 

Unlike CA model, where the spatial representation of 

land use change depends on the local influences of the 

neighbouring land use cells, the current model considers 

a grid system to spatially project the future pattern of 

land use change in each grid. The grid system consisted 

of a grid mesh covering the entire study area, i.e., 
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315,608 km
2
 (Indus watershed area in India) and was 

composed of individual grid cells of a particular chosen 

dimension represented by grid id. For the study area, 

since both the land use and driver database rasters were 

at a resolution of 125 m, a larger grid size of 1 km/1 km 

was considered to represent the future land use scenario. 

4.2 Methodology used 

The LULC modelling in the Indus watershed was 

carried out with six different steps, namely, temporal 

analysis, data preparation, driver selection, predicted 

output, thematic image composition and composite 

output. 

4.2.1  Temporal analysis 

The temporal complexity of land use change is analysed 

in terms of the probability of a transition from one class 

to another in a given time period. The Markov analysis 

was utilized to generate the rate of land use change 

between two time periods (Table 1), where the inputs 

were the two raster LULC images for the initial year and 

the base year (T0 and T1). Based on the initial and base 

year, future landuse was estimated for 2015 and 2025 

(T2). For the prediction for 2015, the transitional 

probability (TP) for the period from 1995 to 2005 (since 

T0 = 1995 and T1 = 2005) was generated and for 2025, 

the TP for the period from 1985 to 2005 was used (as T2 

= (T1 - T0) + T1). 

4.2.2 Preparation of database 

The second step was to organize both database (land use 

and drivers) in a similar format for convenience of 

modelling. Since grid cells are used to spatially 

represent the future land use scenario, thereby both the 

input databases were organized and distributed in 1km 

grid cells, with their grid identities as unique identifier 

and their corresponding values as an attribute to each 

cell. Using mean function of zonal statistics and tabulate 

area, input data were distributed in each vector grid cell. 

 

 

Figure 3. Decadal LULC of Indus river basin: a) 1985, b) 1995 and c) 2005 
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Figure 4. Physical drivers: a) Slope, b) Temperature, c) Rainfall, d) Soil depth and e) Drainage density 
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Figure 5. Human induced drivers (2005): a) Total population and b) Socio-economic Index 

 

4.2.3 Driver selection 

The drivers affect the land use classes in various ways. 

A driver that is highly related and effective for one land 

use class may not be equally significant for another 

since land use classes are not affected in the same 

manner by all the drivers. For instance, the built-up land 

use will be highly dependent on a demographic driver 

like population growth, but it will not be affected as 

much by the drainage density of the region. Thus 

identifying and locating the set of influential drivers for 

a particular land use was the next step that will be the 

major input in the prediction process. This was 

accomplished by the correlation statistics between the 

LULC distribution and their corresponding drivers of 

change for each taluk (Table 2) at a significance level of 

0.05 with the minimum threshold at r>= 0.138 (with 

degree of freedom= 121), that displays the correlation 

coefficient (r) of each land use–driver pair, representing 

the direction (direct or inverse proportionality) and 

strength of the relation between them. The value of r is 

the basis on which drivers are selected for each land use 

category, higher the value (positive or negative) greater 

is the LU-driver dependence. Approximately two to five 

non collinear drivers having consistent impact over three 

years had been considered for each land use class. 

4.2.4 Land use prediction 

The next step performs prediction analysis using the 

regression technique. The significant drivers identified 

for each land use category were used as the major input 

projecting the best-fit relation in terms of their level of 

significance on the respective land use class. According 

to their correlation coefficient, the set of drivers are 

inserted in the regression equation as the independent X 

variables to estimate the predicted Y (land 

use/dependent variable). For both, 2015 and 2025, the 

base year (T1) of prediction was 2005. Hence regression 

analysis was carried out on the datasets for 2005 (land 

use and drivers) because of the data availability. 

