
Angelic Nondeterminism in the Unifying

Theories of Programming

Ana Cavalcanti1, Jim Woodcock1 and Steve Dunne2

1 Department of Computer Science, University of York, York, YO10 5DD, England
2 School of Computing, University of Teesside, Middlesbrough, TS1 3BA, England

Abstract. Hoare and He’s unifying theories of programming (UTP) is
a model of alphabetised relations expressed as predicates; it supports
development in several programming paradigms. The aim of Hoare and
He’s work is the unification of languages and techniques, so that we can
benefit from results in different contexts. In this paper, we investigate
the integration of angelic nondeterminism in the UTP; we propose the
unification of a model of binary multirelations, which is isomorphic to
the monotonic predicate transformers model and can express angelic and
demonic nondeterminism.

1 Introduction

Angelic nondeterminism is a specification and programming concept that is typ-
ically available in unified languages of refinement calculi [Mor94,BW98], and in
concurrent constraint programming languages [JSS91]. In program development
techniques, it is reflected in choice constructs in which the choice is not arbitrary,
but made to guarantee success, if possible. In programming languages, it is re-
flected in the use of backtracking in exhaustive searches. The work in [MGW96]
explores angelic nondeterminism in tactics of proofs.

In contrast, demonic nondeterminism is related to an arbitrary choice con-
struct that provides no guarantees; success is still a possibility, but it does not
influence the choice. Demonic choice is commonly used to model abstraction
and information hiding; in this case, choice is used in a specification to explicitly
indicate options that are left open to the programmer.

In [GM91], Gardiner and Morgan identify angelic choice with the least up-
per bound in the lattice of monotonic predicate transformers. In [MG90], they
use this construct to define logical constants, which are pervasive in refinement
techniques, and sometimes named logical, auxiliary, or angelic variables. They
play a fundamental rôle in the formalisation of data refinement of recursive pro-
grams, and, more importantly, they are used in calculational simulation rules for
specification statements and guarded commands.

In [Mor94] Morgan proposes an algebraic approach to refinement. In that
work, logical constants are at the heart of the formalisation of initial variables,
which are used in specification statements: they appear in postconditions to refer
to values of variables before the execution of the program. Logical constants are
also central to the stepwise calculational development of sequences and loops.

Back and von Wright’s work [BW98] has also explored the use of angelic non-
determinism. They have extensively studied the set of monotonic predicate trans-
formers as a lattice with the refinement ordering. They have identified interesting
sublattices, in which choice can be angelic or demonic, and a complete base lan-
guage, which can describe any monotonic predicate transformer [BW89,BW90].
More recently, they have suggested the use of angelic choice to model user in-
teractions with a system, and game-like situations.

Morgan’s refinement calculus has been adapted to handle Z specifications;
the resulting calculus is called ZRC [CW99]. It is incorporated in Circus [WC02],
a combination of Z and CSP that supports refinement of state-rich, reactive pro-
grams. The design of Circus follows the trend to combine notations; it has been
successfully applied in case studies, and has a refinement technique that sup-
ports decomposition of the state and behaviour of centralised systems [CSW03].
Extensions of Circus include constructs to handle, for example, time and mobility.

The semantics of Circus is based on Hoare and He’s unifying theories of
programming (UTP) [HJ98,WC04]. This is a predicate-based relational model
that links constructs in several paradigms: imperative, concurrent, logical, and
others. By providing a framework for the study of state and reactive aspects of
a program, the UTP is a solid basis for the model of Circus and of its extensions.
Nevertheless, logical constants and, more generally, angelic nondeterminism are
not considered. Since we adopt Morgan’s calculational refinement style, we have
pursued the possibility of modelling angelic nondeterminism in the UTP.

Angelic nondeterminism has been extensively studied using weakest pre-
condition semantics. There are results on the relationship between relational
and predicate transformer models in which relations are sets of pairs of states
and predicates are sets of states [Hes92,CW98]. These results establish that a
straightforward relational model that associates initial with final states cannot
capture angelic and demonic nondeterminism.

In this paper, firstly, we consider a set-based relational model for the UTP.
Secondly, we propose a predicate transformer model; conjunctive predicate trans-
formers correspond to the set-based relations, and therefore to UTP relations.
These models clarify some aspects of the UTP, and establish that the general
model of UTP relations does not cover angelic nondeterminism.

In [CW05] we have proposed a UTP theory that can cover both angelic
and demonic nondeterminism based on the model of binary multirelations in-
troduced in [Rew03]. We based our proposal on an isomorphism between binary
multirelations and predicate transformers suggested in [Rew03]. We have stud-
ied refinement and some programming operators, including sequence and angelic
nondeterminism in that theory. It was unfortunate that the refinement relation
had a definition different from that adopted in all other UTP theories: implica-
tion, instead of reverse implication. Also, we had a quite elaborate definition for
sequence.

Here, we consider a different isomorphism between binary multirelations and
predicate transformers; in the new UTP theory that it suggests, refinement is
reverse implication. From the point of view of unification, which is, of course, a

central concern in the UTP, this is very pleasing. It means that the new theory
can be combined with the existing UTP theories using the approach already
illustrated in [HJ98]. In the context of the new theory, we consider the definition
of all programming operators studied in the general theory of relations, and
designs, which are basically specification statements. We also give a definition
of sequence that is much simpler than that in [CW05]; this makes our theory
much more tractable and attractive.

In the next section, we present an overview of the UTP. In Section 3, we
consider a set-based relational model and a predicate transformer model for the
UTP. In Section 4, we enrich the UTP with a theory to cope with angelic and
demonic nondeterminism. The definition of programming operators in the new
theory is the subject of Section 5. Finally, in Section 6 we present our conclusions
and directions for future work.

2 Unifying theories of programming

The objective of Hoare and He’s work on unifying theories of programming is to
study and compare programming paradigms. The main concern is with program
development; using the framework of the UTP, it should be possible to take
advantage of different techniques and approaches whenever convenient.

In the general theory of relations of the UTP, a relation is a pair (αP ,P),
where αP is a set of names of observational variables, and P is a predicate.
The set of variables is the alphabet of the relation; it contains both the set
inαP of undashed names of the observational variables, and the set outαP of
dashed names. The undecorated name of a variable refers to its value before the
execution of the program, and the dashed name refers to its value in a subsequent
observation. The free variables of P must be contained in αP .

Each observational variable records information relevant to characterise the
behaviour of a program. For example, program variables are observational vari-
ables; the model of an assignment x := e, if the program variables are x , y, and
z , is as follows.

x := e =̂ (x ′ = e ∧ y ′ = y ∧ z ′ = z)

The alphabet is { x , y, z , x ′, y ′, z ′ }. The assignment sets the final value of x ,
which is represented by x ′, to e; all the other variables are unchanged. The
program II =̂ (v ′ = v) skips: it does not change the observational variables
v . We write v ′ = v as an abbreviation for a conjunction of equalities that state
that the final value of each variable is equal to its initial value.

A sequence P ; Q is defined as relational composition, if, for each dashed
variable in the alphabet of P , the undashed variable is in the alphabet of Q .
The set inα′Q is obtained by dashing all variables in αQ .

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) provided outαP = inα′Q = { v ′ }

The notation P(v ′) emphasises that P may have free occurrences of observational
variables v ′; the later reference to P(v0) refers to the predicate obtained by

substituting v0 for the free occurrences of v ′ in P . Similarly, for Q(v) and Q(v0).
In all cases, v , v ′, and v0 stand for lists of variables.

The nondeterministic choice P uQ =̂ P ∨ Q of relations P and Q with the
same alphabet is demonic. It behaves like either P or Q .

The set of relations with a particular alphabet is a complete lattice, with order
⇐; this is the refinement ordering in this setting. More formally, the program
denoted by P is refined by that denoted by Q when [Q ⇒ P]; in that case we
write P v Q . As a matter of fact, P and Q can be either programs (assignments,
sequence, choices, and others) or any relation used to specify a program; they
are all relations. The square brackets denote universal quantification over all the
alphabet.

