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Abstract. When a Francis turbine operates at partial load or very high load, the swirling flow 

in the draft tube may cause objectionable oscillations of pressure and power. The cavitating 

core of the vortex plays an important role in these pulsations. The present paper deals with a 

class of self-excited oscillations of the entire water column in the power plant; self-excitation 

means that at least one eigenvalue of the hydraulic system becomes unstable. A one-

dimensional (1D) model in frequency domain explains how the normal damping is eliminated. 

Oscillation power is provided in regions whose flow gain in streamwise direction has a 

component in phase with pressure. The model contains a module for the dynamic transmission 

behavior of the cavitating vortex; it represents the response of the cavity size to variations of 

the local pressure and swirl. The sensitivity to pressure changes (the ‘cavitation compliance’) 

controls the natural frequencies but cannot cause instability whereas the response to swirl 

changes (‘mass flow gain’) may supply net oscillation energy and thus cause instability. Both 

influences act all along the cavitating part of the vortex; it is crucial that the variation of runner 

exit swirl can propagate along the vortex only with the axial velocity of the fluid. The 

oscillation energy balance depends on the wavelength of swirl variation, i.e. the combination of 

axial velocity and oscillation frequency. All instabilities of this class are ‘breathing’ pulsations, 

synchronous within one cross section. In the simplest case with the lowest natural frequency 

the pressure variation is roughly synchronous in the whole draft tube; for this mode (full-load 

surge) a lumped-parameter model may be adequate. By contrast, the upper-part-load pulsation 

occurs in a more complex eigenmode; a distributed-parameter model version is required to 

represent the essential features. The draft tube pressure oscillation has two quarter waves and a 

pressure node within the cavitation zone. The pressure at both ends of the draft tube cavitation 

zone has roughly opposite phase. Difficulties to transpose the stability between reduced-scale 

model and prototype are explained using the 1D model, as well as some influence of the runner 

hub shape and of the upstream conduit. Damping at the runner explains why the pulsation is 

limited to low-head turbines. 

1.  Introduction 

Since its discovery in the early 1990s [2][3], the upper part load pulsation of the Francis turbines has 

been described in several publications, sometimes in considerable detail [4]. It has a well-known set of 

properties by which it qualifies as a self-excited breathing pulsation of the vortex cavity in the draft 

tube; this is described in Part I of this analysis [9]. The present paper analyses the common mechanism 

supplying the oscillation energy for this pulsation and other self-excited oscillations like the full-load 

surge. A one-dimensional model of the cavitating draft tube flow embedded in a linear time-invariant 

hydraulic system model is examined in frequency domain using a transfer matrix method. 

mailto:contact@hydroadviser.ch


29th IAHR Symposium on Hydraulic Machinery and Systems

IOP Conf. Series: Earth and Environmental Science 240 (2019) 052023

IOP Publishing

doi:10.1088/1755-1315/240/5/052023

2

 

 

 

 

 

 

2.  The principle supplying oscillation energy 

In a 1D model, the oscillation power Posc transmitted between any two neighbouring components is 

given as the inner product of the two state variables pressure p and flow q at their intersection
 
(if the 

RMS magnitude of p and q is used) 

Posc = pconj(q)     (1) 

The simplest description for the dynamic transmission behavior of a cavitation zone with cavity 

volume VC (Brennen et al. [10]) is by the two parameters 

 

 = - VC/q mass flow gain    (2)
 

C = - VC/p cavitation compliance   (3) 

 

Any system is stable if all components have either zero or negative balance of Posc. Instability 

requires some component whose power balance Posc is positive and compensates the energy 

consumption of the other components. Cavitating flow regions having non-zero mass flow gain can 

sometimes fulfil this condition. Brennen identified this effect as the source of instability in systems 

containing cavitating inducer pumps. In this context the reference flow q for eq. (2) is at the low-

pressure side of the cavitating zone. When this concept was applied to the draft tube vortex, most early 

researchers likewise used the low-pressure-side flow as reference to explain some practical cases of 

instability [5]. Later it was established that the correct reference in case of the draft tube vortex is the 