 

 

Table 1. Transitional probability matrix (1985, 1995 and 2005) 

1985-

1995 

BU CL PL EF DF MF SL GL PW BL WL WB SI 

BU 0.92 0.04 - - 0.01 - 0.02 - - - 0.01 - - 

CL 0.01 0.99 - - - - - - - - - 0.02 - 

PL - - 1 - - - - - - - - - - 

EF - - - 0.95 - - 0.01 0.01 - 0.02 - - 0.01 

DF - - - 0.01 0.93 - - - - - - - - 

MF - - - 0.01 - 0.95 0.02 - - 0.01 - - 0.01 

SL - - - 0.01 - - 0.97 0.01 - 0.01 - - 0.01 

GL - - - 0.01 - 0.01 0.02 0.9 - 0.04 - - 0.03 

PW - - - - - - - - 1 - - - - 

BL - - - 0.01 - - 0.01 0.01 - 0.94 - 0.01 0.03 

WL - 0.04 - - - - - - - - 0.96 - 0 

WB - 0.01 - - - - - - - 0.01 - 0.98 0.01 

SI - - - 0.01 - - - 0.02 - 0.03 - - 0.94 

Total Population Socio-economic Index 
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1985-

2005 

BU CL PL EF DF MF SL GL PW BL WL WB SI 

BU 0.93 0.05 - - 0.01 - 0.01 - - - 0.01 - - 

CL 0.02 0.97 - - - 0.01 - - - - - 0.01 - 

PL - - 1 - - - - - - - - - - 

EF - - - 0.9 - - 0.01 0.04 - 0.02 - - 0.03 

DF - - - - 0.92 0.01 - - - - - 0.01 - 

MF - - - 0.01 - 0.94 0.01 0.02 - - - 0.01 - 

SL - - - 0.01 - - 0.93 0.03 - 0.01 - - 0.02 

GL - 0.01 - 0.01 - 0.01 0.02 0.86 - 0.05 - - 0.05 

PW - - - - - - - - 1 - - - - 

BL - - - - - - 0.01 0.01 - 0.93 - - 0.04 

WL 0.02 0.13 - - - - - - - - 0.86 - - 

WB - 0.01 - - - - - - - - - 0.99 - 

SI - - - - - - 0.01 0.05 - 0.04 - - 0.89 

1995-

2005 

BU CL PL EF DF MF SL GL PW BL WL WB SI 

BU 0.96 0.04 - - 0.01 - - - - - - - - 

CL 0.02 0.98 - - - - - - - - - - - 

PL - - 1 - - - - - - - - - - 

EF - - - 0.93 - - 0.01 0.02 - 0.02 - - 0.02 

DF - - - - 0.99 0.01 - - - - - 0.01 - 

MF - - - 0.01 - 0.98 - 0.01 - - - - - 

SL - 0.01 - 0.01 - 0.01 0.88 0.06 - 0.03 - - 0.02 

GL - 0.01 - - - - 0.01 0.9 - 0.04 - - 0.04 

PW - - - - - - - - 1 - - - - 

BL - - - - - - 0.02 0.04 - 0.91 - - 0.03 

WL 0.02 0.2 - - - - - - - - 0.78 - - 

WB - 0.01 - - - - - - - 0.01 - 0.99 - 

SI - - - - - - 0.01 0.04 - 0.03 - - 0.92 

 

 

 

 

 

Table 2. Correlation matrix (land use vs drivers) at alpha = 0.05 

1985 
Elevation 

(m) 

 Soil-depth 

(cm) 

 Slope 

(degree) 
Population  

 SEI  

(%) 

DD 

 (m/km2) 

 Temperature 

(C) 

Rainfall 

(mm) 