In contrast with the other operators, the greatest lower bound u S of a set
S of relations is defined algebraically: [P ⇐ uS] =̂ ([P ⇐ X] for all X in S).
The bottom of this lattice is the program ⊥ =̂ true, which is called abort .
Incidentally, the top element is false; it is written > and called miracle.

Recursion is modelled using least fixed points. If F (X) is a relation, in which
X is used as a recursion variable, the recursive program is written µ X • F (X).
This is the least fixed point of the function F .

Hoare and He point out what they regard an infelicity. The recursive program
µX • X is supposed to model an infinite loop; it is equivalent to ⊥ or true.
Nonetheless, if the alphabet is { x , x ′ }, then the sequence (µX • X) ; x ′ = 3
is equivalent to x ′ = 3, even though it should not be possible to recover from a
program that does not terminate.

The solution proposed by Hoare and He is the introduction of an extra
boolean observational variable ok to record termination. If ok has value true, it
means that the program has started; if ok ′ has value true, then the program has
terminated. In this new theory, relations take the form of designs P ` Q .

(P ` Q) =̂ (ok ∧ P) ⇒ (ok ′ ∧ Q)

The predicates P and Q are the program’s pre and postcondition. If the design
has started and the precondition P holds, then it terminates and establishes the
postcondition Q .

In this new theory, assignment and skip are redefined. Below, y and y ′ stand
for the observational variables other than x and x ′.

x := e =̂ true ` x ′ = e ∧ y ′ = y II =̂ true ` v ′ = v

The new definitions use designs to take ok and ok ′ into account.

Four healthiness conditions on relations P are regarded of interest in the
theory of designs; they are summarised in Table 1. Healthiness condition H1

states that any restrictions on the behaviour of P only need to hold if it has
started. The second healthiness condition states that P cannot require non-
termination: if it holds when ok ′ is false, then it also holds when ok ′ is true.
Together, H1 and H2 characterise the designs: a predicate is H1 and H2 if and
only if it can be written as a design.

H1 P = (ok ⇒ P) No predictions before startup

H2 [P [false/ok ′] ⇒ P [true/ok ′]] Non-termination is not required

H3 P = P ; II Preconditions do not use dashes

H4 P ; true = true Feasibility

Table 1. UTP Healthiness conditions

The healthiness conditions H3 and H4 are expressed as equations between
programming constructs. Results presented in [HJ98] clarify that H3 designs
can be expressed using preconditions that do not refer to dashed observational
variables, and that H4 designs model feasible or implementable programs.

Designs form a UTP theory characterised by an alphabet that includes ok

and ok ′, and by the healthiness conditions H1 and H2. For reactive programs, for
instance, we have a theory of relations whose alphabets include six other obser-
vational variables, and that satisfy two other healthiness conditions. Alphabets
and healthiness conditions are the basis to compare and combine different the-
ories. Later on, we present a theory for angelic (and demonic) nondeterminism;
beforehand, we study set-based models for the UTP.

3 Set-based models

In this section, we consider two set-based models for the UTP: relations, charac-
terised by sets of pairs, and predicate transformers, with predicates characterised
by sets. These models further clarify the role of the healthiness conditions in Ta-
ble 1 and the internalized model of nontermination based on ok and ok ′. Most
importantly, however, they provide guidance in the definition of a UTP theory
based on binary multirelations. It is this theory that can capture both angelic
and demonic nondeterminism.

3.1 Relations

The set-based relational model is that of sets of pairs of states. A state associates
names (of observational variables) to their values. The set SA of all states on an
alphabet A contains the records with a component for each variable in A. Each
such state is an observation of the behaviour of a program. A relation, like a
UTP predicate, is a pair (αR,R), where αR is the alphabet, and R is a relation
between the elements of SinαR and SoutαR. Such a relation models a program
by associating an observation of an initial state with a possible observation of a
later state.

The model for abort is the universal relation: Sinα × Soutα; when the pred-
icate P (or relation R) is not relevant, instead of writing inαP (or inαR) and
outαP (or outαR), we simply write inα and outα. Partiality models miracles. If
a state is not in the domain of the relation, then it is miraculous at that state: it

can achieve any required result. In particular, the model of miracle is the empty
relation.

It is not difficult to see that the first general predicate-based theory of
the UTP is isomorphic to this set-based model. A simple proof is presented
in [CW04]; it is based on the functions p2sb and sb2p.

Definition 1.

p2sb.(αP ,P) =̂ (αP , { s1 : SinαP ; s2 : SoutαP | P [s1, s2/inαP , outαP] })

sb2p.(αR,R) =̂ (αR, ∃ s1 : SinαR, s2 : SoutαR • (s1, s2) ∈ R ∧
(
∧

x : inαR • x = s1.x) ∧ (
∧

x : outαR • x = s2.x))

The first, p2sb, transforms a UTP relation into a set-based relation; the second,
sb2p is its inverse: it transforms a set-based relation into a UTP relation. Both
p2sb and sb2p do not change the alphabet of the relations. A similar set-based
model is used by Hoare and He when they discuss denotational semantics.

The set-based relation defined by p2sb for a predicative relation P is formed
by pairs of states s1 and s2 such that P holds when the observational variables
take the values associated to them by s1 and s2. The predicate P [s/A] is obtained
by replacing x with s .x , for all x in A.

The predicate defined by sb2p for a relation R is an existential quantification
over pairs of states s1 and s2 in R. For each pair, a conjunction of equalities
requires that each observational variable takes the value in the corresponding
state. Since alphabets are finite, the conjunction is finite. If we use θA as an
abbreviation for the state on alphabet A that associates each component of
name x in A with the value of the variable x , then sb2p.(α,R) can be ex-
pressed as (θinαR, θoutαR) ∈ R. The proof is a straightforward application of
the one-point rule. The existential quantification probably accounts for a clearer
definition for sb2p; in proofs the shorter formulation is more convenient.

Standard work on relational semantics [HH85] singles out a special state to
indicate non-termination; this is not the case in our model. If an initial state is
associated with all possible final states, then we cannot say whether the final
state is simply arbitrary or we have a possibility of non-termination. In standard
relational semantics, the model for abort that we presented above is actually the
model for a program that always terminates, but whose final state is arbitrary.

The isomorphism characterised by p2sb and sb2p suggests that the general
UTP model of relations is not able to capture non-termination. As already men-
tioned, Hoare and He pointed out a paradox in the fact that, if the alphabet
is { x , x ′ }, then (µX • X); x := 3 is equivalent to x := 3. This is not really
a paradox: the value of (µX • X) is the bottom of the lattice ⊥, which is not
an aborting program, but the program that terminates and gives an arbitrary
value to x . If, in sequence, we assign 3 to x , then the arbitrariness is irrelevant.
Their model is sensible, for terminating programs. (Their attempt to solve the
supposed paradox by giving a strongest fixed point semantics to recursion was
always doomed to fail.)

For designs, the alphabet includes ok and ok ′; therefore, these variables are
also part of the alphabet of the corresponding set-based relations. In Table 2,
we present healthiness conditions SBH1, SBH2, and SBH3 over such relations;
we omit the obvious types of s1 and s2. The theorem below, proved in [CW04],
establishes that H1, H2, and H3 correspond to SBH1, SBH2, and SBH3 in the
set-based model.

Theorem 1. For every UTP relation (αP ,P) that satisfies H1, p2sb.(αP ,P)
satisfies SBH1. Conversely, for every set-based relation (αR,R) that satisfies

SBH1, sb2p.(αR,R) satisfies H1. The same holds for H2 and SBH2, and for H3

and SBH3.

The condition SBH1 requires that, in a healthy relation R, all states s1 for which
s1.ok is false are related to all possible final states. This means that a state in
which the program has not started is not miraculous and leads to no controlled
behaviour. In relations that are SBH2-healthy, if a state s1 is related to a state
s2 for which s2.ok

′ is false, then s1 is also related to s2 ⊕ {ok ′ 7→ true}. This is
the same state as s2, except that the value of ok ′ is true. This means that if it is
possible not to terminate from s1, it is also possible to terminate. Its behaviour,
however, may not be completely arbitrary: it is not required that R relates s1 to
all possible final states; this is what is required by SBH3.