flow from the runner exit (Dörfler et al. 2010 [11]). More precisely, the mass flow gain is due to the 

variation of swirl, not due to the diffuser effect. As shown in [11], this has an important consequence: 

the mass flow gain does not act instantaneously but with a non-negligible delay time td(x). As the 

swirl is attached to the fluid particles, it cannot propagate with the velocity of pressure waves but only 

with the axial velocity of flow. This in turn has implications for the necessary structure of 1D models: 

a lumped-parameter model must contain a realistic dead time as described in [11] and [1], while a 

distributed-parameter model must separately represent the propagation of pressure variation and swirl 

variation, as shown in Figure 1. 

 

Figure 1.  Block diagram of a single distributed-parameter model element 

It is essential to allot a separate path of propagation to the variation of swirl. In the figure this is the 

uppermost path; the swirl variation is expressed as a variation of runner discharge (qs) in order to 

comply with the concept of ‘mass flow gain’. The intensity and phase of qs are both different from the 

local flow variation q. The incremental time delay tdi = x/cm results from the path length interval x 

and axial velocity cm. The factor ki < 1 represents the gradual decay of the swirl variation. A 

distributed-parameter model for the cavitating draft tube section may be constructed as a series 
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connection of ns elements (structured according to Figure 1) and embedded as reach 3 in a system 

according to Figure 2, with constant pressure at either end. Two pipe elements with uniform properties 

are representing the penstock (1) and the end diffuser (4) of the draft tube.  

 

Figure 2.  System configuration for examples 1 and 2 

 

Figure 3 indicates in a qualitative manner the influence of the turbine discharge Q on the cavitation 

volume VC in a Francis draft tube. It is the derivative VC/Q (=  ) of this curve that can promote 

instability; therefore the shaded regions with steep slope are candidates for self-excited pulsations.  

 
Figure 3. Cavitation volume vs. turbine discharge 

3.  Sample calculations 

3.1.  Example 1: Lowest eigenmode 

For easier understanding of the destabilizing effect, a simple example is described first. The data for 

this case (a case of full-load instability) corresponds to field test results discussed in chapters 1.5 and 

8.2 of ref. [1], and is given in Table 1. 

 
Figure 4.  System configuration for example 1 

Table 1.  Data for example 1 

Td=AL/Q=1.43s 
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The axial variation of draft tube diameter, compliance and mass flow gain is neglected. Figure 4 

shows the structure of the hydraulic system. In this case (full-load instability) there has to be high 

negative mass flow gain. In absence of the swirl transport delay Td, no instability would occur in this 

case, or in any other Francis turbine with a fairly short penstock; hence the actual instability at the 

prototype can only be understood considering the dead time Td.  

The cavitation compliance for this case can easily be determined because the natural frequency of 

the pulsation has been measured. The other two parameters ( and Td) have been systematically varied 

in the frequency-domain model; the lowest oscillating eigenvalue of this system was computed for all 

combinations. The resulting distribution of eigenvalues is the stability diagram in Figure 5 (a). The 

main results are:  

 

(a) A weak relationship between the cavitation parameters ( and Td) and the lowest eigenvalue  

s = e(j  ),  described by the natural frequency f = e/2 and the damping ratio  (zeta). 

(b) The decisive influence of the swirl transport time Td = td(LC) on stability; without the delay, 

this system with negative mass flow gain would always remain stable. 

 

 

Figure 5.  (a) Stability diagram for example 1        (b), (d) Amplitudes   and (c) Phase angles for point OP1 
 

To explain the energy budget of this oscillation, the mode shape of the head and flow fluctuations 

for condition OP1 at the stability limit are shown in the diagrams (b) through (d) of Figure 5. In 

addition to the amplitudes (graphs b, d), the phases are also indicated (graph c). The bold black curve 

in (b) and (d) indicates the local flux of oscillation power; positive values indicate that power is 

transported downstream. Parts 2 and 4 of the system upstream and downstream of the draft tube cone 

consume oscillation power. The phase of the swirl-transporting variable qs (pink dots in graph (c)) 

changes continuously inside the draft tube cone (reach 3 of the system), in the part 4.7m < x < 12.4m 

between the two marked points, its phase against pressure head h (bold black line in (c)) is between 0 

and 180dg. Oscillation energy is supplied from this region to the rest of the system, because due to the 

negative sign of , the incremental discharge jiqsi has a component in phase with the local static 

pressure ghi. 