BU -0.287 0.235 -0.387 0.456 0.369 -0.047 0.243 -0.282 

CL -0.517 0.434 -0.638 0.681 0.570 -0.132 0.531 -0.416 

PL -0.057 -0.011 0.069 -0.135 -0.116 0.342 0.036 0.387 

EF 0.376 -0.345 0.336 -0.272 -0.431 -0.083 -0.436 -0.060 

DF -0.217 0.102 -0.206 0.173 0.150 0.420 0.176 0.214 

MF 0.267 -0.351 0.318 -0.319 -0.325 0.149 -0.285 0.184 

SL 0.368 -0.319 0.167 -0.272 -0.459 -0.040 -0.401 -0.143 

GL 0.606 -0.564 0.342 -0.337 -0.506 -0.154 -0.622 -0.235 

PW -0.176 0.146 -0.210 0.220 0.107 0.041 0.191 -0.117 

BL 0.442 -0.391 0.146 -0.247 -0.437 -0.100 -0.443 -0.215 

WL -0.247 0.144 -0.280 -0.068 0.119 0.280 0.261 -0.078 

WB -0.071 -0.030 -0.313 0.149 -0.057 0.276 0.029 -0.166 

SI 0.524 -0.490 0.302 -0.306 -0.495 -0.130 -0.537 -0.214 
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LU class pred
(2005)

 = a ± b1Dr1 ± b2Dr2 ± b3Dr3 ± 

……… 

(DF)
 pred

 = a ± 0.3 * rain ± 0.24 * elev ± …………, 

where a = intercept value (output of regression) and 

b (1, 2, 3…n) = slope coefficient (output of regression). 

This section of the modelling not only predicts Y at 

T1 but also ensures the significance of the predicted land 

use class Y using the SEOE (Standard Error of 

Estimate). All the predictions were accepted at the ±1 

SEOE (90%) level of significance. 

At the final step, the predicted area of each land use 

(regression output) for T1 (2005) was multiplied by their 

respective transition probabilities for the corresponding 

time period to simulate their areal distribution for T2 

(2015 or 2025). For prediction for 2015, the TP of the 

period 1995–2005 was considered, while the TP of 

1985–2005 was used in the calculation for 2025. 

Thereby for each future land use class, area is calculated 

for each 1km grid as the product of predicted area for 

that class in 2005 (regression output) and its 

corresponding transition probability (change pattern 

from different classes). 

Predicted LU class 1(2025) = Predicted LU class1 

(2005) * TP (1985–2005) 

Predicted LU class 1(2015) = Predicted LU class1 

(2005) * TP (1995–2005) 

Finally the future LULC area under the 13 land use 

classes within the basin was organized in tabular format 

with respect to their grid identifiers and spatial 

information, for both 2015 and 2025. 

4.2.5 Spatial distribution: Thematic image 

composition 

All the input data were organised in grid vector with 

respect to the grid identifiers as their spatial coordinates. 