SBH1 ∀ s1, s2 | s1.ok = false • (s1, s2) ∈ R

SBH2 ∀ s1, s2 | (s1, s2) ∈ R ∧ s2.ok
′ = false • (s1, s2 ⊕ {ok ′ 7→ true}) ∈ R

SBH3 ∀ s1 | (∃ s2 • s2.ok
′ = false ∧ (s1, s2) ∈ R) • ∀ s2 • (s1, s2) ∈ R

Table 2. Set-based healthiness conditions

We believe that it is not difficult to observe that SBH3 relations are neces-
sarily SBH2. If the initial state s1 is related to all possible final states, then it
is also related to s2 ⊕ {ok ′ 7→ true}. This rather obvious result seems to be not
so clear in the predicate setting. It means that, at least for the purpose of the
study of total correctness of sequential programs, Hoare and He did not need to
consider four healthiness conditions, but only three of them: H1, H3, and H4.
It turns out, however, that non-H3 designs are important for the modelling of
more sophisticated programming paradigms like CSP, for instance.

The healthiness condition H4 requires feasibility. It is not relevant for us, as
miracles are an important part of Morgan’s refinement calculus and ZRC.

3.2 Predicate transformers

In the model of predicate transformers, we regard predicates as sets of states.
The model is composed of pairs (αPT ,PT), where αPT is the alphabet of the
transformer, and PT is a total monotonic function from PSoutαPT to P SinαPT .
A program is modelled by its weakest precondition transformer [Dij76].

Isomorphisms between predicate transformers and set-based relational mod-
els have been studied [Hes92]; the one below is similar to that in [CW98]. We
define functions sb2pt and pt2sb; the first transforms a set-based relation into
a weakest precondition, and the second transforms a weakest precondition back
into a set-based relation. For simplicity, we ignore alphabets, which are main-
tained by both functions.

Definition 2. sb2pt .R.ψ =̂ ¬ dom(R −B ψ)

pt2sb.PT = { s1 : SinαPT ; s2 : SoutαPT | s1 ∈ ¬ PT .(¬ { s2 }) }

In the definition of sb2pt , ψ is a postcondition, or rather, a set of states on
outαR, which is given as argument to the transformer sb2pt .R. The relation
R−Bψ models all executions of R that do not lead to a state that satisfies ψ; the
operator −B is range subtraction. In dom(R −B ψ), we have all initial states in
which it is possible not to achieve ψ. The complement ¬ dom(R −B ψ) contains
all initial states in which we are guaranteed to reach a state that satisfies ψ: the
required weakest precondition.

The relation pt2sb.PT associates an initial state s1 to a final state s2 if s1 is
not in the weakest precondition that guarantees that PT does not establish s2.
Since it is not guaranteed that PT will not establish s2, then it is possible that
it will. The possibility is captured in the relation.

Since the general set-based relations can only model terminating programs,
we cannot expect an isomorphism between them and the whole set of predicate
transformers. In fact, we prove that they are isomorphic to the set of universally
conjunctive predicate transformers PT : those that satisfy the property below.

PT .(
⋂

{ i • ψi }) =
⋂

{ i • PT .ψi } (1)

An important and well-known consequence of this isomorphism is that UTP re-
lations cannot model angelic as well as demonic nondeterminism. Since we have
an isomorphism between UTP relations and set-based relations, and another
between set-based relations and universally conjunctive predicate transformers,
then UTP relations are isomorphic to universally conjunctive predicate trans-
formers.

As already said, the angelic choice in which we are interested is the least
upper bound of the lattice of monotonic predicate transformers. Joins in the
lattice of universally conjunctive predicate transformers are not preserved in the
lattice of monotonic predicate transformers [BW92]. We need a relational model
isomorphic to the monotonic predicate transformers.

We investigate, next, the set of predicate transformers that correspond to
UTP designs. In this case, ok is in the alphabet of the states in a precondi-
tion, and ok ′ is in the alphabet of the states in a postcondition. Table 3 gives
healthiness conditions over such predicate transformers PT . The first healthiness
condition, PTH1, requires that the weakest precondition for PT to establish any
ψ is included in the set of initial states s1 for which s1.ok is true. In other words,
in order to guarantee a postcondition, PT must start. The only exception is the
postcondition SoutαPT , which imposes no restrictions whatsoever.

PTH1 PT .ψ ⊆ { s1 : SinαPT | s1.ok = true } provided ψ 6= SoutαPT

PTH3 PT .ψ = PT .{ s2 : ψ | s2.ok
′ = true } provided ψ 6= SoutαPT

Table 3. Predicate transformers healthiness conditions

The healthiness condition PTH3 states that, in calculating PT .ψ, we can
ignore all the states s2 in ψ for which s2.ok

′ is false. In other words, even if we
have s2 and s2 ⊕ {ok ′ 7→ true} in ψ, so that termination is not required, if PT

can guarantee s2 or s2 ⊕{ok ′ 7→ true}, then it can guarantee s2 ⊕{ok ′ 7→ true}.
Moreover, if s2 is in ψ, but s2 ⊕ {ok ′ 7→ true} is not, so that non-termination is
actually required, then PT cannot do it. Consequently, predicate transformers
do not capture information related to the possibility of non-termination. Again,
the postcondition SoutαPT is an exception.

As stated in the theorem below, which is proved in [CW04], PTH1 and PTH3

correspond to H1 and H3.

Theorem 2. For every set-based relation R that satisfies SBH1, sb2pt .R satis-

fies PTH1. Conversely, for every predicate transformer PT that satisfies PTH1,

pt2sb.PT satisfies SBH1. The same holds for SBH3 and PTH3.

The healthiness conditions PTH1 and PTH3 restrict the behaviour of the predi-
cate transformers for postconditions different from SoutαPT . This postcondition,
however, is of special interest.

Standard universally conjunctive predicate transformers can only model ter-
minating programs; this is because, if (1) holds for the empty set, then PT .Soutα = Sinα.
In words, for the postcondition that does not impose any restrictions, any initial
state is satisfactory. Nevertheless, the postcondition that does not impose any
restriction still requires termination. Therefore, it is required that the program
always terminates.

In the context of predicate transformers that involve states on ok and ok ′,
however, the situation is different. The postcondition Soutα does not require
termination: it accepts any final state s2, even those for which s2.ok

′ = false.
Similarly, the precondition Sinα does not even require the program to start.
Therefore, the universal conjunctivity of the predicate transformers correspond-
ing to designs does not imply that only terminating programs can be modelled.
Unfortunately, conjunctivity is still an issue: the predicate transformers that are
PTH1 and PTH3 healthy are conjunctive. As a consequence, they cannot model
angelic nondeterminism. We need a model isomorphic to monotonic, not neces-
sarily conjunctive, predicate transformers. This is pursued in the next section.

As an aside, we observe that when we consider H3-healthy designs, we get a
model isomorphic to standard conjunctive weakest preconditions; in [CW04] we
present an isomorphism between the predicate transformers above and those on
postconditions and preconditions that do not refer to ok and ok ′. In [Dun01],
different healthiness conditions that lead to a theory of general correctness are
proposed.

4 Binary Multirelations

A relational model isomorphic to monotonic predicate transformers is presented
in [Rew03]; in that work, the relations are called binary multirelations. We stud-
ied that model in the context of the UTP in [CW05]. We defined a binary
multirelation as a pair (αBM ,BM), where αBM is an alphabet, and BM is a
relation between SinαBM and postconditions: elements of PSoutαBM . Intuitively,
BM captured the behaviour of a program by associating each initial state with
all the postconditions that the program can angelically choose to satisfy. The
encoding of this model in the UTP leads to a theory in which refinement is
captured by implication, instead of reverse implication.

In this section, we explore a similar model of binary multirelations in which
behaviour is captured by relating an initial state to all the sets of states from
which an angelic choice can be made to determine a final state for the program.
The choice between the sets of states themselves is demonic.