1

             

2

             

3

             

4

             
reach 3             

(a)             (c)             

(b)             (d)             Td, s 
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3.2.  Example 2: Next-higher eigenmode (upper-part-load pulsation) 

The next example represents a case of upper-part-load pulsation occurring on a model turbine in a 

laboratory test rig. The data of the hydraulic system (test rig and model) and the parameters of 

operation and of the draft tube vortex model are listed in Table 2. 

 

Table 2.  Example 2, system and operation data 

System Penstock Casing + 

runner 

DT  

part 1 

DT  

part 2 

 Model turbine 

operation data 

  

Reach 1 2 3 4  Runner diameter D, m 0.35 

L, m 4.0 2.8 0.98 2.4  Speed n, 1/s 15.0 

L/A, 1/m 31.8 29.1 6.7 8.5  Test head H, m 10.5 

R, s/m
2
 0.0 45.2 0.0 0.5  Discharge Q, m

3
/s 0.36 

      BEP discharge Qopt 0.48 

Prototype data  Specific speed nQopt 107 

Runner diameter D, m 4.90  Cavitation index  0.27 

Speed n, 1/s 2.0833  Cav. compliance C, m
2
 6.6e-4 

Head H, m 40.0  Mass flow gain , s 0.05 

 

Unlike the previous example, the axial distribution of the cavitation influence versus path length x 

is of high importance for the more complex mode shape of this second eigenmode. The assumption of 

a uniform distribution as in the previous section would be too far from reality. In [12] the author intro-

duced a method for estimating the distribution of the compliance parameter c=C/x based on a model 

test series where the cavitation coefficient  is varied for a given test condition. The product  is 

used here because, unlike , it is invariant to changes of nED and even nQE. Figure 6 presents the 

distribution of compliance c according to this concept, with the vertical coordinate z as vertical axis. In 

the interesting vertical part of the draft tube, the path length is x = z (assuming zero at the draft tube 

intake). The nominal trajectory of swirl travel td = (1/Q)dx/A(x) is also shown in Figure 6. It may 

start at z=0 with a non-zero value as discussed in section 4.3. The distributed mass flow gain m(x)= 

/x has been estimated from a set of cavity volumes with different Q based on ref. [12].  

 

Figure 6.  Distributed parameters of draft tube cone and vortex 

td, s 
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The streamwise reduction of the distributed compliance c and mass flow gain m shown in Figure 6 

is controlled by a local cavitation factor  which (unlike  in Table 2) considers the gravity and 

pressure recovery effect in the draft tube. This effect is modelled by the equations  

 

  c(z) = c(0)exp(bc((z)  (0))  bc =  14.8  (4) 

  m(z) = m(0)exp(bm((z)  (0))  bm =  6.9  (5) 

 

where c(0) and m(0) are selected such as to fulfil  cdx=C  and  mdx=. 

The function td(x) in Figure 6 starts with a finite value. This accounts for the finite meridional distance 

between the runner blade trailing edges and the onset of the draft tube rope.  

With the data of example 2, the time required for a swirl disturbance to travel from the draft tube entry 

to the end of the cavitation zone (x=0.98m) is  

 

Td = td(LC) = A(x)dx/Q = 0.42s        (6) 

 

The vortex model with these properties is embedded in a system according to Figure 2. The 

‘runner’ (reach 2 in Table 2) is an incompressible element composed of inertia L/Ag and resistance R. 

The cavitating section (reach 3) is represented by ns (=100) ‘slices’ of identical structure like Figure 1.  