As a result, the model displays the output data for each 

land use class for each cell in a tabular format. These 

tables, with their respective grid identifiers and land use 

1995         

BU -0.224 0.199 -0.338 0.379 0.246 -0.070 0.184 -0.247 

CL -0.516 0.425 -0.626 0.618 0.486 -0.111 0.528 -0.448 

PL -0.057 -0.011 0.070 -0.129 -0.037 0.334 0.033 0.312 

EF 0.370 -0.338 0.330 -0.233 -0.442 -0.082 -0.432 -0.018 

DF -0.215 0.100 -0.203 0.188 0.178 0.410 0.171 0.268 

MF 0.285 -0.369 0.309 -0.262 -0.284 0.134 -0.301 0.198 

SL 0.365 -0.308 0.153 -0.229 -0.427 -0.060 -0.403 -0.109 

GL 0.581 -0.538 0.326 -0.311 -0.505 -0.138 -0.584 -0.155 

PW -0.176 0.146 -0.210 0.198 0.089 0.039 0.189 -0.167 

BL 0.461 -0.421 0.185 -0.256 -0.465 -0.119 -0.478 -0.163 

WL -0.239 0.170 -0.281 -0.183 0.042 0.088 0.272 -0.225 

WB -0.081 -0.022 -0.320 0.202 -0.074 0.286 0.006 -0.123 

SI 0.553 -0.508 0.278 -0.307 -0.560 -0.112 -0.589 -0.171 

2005         

BU -0.370 0.295 -0.482 0.554 0.392 -0.157 0.334 -0.393 

CL -0.505 0.419 -0.622 0.630 0.482 -0.133 0.494 -0.453 

PL -0.057 -0.011 0.070 -0.142 -0.023 0.335 0.039 0.278 

EF 0.369 -0.339 0.339 -0.231 -0.423 -0.076 -0.465 -0.026 

DF -0.215 0.099 -0.204 0.179 0.184 0.410 0.170 0.221 

MF 0.286 -0.317 0.350 -0.294 -0.268 0.093 -0.290 0.216 

SL 0.399 -0.340 0.186 -0.259 -0.510 -0.031 -0.543 -0.120 

GL 0.620 -0.582 0.373 -0.317 -0.502 -0.139 -0.649 -0.155 

PW -0.176 0.146 -0.210 0.197 0.100 0.025 0.183 -0.143 

BL 0.486 -0.436 0.180 -0.268 -0.453 -0.101 -0.558 -0.189 

WL -0.235 0.161 -0.275 -0.183 -0.092 0.077 0.254 -0.212 

WB -0.055 -0.042 -0.299 0.178 -0.086 0.259 -0.090 -0.188 

SI 0.544 -0.499 0.271 -0.303 -0.528 -0.105 -0.634 -0.182 
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area statistics, were then converted into the thematic 

rasters by rasterizing the grid vector using the land use 

area field for each class at a time (Figure 6). Thirteen 

thematic maps, one for each land use class, were 

generated for 2015 and for 2025. This process not only 

preserves the geographic locations of the land use 

classes in the study area and their sizes but also can 

detect the minor changes in any land use class. A similar 

approach has been used in the Land Transformation 

Model by Pijanowski et al., (1995, 1996). 

4.2.6 Composite land use map generation 

In order to generate a single composite of all the 

thematic layers (land use classes), a composite image 

was created in the final step that includes all the 

predicted land use classes for T2 (2015 and 2025). The 

composite image was generated in the spatial modeller 

by applying the majority conditional decision rule to it.  

5 RESULTS: PREDICTION OUTPUT 

A hybrid driver-based statistical modelling of the study 

area (315,608 km
2
) using the methodology described 

was carried out to generate area statistics of the land use 

classes and generate land use thematic maps for 2015 

and 2025. The inputs of the model, i.e., the database of 

the past land use and the corresponding driver database, 

were used in raster format at the same spatial resolution 

(125m). To make predictions for 2015 and 2025, the 

land use datasets of 1995-2005 and 1985-2005 (T0 and 

T1, respectively) were used as the inputs. The composite 

LULC map for 2015 and 2025 is shown in figure 7. The 

area statistics of each land use class for the predicted 

years are presented in Table 3 and figure 8.

 

 

 

 

 

 

Figure 6. Schematic preparation of a land use map
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Table 3. Area statistics of land use (classified vs predicted) 

 Classified Predicted Prediction Error (%) 

LULC class 1985 1995 2005 2015 2005 2015 2025 2005 2015 

Built up 2245.4 2433.6 3406.0 5599.0 2603.0 4327.7 4472.2 23.5 22.7 

Crop land 58936.1 58349.4 57780.4 57177.0 56207.6 55689.9 55073.6 2.7 2.6 

Plantation 2574.1 2581.8 2580.1 2589.0 2591.6 2577.9 2584.1 0.4 0.4 

Evergreen 

Forest 
58504.6 56863.9 53409.0 49124.0 53819.1 48671.9 47314.9 0.8 0.9 

Deciduous 

forest 
2452.6 2459.5 2439.7 2462.0 2467.7 2417.3 2427.3 1.1 1.8 

Mixed 

Forest 
2780.6 2993.3 3087.1 3323.0 3207.4 3184.2 3392.6 3.9 4.2 

Scrub land 16317.8 17574.2 17888.3 17899.8 18208.4 17631.3 18781.6 1.8 1.5 

Grass land 39427.9 37966.6 40516.0 44102.0 36426.2 39824.2 41199.6 10.1 9.7 

Permanent 

Wetland 
63.2 63.2 63.2 63.2 62.8 62.8 62.8 0.6 0.6 

Barren land 49407.5 51459.1 51815.8 50942.8 51161.7 50316.2 52209.1 1.3 1.2 

Waste land 405.6 526.4 489.2 640.1 642.2 449.3 559.7 31.3 29.8 

Water body 6529.0 6595.2 6797.6 7213.0 6437.1 6794.7 6857.0 5.3 5.8 

Snow & Ice 75964.2 75742.1 75336.0 74341.0 70375.7 69657.3 69335.6 6.6 6.3 

 

 

 

 

 

Figure 7. Predicted LULC: 2015 and 2025 

 

2015 2025 
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Figure 8. Predicted LULC 

 

6 CALIBRATION AND VALIDATION OF 

MODEL 

In the current model for Indus LULC, the input 

predictor variable (drivers) were selected on the basis of 

their significance of influence i.e. correlation coefficient 

(r, Table 1) on the corresponding land use class. 