The model for abort , for example, is the universal relation; this means that we
can demonically choose any set of states as options open for the angelic choice.
In other words, the demonic choice prevails, since any set of options whatsoever,
including the empty set, can be left for the angelic choice. Miracle, on the other
hand, is the empty relation; this means that there are no demonic choices to be
made. In general, a computation characterised by a binary multirelation BM is
at risk of not terminating when executed from any starting state s such that
(s , ∅) ∈ BM . On the other hand, execution is miraculous from any state outside
the domain of BM . All this is, of course, in sympathy with the set-based model
of Section 3.

The binary multirelation for an assignment x := e relates every initial state
s1 with every set that includes s ′

1
⊕{x ′ 7→ e}. The state s ′

1
is obtained from s1 by

dashing the names of each of the variables in its domain. Therefore, s ′
1
⊕{x ′ 7→ e}

is a final state in which the value for each variable v ′ of outα is s1.v , except for
x ′, whose value is e. If executed in s1, the assignment x := e reaches the final
state s ′

1
⊕ {x ′ 7→ e}. The fact that the binary multirelation associates s1 to all

sets that include this state, instead of just to the singleton set { s ′
1
⊕{x ′ 7→ e} },

needs further explanation.
In fact, given any two states s2 and s3, providing the set { s2, s3 } of angelic

choices, in addition to the set { s2 }, as an extra option available for demonic
choice is immaterial. Since s3 cannot be guaranteed to be available for the an-
gelic choice, there can be no guarantee that the program will achieve s3. More
generally, in algebraic terms, we have that P u (P t Q) = P , where u and t
represent demonic and angelic choice; this property can be easily proved in the
predicate transformer model, for example.

In general, in the binary multirelation model, if an initial state s1 is associated
with a set of states ss , then associating s1 to a superset of ss does not add to
the options that are actually available for angelic choice. We could provide a
definition of refinement that takes this fact into account, and regards the relation
that associates s1 only to ss1 and a relation that associates s1 to ss1 and to one or
more of its supersets as equal. We are striving, however, for a simple definition of

refinement. Therefore, we choose to identify one of those binary multirelations
as the unique model of the program that actually only provides the states in
ss for angelic choice. Inspired by the model in [Rew03], we choose the set of
binary multirelations that are upward closed. This is captured in the following
healthiness condition.

BMH ∀ s1, ac1, ac2 | (s1, ac1) ∈ BM ∧ ac1 ⊆ ac2 • (s1, ac2) ∈ BM

This states that, if from an initial state s1, the set of angelic choices ac1 is
available for demonic choice, so are all the supersets ac2 of ac1.

The binary multirelation that models the angelic choice x := 0 t x := 1, with
alphabet { x , x ′ }, is { s1, ac | { (x ′ 7→ 0), (x ′ 7→ 1) } ⊆ ac }. It associates to each
initial state s1 the sets of angelic choices that include (x ′ 7→ 0) and (x ′ 7→ 1).
This is because the angel can ensure the final value of x to be either 0 or 1, as
required. We use (x ′ 7→ v) to denote a record with a single component named
x ′ whose value is v . For the demonic choice, x := 0 u x := 1, the range of the
binary multirelation includes the supersets of { (x ′ 7→ 0) } and {(x ′ 7→ 1) }. In
this case, the demon is in control: the final value of x is arbitrarily chosen to be
0 or 1.

For x := 0t (x := 1u x := 2), which is a program that involves an angelic and
a demonic choice, the model is { s1, ac | {(x ′ 7→ 0), (x ′ 7→ 1)} ⊆ ac ∨ {(x ′ 7→ 0), (x ′ 7→ 2)} ⊆ ac }.
The demonic choices available cannot prevent the angelic choice of 0 for the final
value of x : all sets ac that can be demonically chosen include the state (x ′ 7→ 0).
The options (x ′ 7→ 1) and (x ′ 7→ 2), however, are left open for demonic choice.
The functions below define an isomorphism between binary multirelations and
predicate transformers.

Definition 3. bm2pt .BM .ψ = { s1 | (s1,¬ ψ) /∈ BM }

pt2bm.PT = { (s1, ψ) | s1 ∈ ¬ PT .(¬ ψ) }

The function bm2pt converts a binary multirelation to a weakest precondition
transformer. We have that bm2pt .BM is guaranteed to establish a postcondition
ψ in all initial states s1 for which there is not a set of states disjoint from ψ that
can be demonically chosen. If, in all sets of states available for demonic choice,
there is at least one state that is acceptable from the point of view of ψ, or
in other words, belongs to ψ, the angelic choice is guaranteed to select such a
state to satisfy ψ. In the definition of bm2pt , we consider specifically whether the
complement of ψ is associated to s1. If any set disjoint from ψ is associated to s1,
then upward closedness guarantees that the complement of ψ is also associated
with s1.

Conversely, the multirelation pt2bm.PT associates an initial state s1 with all
the postconditions that PT is not guaranteed not to establish from s1. These
are the sets of states that may be reached from s1. They are taken as available
for demonic choice.

This isomorphism is simpler than that presented in [Rew03], which constructs
the binary multirelation corresponding to a predicate transformer using prime
filter representations of states. Our proof that bm2pt and pt2bm characterise an

isomorphism between predicate transformers and binary multirelations is very
simple, although slightly more complex than that in [CW05].

Theorem 3. pt2bm.(bm2pt .BM) = BM

Proof.

pt2bm.(bm2pt .BM) [definition of pt2bm]

= { (s1, ψ) | s1 ∈ ¬ bm2pt .BM .(¬ ψ) } [definition of bm2pt]

= { (s1, ψ) | s1 ∈ ¬ { s1 | (s1,¬ ¬ ψ) /∈ BM } } [property of sets]

= { (s1, ψ) | s1 ∈ { s1 | (s1, ψ) ∈ BM } } [property of set comprehension]

= { (s1, ψ) | (s1, ψ) ∈ BM } [property of sets]

= BM

Theorem 4. bm2pt .(pt2bm.PT) = PT

Proof.

bm2pt .(pt2bm.PT).ψ [definition of bm2pt]

= { s1 | (s1,¬ ψ) /∈ pt2bm.PT } [definition of pt2bm]

= { s1 | (s1,¬ ψ) /∈ { (s1, ψ) | s1 ∈ ¬ PT .(¬ ψ) } }[property of set comprehension]

= { s1 | s1 /∈ ¬ PT .(¬ ¬ ψ) } [property of sets]

= { s1 | s1 ∈ PT .ψ } [property of sets]

= PT .ψ

The following two theorems establish that monotonic predicate transformers
correspond to BMH-healthy multirelations. First of all, healthy binary multire-
lations define monotonic predicate transformers.

Theorem 5. For a BMH-healthy binary multirelation BM , bm2pt .BM is mono-

tonic.

Proof. We consider two postconditions ψ1 and ψ2.

ψ1 ⊆ ψ2 [property of sets]

⇒ ¬ ψ2 ⊆ ¬ ψ1 [BM is healthy]

⇒ ∀ s1 • (s1,¬ ψ2) ∈ BM ⇒ (s1,¬ ψ1) ∈ BM [predicate calculus]

⇒ ∀ s1 • (s1,¬ ψ1) /∈ BM ⇒ (s1,¬ ψ2) /∈ BM [definition of bm2pt]

⇒ bm2pt .BM .ψ1 ⊆ bm2pt .BM .ψ2

Now, a monotonic predicate transformer corresponds to a healthy binary mul-
tirelation.

Theorem 6. For a monotonic PT, the binary multirelation pt2bm.PT is BMH-

healthy.

Proof. We consider two postconditions ψ1 and ψ2, and an initial state s1.

ψ1 ⊆ ψ2 [property of sets]

⇒ ¬ ψ2 ⊆ ¬ ψ1 [PT is monotonic]

⇒ PT .(¬ ψ2) ⊆ PT .(¬ ψ1) [property of sets]

⇒ ¬ PT .(¬ ψ1) ⊆ ¬ PT .(¬ ψ2) [property of sets]

⇒ s1 ∈ ¬ PT .(¬ ψ1) ⇒ s1 ∈ ¬ PT .(¬ ψ2) [definition of pt2bm]

= (s1, ψ1) ∈ pt2bm.PT ⇒ (s1, ψ2) ∈ pt2bm.PT

In conclusion, we have a model isomorphic to monotonic predicate transform-
ers. What we need now is a way of expressing multirelations as alphabetised
predicates.