 

Figure 7.  Example 2: Stability diagram lowest (a) and second-lowest mode (b), mode shape/power flow (c, d) 

The stability diagrams resulting for the two lowest eigenmodes are presented in Figure 7. The 

lowest eigenmode (a) may be subject to resonance in an ordinary forced partial-load oscillation. This 

mode is always stable. (Note that, due to the positive sign of , mode 1 would inevitably become 

unstable if Td were zero.) The next-higher eigenmode (b) is the one occurring in the ‘upper-part-load 

pulsation’ if the actual combination of  and Td happens to be inside the unstable range like the chosen 

point OP2, with =0.05s and Td=0.42s. In this example the upper part load pulsation has a frequency 

of 25.9 Hz, or 1.72 times the runner frequency.  

(a)             

(b)             

(c)             

(d)             

  stable         unstable             

  stable                    

Td, s 

Td, s 
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For a point shifted to the stability limit (Td=0.57s) of this mode, the mode shape and the flow of 

oscillation energy are shown at the right-hand side of Figure 7. The process is more complex 

compared to the low-frequency mode described in example 1 because, due to the high frequency, there 

are many oscillation cycles of the swirl variable qs along the cavity. As shown in the diagrams (c) and 

(d), the axial wavelength of this torsional oscillation is only a few centimeters. One must expect that 

due to turbulent shear the amplitude of the swirl variation is dropping considerably along the path. 

This decay is approximated by the following law (compare Figure 1) 

qsi+1  = qsi  ki(s) = qsi  exp(s tdi+1)exp(abs(s tdi+1))     = 0.05 (7) 

Figure 7 (d) demonstrates very clearly the importance to distinguish between the different 

oscillation processes superimposed on the vortex. The wall pressure mode has approximately two 

quarter waves with a single reversal of phase. The oscillation of swirl, due to its low speed, has many 

cycles; it just supplies oscillation power and does not stand out in any measured signal. The amplitude 

of flow at draft tube exit is about 6 times higher compared to penstock flow. But compared to both of 

them, flow amplitude is still much higher at the pressure node inside the draft tube cone. 

4.  Parameter study 

4.1.  Variation of Froude number and test head 

Maintaining the model and test installation used in section 3.2 and its operation parameters nED, QED 

and , the influence of changing the pressure scale will now be examined. The test head is varied over 

a wide range, and the two lowest eigenvalues are computed considering the influence of local pressure 

on the distributed compliance and mass flow gain. The Figure 8 shows some results. Without gravity 

effects, the cavitation compliance would scale with H
-1

, however, for very small test head the lower 

parts of the vortex become much less compliant. This results in an increase of both relative natural fre-

quencies. The lowest test head (o) would have the same Froude number as a prototype with D=4.9m, 

H=40m; in a laboratory test this condition would be spoiled by problems with dissolved gas. 

According to diagram (b), the unstable condition would only prevail in a range of test heads between 

5.1 and 21.5m. Higher and lower head values (including the Froude number of prototype) are stable.  

 
Figure 8.  Influence of test head / Froude number 

4.2.  Variation of cavitation number 

Based on the equations (4) and (5), the parameters compliance and mass flow gain can be transposed 

to a different draft tube pressure level if the point of operation (test head and discharge) is not 

changed. For a number of stepwise increased and decreased values of the cavitation number, the first 

two eigenvalues have been evaluated, considering this shift of C and . The Figure 9 shows some 

results. The two lowest natural frequencies shift in an approximately proportional manner (b). The 

(b)             
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lowest mode is always stable (c) but the mode 2 (upper part load pulsation) is unstable in some limited 

range of  around the base case =0.354. Diagram (a) explains why this is so: positive balance of 

oscillation power (negative damping) requires the ratio between oscillation period (1/f) and wave 

travel time Td to be in a certain range; outside of this range there is no surplus of oscillation power. 

 

 
Figure 9.  Influence of draft tube pressure level 

4.3.  Variation of hub extension  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Influence of swirl shift due to hub length 

The meridional distance between the runner blades and the attachment point of the vortex has a critical 

influence on the phase of the swirl in the upper draft tube cone. In the 1D model, the shifting of this 

phase may be approximated by a time delay td0=x_hubA/Q added to the trajectory td(x) as shown at 

the top of Figure 6. This parameter has indeed influence on stability. According to the damping values 

in Figure 10, the unstable condition in the base case may be removed either by making the runner cone 

somewhat longer, or by removing it - as observed by Kuznetsov et al [13] in a model test.   