Secondly drivers with high multi-collinearity (higher 

dependency on each other), determined by their 

correlation coefficient (>0.8) according to Menerd 

(2001), were excluded from the model to avoid their 

impact on the standard error of regression coefficient, 

(Yoo et al., 2014).  

Another crucial aspect of model validation was the 

issue of spatial autocorrelation among the chosen input 

data. In most of the cases, studies with spatial data are 

attributed by some degree of spatial autocorrelation 

which represent the influence of surrounding land use 

on the land cover at a particular location (Brown et al., 

2002; Rutherford et al., 2008). Spatial autocorrelation in 

the data affects the regression model by biased 

estimation of error variance, t-test significance level and 

over estimation of R
2
 (Anselin and Griffith, 1988). In 

the current model, for reducing the impact of spatial 

autocorrelation, spatially lagged variables has been 

considered as the model input (Lasschen et al., 2005).  

Each lagged variable is the average (zonal mean) of the 

values of the original variable in surrounding 8/8 cells of 

its location. Thus all the variables used as model 

predictor were spatially lagged of their original values, 

hence reducing the local impact of land use on the land 

cover scenario.  

Impact of driver variables on the land use has 

already been tested by the significance of correlation 

coefficient at a 95 % significance level. SEOE was used 

for validating the model output, where the prediction 

values (land use classes) has been restricted to +/-

1SEOE providing significance of prediction at 90% 

level of significance. 

As in the studies conducted by Walsh et al., (2006) 

and Wu et al., (2006), the parameterization and 

calibration of the current driver-based statistical model 

involved a detailed analysis of the historical land use 

database as developed from Landsat MSS (1985), LISS-

I (1995) and LISS-III (2005) and assessing their 

transition rules in the Markov chain for predicting future 

land use statistics. The model was also parameterized 

with a considerable number of driving factors (physical 

and human induced) that were spatially distributed 

throughout the study area. Thirteen land use classes 

were identified from the study area of which the built-

up, cropland, vegetation, grassland, barren land and 

snow and ice classes were significant. Data for four 

decades (1985, 1995, 2005 and 2015) were available for 

the Indus watershed, which made the model validation 

possible. Simulation was implemented for 2005, 2015 

and 2025, and validation was accomplished by 

comparing the performance of the model and the 

observed changes for 2005 and 2015 (Table 3 and 

Figure 9). 
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Figure 9(a). Classified and predicted LULC: 2005 

 

Figure 9(b). Classified and predicted LULC: 2015 

 

 

Figure 9(c). Prediction error: 2005 and 2015 
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7 DISCUSSION  

Indus valley, an international river (Indian part includes 

upstream of the basin) and with a unique physiography 

has strategic significance for water resources and 

climate change impacts. Because of its geographical 

location, the landscape of the Indus river basin is 

influenced by both physical (slope, climate, soil) and the 

socio-economic parameters (population growth or socio-

economic status). The study evaluates a dynamic land 

use simulation model (an integration of Markovian 

transition functions and statistical regressions) 

developed to predict future land use scenarios of the 

basin on the basis of its past processes of change. The 

two main assumptions, followed in the analysis were (1) 

the best fit relation the drivers have with land use may 

be projected and (2) that the past trend of change will 

continue for each class in the future.  