4.1 Predicative theory

sb2ppt2sbbm2pt

binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

Fig. 1. Models and isomorphisms

The key point to define a UTP theory based on binary multirelations is the
choice of alphabet. We propose a view of a binary multirelation as a relation
between a state on an alphabet inα and a state on { ac′ }. The value of ac′ is
the set of angelic choices available to the program: a set of states on an alphabet
outα.

Figure 1 summarises the isomorphisms we have defined so far. We are looking
for a way of representing binary multirelations as UTP predicates. We cannot use
pt2sb in the transformation because it cannot handle non-conjunctive predicate
transformers. Instead, we define an isomorphism between binary multirelations
and set-based relations with alphabet inα ∪ { ac′ }. It is based on the functions
below.

Definition 4.

bm2sb.BM = { s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }

sb2bm.ACR = { s1 : Sinα; ss : P Soutα | (s1, (ac
′ 7→ ss)) ∈ ACR }

Using bm2sb, we get a standard set-based relation in which the sets in the
range of the original binary multirelation are wrapped in records with a single
component ac′; the function sb2bm unwraps these records. The proof that bm2sb
and sb2sm establish an isomorphism is trivial.

Since predicate transformers are the standard setting for the study of angelic
nondeterminism, we aim at expressing predicate transformers as predicates using
pt2bm, bm2sb, and sb2p. In our calculations, we name the composition of pt2bm,
bm2sb, and sb2p as pt2p =̂ sb2p ◦ bm2sb ◦ pt2bm. The next theorem is useful.

Theorem 7. pt2p.PT = θinα ∈ ¬ PT .(¬ ac′)

We omit its simple proof. Figure 2 shows the additional isomorphism and func-
tion that we use in the sequel. For example, the predicate transformer abort

maps all postconditions to the empty set: it can never guarantee anything. In
the UTP, it corresponds to true.

Theorem 8. pt2p.abort = true.

Proof.

pt2p.abort [Theorem 7]

= θinα ∈ ¬ abort .(¬ ac′) [definition of abort]

= θinα ∈ ¬ ∅ [property of sets]

= true

The everywhere miraculous program is represented by false. Other relations are
considered in Section 5.

4.2 Healthiness condition

In the UTP, the healthiness condition for binary multirelations is as follows.

PBMH P ; (ac ⊆ ac′) = P

This requires that, if, after executing P , we execute a program that enlarges ac′,
then the result could have been obtained by P itself. A healthy P characterises
ac′ not by defining a particular value for it, but the smallest set of elements it
should include. All the supersets should be allowed.
Healthy binary multirelations correspond to PBMH-healthy predicates.

Theorem 9. If BM is BMH-healthy, then sb2p.(bm2sb.BM) is PBMH-healthy.

sb2ppt2sbbm2pt

binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

pt2p
bm2sb

sb2bm

Fig. 2. Extra isomorphism

Proof.

sb2p.(bm2sb.BM); (ac ⊆ ac′) [definition of bm2sb]

= sb2p.{ s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }; (ac ⊆ ac′)

[definition of sb2p]

= (θinα, θ{ ac′ }) ∈ { s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }; (ac ⊆ ac′)

[property of sets]

= ((θinα, ac′) ∈ BM); (ac ⊆ ac′) [definition of sequence]

= ∃ ac0 • (θinα, ac0) ∈ BM ∧ ac0 ⊆ ac′

[BM is BMH-healthy and predicate calculus]

= (θinα, ac′) ∈ BM [definitions of sb2p and bm2sb]

= sb2p.(bm2sb.BM)

This proof is simpler than that of the corresponding theorem in [CW05].

Theorem 10. If P is a PBMH-healthy predicate, then sb2bm.(p2sb.P) is BMH-

healthy.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

(s1, ψ1) ∈ sb2bm.(p2sb.P) [definition of p2sb]

= (s1, ψ1) ∈ sb2bm.{ s1, s2 | P [s1, s2/inα, ac
′] } [definition of sb2bm]

= (s1, ψ1) ∈ { s1 : Sinα; ss : PS{ac′} | (s1, (ac
′ 7→ ss)) ∈ { s1, s2 | P [s1, s2/inα, ac

′] }}

[property of sets]

= (s1, (ac
′ 7→ ψ1)) ∈ { s1, s2 | P [s1, s2/inα, ac

′] } [property of sets]

= P [s1, ψ1/inα, ac
′] [P is PBMH-healthy]

= (P ; ac ⊆ ac′)[s1, ψ1/inα, ac
′] [substitution]

= P [s/inα]; ac ⊆ ψ1 [definition of sequential composition]

= ∃ ac0 • P [s1, ac0/inα, ac
′] ∧ ac0 ⊆ ψ1 [ψ1 ⊆ ψ2]

⇒ ∃ ac0 • P [s1, ac0/inα, ac
′] ∧ ac0 ⊆ ψ2

[definition of sequential composition, and substitution]

= (P ; (ac ⊆ ac′))[s1, ψ2/inα, ac
′] [P is PBMH-healthy]

= P [s1, ψ2/inα, ac
′] [definitions of p2sb and sb2bm]

= (s1, ψ2) ∈ sb2bm.(p2sb.P)

It is pleasing that the healthiness condition can be cast in a quite simple way,
and also in terms of the fixpoint of an idempotent function PBMH defined as
PBMH(X) = X ; ac ⊆ ac′. This is important for the approach to linking theories
encouraged by the UTP.

4.3 Refinement

The refinement relation is reverse implication, as in all theories of the UTP. We
prove that this corresponds to the refinement relation of the model of binary
multirelations.

Definition 5. BM1 vBM BM2 =̂ BM2 ⊆ BM1

The pre-order proposed in [Rew03] for binary multirelations becomes a partial
order in the restricted setting of healthy binary multirelations; also, it collapses to
set inclusion. We have adopted the inverse order here, which is also the standard
definition of refinement for set-based relations.

It is reassuring that this order corresponds to the usual refinement relation
in the model of predicate transformers, which we present below.

Definition 6. PT1 vPT PT2 =̂ ∀ψ • PT1.ψ ⊆ PT2.ψ

The next theorem establishes that the above notions of refinement are indeed
compatible.

Theorem 11. BM1 vBM BM2 if, and only if, bm2pt .BM1 vPT bm2pt .BM2.

Proof.

bm2pt .BM1 vPT bm2pt .BM2 [definition of vPT]

= ∀ψ • bm2pt .BM1.ψ ⊆ bm2pt .BM2.ψ [definition of bm2pt]

= ∀ψ • { s1 | (s1,¬ ψ) /∈ BM1} ⊆ { s1 | (s1,¬ ψ) /∈ BM2} [property of sets]

= ∀ψ, s1 • (s1,¬ ψ) /∈ BM1 ⇒ (s1,¬ ψ) /∈ BM2 [property of sets]

= ∀ψ, s1 • (s1,¬ ψ) ∈ BM2 ⇒ (s1,¬ ψ) ∈ BM1 [predicate calculus]

= ∀ψ, s1, φ | φ = ¬ ψ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [property of sets]

= ∀ψ, s1, φ | ψ = ¬ φ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [predicate calculus]

= ∀ s1, φ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [property of sets]

= BM2 ⊆ BM1 [definition of vBM]

= BM1 vBM BM2

The correspondence between UTP and binary multirelation refinement is estab-
lished below.

Theorem 12. P v Q if, and only if, sb2bm.(p2sb.P) vBM sb2bm.(p2sb.Q).