4.4.  Variation of upstream impedance 

A model test context has been chosen for the sample case 2 in section 3.2 because most published 

information is from model tests; questions about transposability to prototype are obvious. Apart from 

the influence of the Froude number (section 4.1), the non-similar upstream part of the system should 

also play a role. The self-excited pulsation corresponds to an eigenmode of the entire hydraulic 

system, not only the draft tube. Seen from the draft tube, the upstream hydraulic impedance Zup at the 

runner exit represents the rest of the system. With some simplification, Zup has a real part RTH/Q 

contributed by the runner and an imaginary part (inertance) contributed by the penstock.    

(a)             (b)             (c)             

Td, s 

Td, s 
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The influence of upstream inertance may be visualized by comparing results for different length of 

the upstream piping (including spiral casing). The base case corresponds to Lup=6m. A variation of this 

parameter may produce a slight variation of the natural frequency as in Figure 11 (a); this could 

probably correspond with observations reported by Koutnik et al 2008 [7]. Some effect of the runner 

resistance RT on the damping ratio may be expected; at the right-hand side of Figure 11 this parameter 

is translated to the corresponding value of prototype head, assuming that the speed and runner exit 

flow remain unchanged. The result illustrates that the excitation mechanism may produce instability 

only in case of relatively low runner resistance, i.e. high specific speed. 

 

Figure 11.  Influence of penstock impedance (left, middle) and specific speed (right) 

5.  Conclusion and discussion 

The sample calculations in sections 3.2 and 4 demonstrate how the propagation of swirl variations 

along the cavitating vortex can provoke instability under certain circumstances. The results are in good 

agreement with the properties commonly ascribed to the upper-part-load oscillation. The examples 

thus confirm that a synchronous type of hydraulic instability is the cause of this particular 

phenomenon; this was the goal of the study.  

It was not the purpose of this study to promote a method of prediction, let alone pretend such 

prediction may be relied on given today’s state of knowledge. There are mainly two difficulties:  

(a) No reliable prediction of damping effects for this 2-phase flow is available. Parameters in 

available cavitation models [6] would have to be experimentally validated for this unsteady 

application. Diffuser effect as well as unsteady damping was neglected here, see Figure 1. 

(b) Proper estimation of distributed parameters. The balance of oscillation power depends on the 

distribution of compliance and mass flow gain, even if the integral values C and  are correct. 

The makeshift assumption of constant cavity length goes into this category. 

In addition, the mechanism of swirl propagation and decay has been simplified for the purpose of 

demonstration. The axial velocity in the real flow is not uniformly distributed, thus the velocity of 

swirl transport may deviate from the model. The value of exponent  modelling the decay of swirl 

variation in equation (7) had to be estimated; only its order of magnitude may be correct. Also the 

helical vortex shape is not represented.  

Last but not least, the use of the steady-state turbine impedance for the high frequencies concerned 

is highly questionable. In ref. [8] it was shown that the finite velocity of swirl transport may also play 

a role in the vaneless space upstream of the runner. As the relative width of this space increases at high 

specific speed, this holds in particular for low-head turbines. The actual runner resistance, and hence 

also the damping ratio, may therefore deviate considerably from the usual steady-state approximation.  

(a)             (b)             (c)             

Td, s Td, s Td, s 
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Nomenclature 

A 

bm, bc 

C 

c 

D 

f 

g 

H 

h 

k(s) 

LC 

m 

n 

nED 

Cross-section area [m
2
] 

Coefficient for influence of  [
 -
] 

Total cavitation compliance [m
2
] 

Local cavitation compliance [m] 

Diameter [m] 

Frequency [Hz] 

Gravity acceleration [m/s
2
] 

Turbine net head [m] 

Piezometric head [m] 

Swirl reduction factor [-] 

Axial length of cavitation zone [m] 

Mass flow gain per unit length [s/m] 