Table 3 displays the area statistics of the LULC 

classes of the classified base year (2005) and the initial 

years (1985 and 1995) as well as the predicted ones for 

2015 and 2025. There was a gradual but significant rise 

in the built up area, as is evident from the table. There 

was a major reduction in the acreage of cultivated land 

with time, which may be due to the urban expansion in 

agricultural land, or conversion to wasteland and 

scrubland due to soil fertility depletion (Singh et al., 

2010; Bhattacharyya et al., 2015). The area covered by 

natural vegetation, as an aggregate of evergreen, 

deciduous and mixed forest, decreased considerably 

from 2005 due to deforestation. Minor alterations can be 

seen for plantation and wetlands, where there were 

slight increases. The area under permanent snow cover 

also decreased consistently with time, which might be 

attributed to a considerable rise in temperature due to 

climate change, and as a consequence the area under 

waterbodies as well as grassland has increased (Pandey 

and Venkatraman, 2012).  

The similar land use dynamics study by Brown et 

al., (2000) in the Upper Midwest area of the United 

States of America, envisaged changes in forest cover 

with respect to socio-economic changes in the region 

using a transition matrix and regression models, which 

indicated that almost 60% of the variations in the 

transition probability of forest cover can be predicted 

using human variables such as area under cropland, 

extent of developed area and rate of development. The 

Markov modelling technique was also used by
 

Tsarouchi et al., (2014) to successfully generate a future 

land use scenario in the Upper Ganga basin on the basis 

of historical records of change from 1984 to 2010.  

From the model validation, it was found, for both the 

years (2015 and 2025), except for built-up land and 

wastelands, the prediction error was less than 10% 

(Figure 9). The accuracy of prediction of the model is 

around 70% for built-up land and wasteland due to the 

poor scale of data analysis (coarser resolution, 

1:250,000). A relatively detailed scale is required to 

assess the considerable extent of change in these land 

use classes. At the coarser scale, most of the changes in 

these classes get masked by the areas under 

homogenous land use categories, making them barely 

discernible. Moreover, the wasteland land use class in 

any region is mostly affected by the present soil 

condition and the rainfall pattern rather than past 

patterns in the climate or soil productivity. Although the 

model is able to predict almost 70% to 90% of the 

variability in land use classes, the major weakness 

involves the use of past drivers for predicting future land 

use. The performance of the model can be improved by 

considering the dynamic nature of the drivers along with 

LULC and assessing human land use classes such as 

built-up land and wasteland at a larger scale and a finer 

resolution.  

Such research outputs i.e. three decades of past land 

use/ land cover (LULC) maps, their spatial dynamics 

and simulated future land use maps (of 2015 and 2025) 

are invaluable inputs to evaluate regional plans for 

sustainable development. The results of the study 

provide useful aids for applications in demarcating 

conservation area, locating regions for ecological 

restoration, land erosion or degradation, agroforestry or 

horticulture area zoning and mitigating effects of 

climate change. The presented approach of LULC 

change modelling can be used in the similar landscapes 

of India or elsewhere. 

8 CONCLUSIONS 

A LULC change database was generated for the current 

study at a scale of 1:250,000. It serves the purpose of 

capturing broad changes in land use, as identified by the 

past drivers of change, and can be used to recognize 

areas or identify land use classes where a finer and 

better-quality database needs to be developed for more 

detailed investigations and modelling. The approach and 

the result represented in the present study can be used in 

the similar landscapes of India or elsewhere. The 

uniqueness of LULC of Indus river basin is 

characterized by the natural vegetation in its 

mountainous landscape, intensive agriculture, expanding 

settlements in the alluvial plains or valleys and snowy 

high altitude peaks. The physiography and landforms 

largely influence the distribution of natural vegetation 

dominated by forest, grassland or shrub land and human 

modified landscapes like orchards and degraded forests. 

Because of the physiographic variability of the Indus 

basin, both natural and human drivers of change were 

found to be significant in shaping its landscape. The 

geographic location of the basin plays an important role 

in the distribution of land cover and land use classes and 

their processes of change. 

Future distribution of 13 LULC classes over the 

basin area was modelled using a combination of 

transition probability and regression equation based on 

their past pattern of change with an average accuracy of 

80 to 85%.  Model validation proved that scale is a 

major dependency of the land use classes for an accurate 

simulation. Heterogeneous classes like built up or 
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wasteland needs finer scale of assessment to capture 

their spatial and temporal variability.  
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