Proof.

sb2bm.(p2sb.P) vBM sb2bm.(p2sb.Q) [definition of vBM]

= sb2bm.(p2sb.Q) ⊆ sb2bm.(p2sb.P) [property of sets]

= ∀ s1, ψ • (s1, ψ) ∈ sb2bm.(p2sb.Q) ⇒ (s1, ψ) ∈ sb2bm.(p2sb.P)

[definitions of sb2bm and p2sb]

= ∀ s1, ψ • Q [s1, ψ/inα, ac
′] ⇒ P [s1, ψ/inα, ac

′] [predicate calculus]

= ∀ x : inα, ac′ • Q ⇒ P [the alphabet is inα ∪ {ac′}]

= [Q ⇒ P] [definition of refinement in the UTP]

= P v Q

Refinement vR in the set-based model of the UTP is also reverse set inclusion,
like in the binary multirelation model. That this relation corresponds to the
others is not a surprising result; the proof that it corresponds to refinement in
the predicate model and in the binary multirelation model, for example, is a
direct consequence of subset inclusion properties. In the next section, we use the
following result.

Theorem 13. PT1 vPT PT2 if, and only if, pt2p.PT1 v pt2p.PT2.

Proof.

pt2p.PT1 v pt2r .PT2 [definition of pt2p]

= sb2p.(bm2sb.(pt2bm.PT1)) v sb2p.(bm2sb.(pt2bm.PT2))

[definition of sb2p and property of sets]

= bm2sb.(pt2bm.PT1) vR bm2sb.(pt2bm.PT2)

[definition of bm2sb and property of sets]

= pt2bm.PT1 vBM pt2bm.PT2 [Theorem 11]

= bm2pt .(pt2bm.PT1) vPT bm2pt .(pt2bm.PT2) [Theorem 4]

= PT1 vPT PT2

Now, we have a UTP theory that corresponds to monotonic predicate transform-
ers. In the next section, we explore the definition of the operators in our new
theory; besides angelic choice, we consider operators defined the general theory
of UTP relations and designs.

5 Operators

We have already calculated the definition of abort in our new theory; the calcu-
lation for miracle is equally simple. In this section, we use the function pt2p to
justify the definitions of other relations and relational operators in our theory of
angelic nondeterminism.

5.1 Choice: angelic and demonic

Of course, angelic choice P tQ is the first operator of interest. In the predicate
transformer model, it is characterised by disjunction (or union), which is the least
upper bound operator. In our new UTP theory, it is characterised by conjunction.
The program P t Q gives all the guarantees that can be provided by choosing
P , together with those that arise from the possibility of choosing Q .

Theorem 14. pt2p.(P tQ) = pt2p.P ∧ pt2p.Q

Proof.

pt2p.(P t Q) [Theorem 7]

= θinα ∈ ¬ (P t Q).(¬ ac′) [predicate transformer semantics of t]

= θinα ∈ ¬ (P .(¬ ac′) ∨ Q .(¬ ac′)) [property of sets]

= θinα ∈ ¬ P .(¬ ac′) ∩ ¬ Q .(¬ ac′) [property of sets]

= θinα ∈ ¬ P .(¬ ac′) ∧ θinα ∈ ¬ Q .(¬ ac′) [Theorem 7]

= pt2p.P ∧ pt2p.Q

Like in the original UTP model, demonic choice is captured by disjunction. In
the predicate transformer model, it is captured by conjunction: a postcondition
is guaranteed by P u Q only if both P and Q can guarantee it, so that the
arbitrary choice is not a problem.

Theorem 15. pt2p.(P uQ) = pt2p.P ∨ pt2p.Q

Proof. Similar to that of Theorem 14.

Logical constants are defined as the least upper bound operator in the complete
lattice of monotonic predicate transformers [GM91], which is equal to that in the
complete boolean lattice of predicate transformers [BW90]. It also corresponds
to the least upper bound operator in our theory: universal quantification.

Theorem 16. pt2p.(conX • P(X)) = ∀X • pt2p.P(X)

Proof.

pt2p.(conX • P(X)) [Theorem 7]

= θinα ∈ ¬ (conX • P(X)).(¬ ac′)

[predicate transformer semantics of con]

= θinα ∈ ¬ (
⊔
{X • P(X) }).(¬ ac′)

[property of lattice of predicate transformers]

= θinα ∈
⋂
{X • ¬ P(X).(¬ ac′) } [property of sets]

= ∀X • θinα ∈ ¬ P(X).(¬ ac′) [Theorem 7]

= ∀X • pt2p.P(X)

A similar proof establishes that the greatest lower bound operator in the predi-
cate transformer model corresponds to the greatest lower bound operator in our
theory.

5.2 Assignment

Assignment can be defined as follows as a predicate transformer.

(x := e).ψ = { s | s ′ ⊕ {x ′ 7→ e} ∈ ψ } (2)

This corresponds to substitution: the standard weakest precondition semantics
of assignment, but it is expressed using sets. Moreover, there is a slight com-
plication due to the fact that postconditions and preconditions are predicates
on different variables, or rather, states on inα and on outα. A similar weakest
precondition semantics is considered in [CW99] for Z. In the above notation,
x := e is guaranteed to establish ψ when executed in an initial state s , if the
final state s ′ ⊕ {x ′ 7→ e} obtained by dashing the variables of s and associating
e to x ′ belongs to ψ.

The theorem below gives a definition for assignment in our UTP theory of
angelic nondeterminism.

Theorem 17. pt2p.(x := e) = (θinα)′ ⊕ {x ′ 7→ e} ∈ ac′

Proof.

pt2p.(x := e) [Theorem 7]

= θinα ∈ ¬ ((x := e).ac′) [predicate transformer semantics of x := e (2)]

= θinα ∈ ¬ { s | s ′ ⊕ {x ′ 7→ e} ∈ ¬ ac′ } [property of sets]

= (θinα)′ ⊕ {x ′ 7→ e} ∈ ac′

The assignment is a deterministic command, which does not really involve either
demonic or angelic choices. Therefore, the uniquely determined final state of the
assignment is in all sets of angelic choices available for demonic choice. Moreover,
since any set that includes that final state is available for demonic choice, the
angelic choice can provide no interesting guarantees.

5.3 Conditional

We consider the conditional command P C b B Q , which behaves like P , if the
condition b holds, and like Q otherwise. This is the form of conditional studied
in the UTP, where b is a condition: a predicate over the input alphabet, only.
To convert b to a set, we use the function c2sb, which is similar to p2sb, but
it results in sets of states, instead of sets of pairs of states; its inverse is sb2c,
which is similar to sb2p.

Definition 7. c2sb.P = { s | P [s/α] }
sb2c.b = θinα ∈ b

It is not difficult to establish an isomorphism between sets of states and condi-
tions based on c2sb and sb2c.

The semantics of conditionals in our new theory is the subject of the next
theorem.

Theorem 18. pt2p.(P C b B Q) = (b ⇒ pt2p.P) ∧ (¬ b ⇒ pt2p.Q)

Proof.

pt2p.(P C b B Q) [Theorem 7]

= θinα ∈ ¬ (P C b B Q).(¬ ac′) [predicate transformer semantics of P C b B Q]

= θinα ∈ ¬ (c2sb.b ∩ P .(¬ ac′) ∪ ¬ c2sb.b ∩ Q .(¬ ac′)) [property of sets]

= θinα ∈ ¬ (c2sb.b ∩ P .(¬ ac′)) ∧ θinα ∈ ¬ (¬ c2sb.b ∩ Q .(¬ ac′))

[property of sets]

= (θinα ∈ ¬ c2sb.b ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (θinα ∈ c2sb.b ∨ θinα ∈ ¬ Q .(¬ ac′))

[property of sets and definition of sb2c]

= (¬ sb2c.(c2sb.b) ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (sb2c.(c2sb.b) ∨ θinα ∈ ¬ Q .(¬ ac′))

[definitions of sb2c and c2sb]

= (¬ b ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (b ∨ θinα ∈ ¬ Q .(¬ ac′)) [definition of pt2p]

= (¬ b ∨ pt2p.P) ∧ (b ∨ pt2p.Q) [predicate calculus]

= (b ⇒ pt2p.P) ∧ (¬ b ⇒ pt2p.Q)

Basically, the semantics of conditional is the same as that in the general theory
of relations.