Model runner speed [1/s] 

Speed factor IEC 60193 [-] 

nQE  

p 

P, Posc 

Q, q 

r, R 

td, Td 

x, z 

VC 

Z 

 

 

 

 

 

Specific speed IEC 60193 [-] 

static pressure [Pa] 

oscillation power [W] 

Discharge [m
3
/s] 

Radius, cavity radius [m] 

Swirl transport delay [s] 

Path length, vertical coordinate [m] 

Volume of cavity [m
3
] 

hydraulic impedance [s/m
2
] 

Fluid Density [kg/m
3
] 

Local cavitation number [-] 

Angular frequency [rad/s] 

Head coefficient [-] 

Damping ratio [-] 

References 

[1] Dörfler P K, Sick M and Coutu A 2013, Flow-Induced Pulsation and Vibration in Hydroelectric 

Machinery, London: Springer 

[2] Jacob Th,  Prenat J-E  1990, Generation of hydro-acoustic disturbances by a Francis turbine 

model and dynamic behavior analysis, IAHR 15th Symp. Hydr. Machinery and Cavitation  

[3] Dörfler P K 1993, Observation of pressure pulsations at high partial load on a Francis model 

turbine with high specific speed, IAHR WG1 meetg 1993, and: Hydropower & Dams, Jan. 1994  

[4] Arpe J A 2003, Analysis of the wall pressure field in an elbow-type Francis draft tube (in 

French), PhD thesis no. 2779, EPFL Lausanne (CH)  

[5] Koutnik J and Pulpitel L 1996, Modelling of the Francis turbine full-load surge, Modelling, 

Testing &Monitoring for Hydro Powerplants – II ( Lausanne, Switzerland) 

[6] Zwart P J, Gerber A G and Belamri T 2004, A two-phase flow model for predicting cavitation 

dynamics Proc. of the 5th International Conf. on Multiphase Flow, Yokohama, Japan  

[7] Koutnik J, Faigle P, Moser W 2008, Pressure fluctuations in Francis turbines – theoretical 

prediction and impact on turbine, Proc. IAHR 24th Symp. Hydr. Machinery and Systems 

[8] Dörfler P K  1982, System oscillations excited by the Francis turbine's part load vortex core: 

mathematical modeling and experimental verification, PhD thesis (in German) TU Wien (AT), 

English translation (2013) on researchgate.net  

[9] Dörfler P K  2018, Analysis of the Francis turbine upper-part-load pulsation, Part I – Experi-

mental results vs. hydro-acoustic model, 29th IAHR Symp. Hydr. Machinery and Systems 

[10] Brennen C E and Acosta A J  1976, The Dynamic Tranfer Function of a Cavitating Inducer, 

ASME J. Fluids Eng.  

[11] Dörfler P K, Keller M and Braun O 2010,  Full-load surge mechanism identified by unsteady 2-

phase CFD, Proc. IAHR 25th Symp. Hydr Machinery and Systems (Timisoara, 2010) 

[12] Dörfler P K 2017, Cavitation Compliance in 1D Part-Load Vortex Models, Intl. J. Fluid 

Machinery and Systems, Vol. 10, No. 3 

[13] Kuznetsov I, Zakharov A, Arm V and Akulaev R 2014, Model and prototype investigations of 

upper partial load unsteady phenomena on the Francis turbine designed for head up to 120 m, 

Proc. IAHR Section Hydr Machinery and Cavitation 27th Symp. (Montreal, 2014) 

https://www.researchgate.net/publication/280305630_System_oscillations_excited_by_the_Francis_turbine%27s_part_load_vortex_core_mathematical_modeling_and_experimental_verification?ev=prf_pub
https://www.researchgate.net/publication/280305630_System_oscillations_excited_by_the_Francis_turbine%27s_part_load_vortex_core_mathematical_modeling_and_experimental_verification?ev=prf_pub
https://www.researchgate.net/publication/280305630_System_oscillations_excited_by_the_Francis_turbine%27s_part_load_vortex_core_mathematical_modeling_and_experimental_verification?ev=prf_pub