5.4 Sequence

Sequential composition cannot correspond to relational composition, since the
relations are not homogeneous. We provide here a much simpler definition than
that suggested in [CW05], though.

The weakest precondition semantics of sequence is function composition. In
our setting, since preconditions are over states on inα and postconditions are
over states on outα, the composition is not direct. The definition is as follows.

(P ; Q).ψ = P .(Q .ψ)′ (3)

As usual, the weakest precondition for P ; Q to establish ψ is the weakest precon-
dition for P to establish the weakest precondition for Q to establish ψ. However,
the weakest precondition for Q to establish ψ is not a postcondition, since it is
a set of initial states. The corresponding postcondition is (Q .ψ)′. For a set of
initial states ss , the set ss ′ contains states s ′, for each initial state s in ss ; more
formally, in terms of the relational image operator: ss ′ = ′(| ss |).

In the context of our UTP theory, the definition can be surprisingly simple.
The definition of sequence for binary multirelations is very intuitive.

BM1; BM2 = { s1, ss | ∃ ss0 • (s1, ss
′
0
) ∈ BM1 ∧ ss0 ⊆ { s1 | (s1, ss) ∈ BM2 } }

(4)
An initial state s1 is associated to a set of angelic choices ss in (BM1; BM2) if
BM1 associates s1 to a set ss ′

0
of angelic choices such that, whatever state from

ss0 is chosen, the execution of BM2 from that state may lead to the availability
of ss for angelic choice. This is the definition in [Rew03]. For healthy binary
multirelations, it can be simplified as shown below.

BM1; BM2 = { s1, ss | (s1, { s1 | (s1, ss) ∈ BM2 }
′) ∈ BM1} (5)

In words, the set of angelic choices ss is available for (BM1; BM2) from an
initial state s1 if all the initial states of BM2 from which ss is available is a
set of angelic choices available for BM1 from s1. This can be expressed in the
predicative theory using substitution.

Theorem 19. pt2p.(P ; Q) = (pt2p.P)[{ s ′ | (pt2p.Q)[s/inα] }/ac′]

Proof.

pt2p.(P ; Q) [Theorem 7]

= θinα ∈ ¬ (P ; Q).(¬ ac′)[predicate transformer semantics of sequence (3)]

= θinα ∈ ¬ P .(Q .(¬ ac′))′ [property of sets]

= θinα ∈ ¬ P .(¬ (¬ Q .(¬ ac′))′) [property of sets]

= θinα ∈ ¬ P .(¬ { s | s ∈ ¬ Q .(¬ ac′)}′) [property of substitution]

= θinα ∈ ¬ P .(¬ { s ′ | (θinα ∈ ¬ Q .(¬ ac′))[s/inα]}) [Theorem 7]

= θinα ∈ ¬ P .(¬ { s ′ | (pt2p.Q)[s/inα]}) [property of substitution]

= (θinα ∈ ¬ P .(¬ ac′))[{ s ′ | (pt2p.Q)[s/inα]}/ac′] [Theorem 7]

= (pt2p.P)[{ s ′ | (pt2p.Q)[s/inα] }/ac′]

In conclusion, this theorem supports the following definition for sequence.

P ; Q =̂ P [{ s ′ | Q [s/inα] }/ac′]

It states that a set of angelic choices ac′ for P ; Q is a set that is available for Q

when it is executed in any of the states s of a set of angelic choices for P . This
is a definition that is possibly not obvious, but could be calculated using the
isomorphism between predicate transformers and the UTP predicative theory.

An example of a simple sequence of two assignments can be illuminating; we
consider x := 2; x := x + 1. We assume that x is the only variable in the input
alphabet.

x := 2; x := x + 1 [semantics of assignment and sequence]

= ((x ′ 7→ 2) ∈ ac′)[{ s ′ | ((x ′ 7→ x + 1) ∈ ac′)[s/x] }/ac′]

[property of substitution]

= ((x ′ 7→ 2) ∈ ac′)[{ s ′ | (x ′ 7→ s .x + 1) ∈ ac′ }/ac′]

[property of substitution]

= (x ′ 7→ 2) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ } [property of sets]

= (x ′ 7→ (x 7→ 2).x + 1) ∈ ac′ [property of states]

= (x ′ 7→ 2 + 1) ∈ ac′ [semantics of assignment]

= x := 3

As should be expected, the sequence of assignments is equivalent to x := 3. In
our second example, we consider a sequence involving an angelic choice.

(x := 0 t x := 1); x := x + 1

[semantics of assignment, angelic choice, and sequence]

= ((x ′ 7→ 0) ∈ ac′ ∧ (x ′ 7→ 1) ∈ ac′)[{ s ′ | (x ′ 7→ s .x + 1) ∈ ac′ }/ac′]

[property of substitution]

= (x ′ 7→ 0) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ } ∧ (x ′ 7→ 1) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ }

[property of sets]

= (x ′ 7→ (x 7→ 0).x + 1) ∈ ac′ ∧ (x ′ 7→ (x 7→ 1).x + 1) ∈ ac′ [property of states]

= (x ′ 7→ 1) ∈ ac′ ∧ (x ′ 7→ 2) ∈ ac′ [semantics of assignment and angelic choice]

= x := 1 t x := 2

Since the angelic choice x := 0 t x := 1 is followed by an assignment that
increments x , the program actually guarantees x to take the value 1 or 2, as
required.

5.5 Recursion

Finally, we consider recursion.

Theorem 20. pt2p.(µX • F (X))) = µX • (pt2p.F))(X)

Proof.

pt2p.(µX • F (X)) [property of µ]

= pt2p.(u{X | F (X) vPT X }) [Theorem 16]

= u{ pt2p.X | F (X) vPT X } [Theorem 13]

= u{ pt2p.X | pt2p.F (X) v pt2p.X } [property of sets]

= u{X | (pt2p.F)(X) v X } [property of µ]

= µX • (pt2p.F))(X)

As usual, recursion is given by the least fixed point operator.

5.6 Designs

The theory of angelic nondeterminism captures termination; this should not
come as a surprise since we have a model isomorphic to monotonic predicate
transformers. A program that aborts includes the empty set as an option for
demonic choice. For example, we have already established that abort is true; on
the other hand, the program that can lead to an arbitrary final state, but always
terminates is ac′ 6= ∅.

In particular, abort is the left zero for sequence.

Theorem 21. abort ; Q = abort

Proof.

abort ; Q [definitions of abort and sequence]

= true[{ s ′ | Q [s/inα] }/ac′] [property of substitution]

= true [definition of abort]

= abort

As as consequence of this result, the paradox that motivated the definition of the
theory of designs is not a concern in our theory. Therefore, there is no need to
include the extra observational variables; at least, not just to model termination.

In order to give the weakest precondition semantics of a design, we need to
define universal quantification and alphabet extension for predicates defined as
sets of states. The usual semantics of designs, or rather, of specifications given
by a precondition and a postcondition, is as follows.

(P ` Q).ψ = P ∩ ∀outα • ¬ Q ∪ (ψ † inα) (6)

This is basically in direct correspondence with the perhaps more familiar predica-
tive definition; a similar set-based formulation is used in [CN02]. The definition
of universal quantification is as follows.

s ∈ (∀x • P) = ∀ v • s ⊕ {x 7→ v} ∈ P (7)

In (6) we use a universal quantification over the whole output alphabet; the
extension of the above definition for sets of variables is straightforward. Also,
in (6), Q is a set of states over the joint alphabet inα∪ outα; the postcondition
ψ, however, is a set of states on outα. We use the † operator to extend the
alphabet of ψ to inα ∪ outα. Its definition is as follows; basically, the values of
the extra variables are left unconstrained.

s ∈ (P † x) = { x } −C s ∈ P (8)

Again, in (6) we apply † to a set of names inα, instead of to a single variable x .
The definition above can be extended in the obvious way.

The next theorem gives a semantics for designs in our new theory. We take
P and Q to be predicates, and use c2sb to convert then to sets of states.

Theorem 22. pt2p.(P ` Q) = P ⇒ ∃ outα • Q ∧ θoutα ∈ ac′

Proof.

pt2p.(P ` Q) [definition of pt2p]

= θinα ∈ ¬ (P ` Q).(¬ ac′) [predicate transformer semantics of designs]

= θinα ∈ ¬ (c2sb.P ∩ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα)) [property of sets]

= θinα ∈ ¬ c2sb.P ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα) [definition of sb2c]

= ¬ sb2c.(c2sb.P) ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα) [sbc2.(c2sb.P) = P]

= ¬ P ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα)

[definition of ∀ (7) and predicate calculus]

= ¬ P ∨ ∃ v • θinα ⊕ {outα 7→ v} /∈ ¬ c2sb.Q ∪ (¬ ac′ † inα) [property of sets]

= ¬ P ∨ ∃ v • θinα ⊕ {outα 7→ v} ∈ c2sb.Q ∧ θinα ⊕ {outα 7→ v} ∈ ¬ (¬ ac′ † inα)

[definition of † (8) and property of sets]

= ¬ P ∨ ∃ v • θinα ⊕ {outα 7→ v} ∈ c2sb.Q ∧ θinα ⊕ {outα 7→ v} ∈ (ac′ † inα)

[definition of † (8)]

= ¬ P ∨ ∃ v • θinα ⊕ {outα 7→ v} ∈ c2sb.Q ∧ inα −C θinα⊕ {outα 7→ v} ∈ ac′

[property of −C]

= ¬ P ∨ ∃ v • θinα ⊕ {outα 7→ v} ∈ c2sb.Q ∧ {outα 7→ v} ∈ ac′ [predicate calculus]

= ¬ P ∨ ∃ outα • θinα ⊕ θoutα ∈ c2sb.Q ∧ θoutα ∈ ac′ [definition of sb2c]

= ¬ P ∨ ∃ outα • sb2c.(c2sb.Q) ∧ θoutα ∈ ac′ [sbc2.(c2sb.P) = P]

= ¬ P ∨ ∃ outα • Q ∧ θoutα ∈ ac′ [predicate calculus]

= P ⇒ ∃ outα • Q ∧ θoutα ∈ ac′

In words, if P holds, then ac′ is any set that contains a state that satisfies Q ; the
nondeterminism in a design is demonic. We observe that Q is not a predicate
over inα ∪ ac′, but over inα ∪ outα, where outα is the alphabet of the states in
ac′.

6 Conclusions

The central objective of Hoare and He’s UTP is to formalise different program-
ming paradigms within a common semantic framework, so that they may be
directly compared and new compound programming languages and refinement
calculi may be developed. This ambitious research programme has only just been
started. An important question to ask is: what are the theoretical limits to this
investigation?

Angelic nondeterminism is a valuable concept: it plays an important rôle in
refinement calculi, and it is used as an abstraction in search-based and constraint-
oriented programming, hiding details of how particular strategies are imple-
mented. The main contribution of this paper is a predicative account of binary
multirelations that allows the unification of angelic nondeterminism into the
UTP.

We describe the UTP predicative theories of alphabetised relations and of
designs, where it is possible to observe the start and termination of a program.
Designs enable reasoning about total correctness, and a set-based model of rela-
tions brings this fact sharply into focus. We show that there is an isomorphism
between our set-based relations and universally conjunctive predicate transform-
ers. This establishes a connection with an existing result: conjunctive predicate
transformers cannot capture angelic nondeterminism.

A relational model that can capture both angelic and demonic nondeter-
minism is presented in [Rew03]. We cast that model in the UTP predicative
style, including a healthiness condition and the refinement relation. This allows
its use in an integrated framework that covers, for instance, concurrency and
higher-order programming. We are going to use this model to extend the exist-
ing semantics of Circus [WC02], our combined formalism, and prove refinement
laws.

It is unavoidable that the definition of sequence is more complicated than
that in the original UTP model. It is part of the philosophy of the UTP to
study constructs and concepts in isolation: we have provided a theory for angelic
nondeterminism which can be incorporated to the other theories as needed.
Moreover, our calculations revealed a tractable definition based on substitution.

In [BW98], Back and von Wright present another relational model isomor-
phic to predicate transformers; it is actually a functional model called choice
semantics. In that work, a program P is a function from initial states s1 to the
set of postconditions that can be satisfied when P is executed in s1. The choice
semantics is, of course, isomorphic to binary multirelations. Since in the UTP
relations are defined punctually, it was more convenient to base our work on
binary multirelations rather than on choice semantics.

The work in [MGW96] presents a functional semantics for a tactic language
which includes angelic nondeterminism. The semantics of angelic choice is a list
that contains all the options available to the angel; demonic nondeterminism
is not included. In [MCR04], the set-based model of binary relations is used
to support angelic and demonic nondeterminism in a calculus for functional

programs. They adopt two refinement relations, one of which is the same as
ours.

Both [Rew03] and [MCR04] present operations that model, for example, an-
gelic nondeterminism and sequence. Our contribution is to cast these operations
at the level of UTP predicates, where they can be integrated into more power-
ful theories of programming. Moreover, our comparatively simple definition of
sequence takes advantage of the healthiness condition of the model of binary mul-
tirelations. We also go further in that we consider logical constants, recursion,
assignments, conditionals, and designs.

Acknowledgements

The authors are grateful to Will Harwood for extensive discussions, and to Car-
roll Morgan for pointing out the work on binary multirelations. This work is
partially funded by QinetiQ and the Royal Society.

References

[BW89] R. J. R. Back and J. Wright. A Lattice-theoretical Basis for a Specification
Language. In J. L. A. van de Snepscheut, editor, Mathematics of Program

Construction: 375th Anniversary of the Groningen University, volume 375
of Lecture Notes in Computer Science, pages 139 – 156, Groningen, The
Netherlands, 1989. Springer-Verlag.

[BW90] R. J. R. Back and J. Wright. Duality in Specification Languages: A Lattice-
theoretical Approach. Acta Informatica, 27(7):583 – 625, 1990.

[BW92] R. J. R. Back and J. Wright. Combining angels, demons and miracles in
program specifications. Theoretical Computer Science, 100:365 – 383, 1992.

[BW98] R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduc-

tion. Graduate Texts in Computer Science. Springer-Verlag, 1998.
[CN02] A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data re-

finement of classes. In L. Eriksson and P. A. Lindsay, editors, FME 2002:

Formal Methods — Getting IT Right, volume 2391 of Lecture Notes in Com-

puter Science, pages 471 – 490. Springer-Verlag, 2002.
[CSW03] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement

Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.
[CW98] A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Se-

mantics for Z. The Computer Journal, 41(1):1 – 15, 1998.
[CW99] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus

for Z. Formal Aspects of Computing, 10(3):267—289, 1999.
[CW04] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic Nondeterminism and

Unifying Theories of Programming (Extended Version). Technical report,
University of Kent - Computing Laboratory, 2004.

[CW05] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic Nondeterminism and
Unifying Theories of Programming . In J. Derrick and E. Boiten, editors,
REFINE 2005, volume 137 of Eletronic Notes in Theoretical Computer Sci-

ence. Elsevier, 2005.
[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Dun01] S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the
Context of General Correctness. In A. Butterfield and C. Pahl, editors,
IWFM’01: 5th Irish Workshop in Formal Methods, BCS Electronic Work-
shops in Computing, Dublin, Ireland, July 2001.

[GM91] P. H. B. Gardiner and C. C. Morgan. Data Refinement of Predicate Trans-
formers. Theoretical Computer Science, 87:143 – 162, 1991.

[Hes92] W. H. Hesselink. Programs, Recursion and Unbounded Choice – Predicate

Transformation Semantics and Transformation Rules. Cambridge Tracts in
Theoretical Computer Science 27. Cambridge University Press, 1992.

[HH85] C. A. R. Hoare and Jifeng He. The Weakest Prespecification. Technical
Monograph TM-PRG-44, Oxford University Computing Laboratory, Oxford
– UK, 1985.

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-
Hall, 1998.

[JSS91] R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism
in concurrent constraint programming. Technical report, Xerox Park, Jan-
uary 1991.

[MCR04] C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling Nondeterminism. In
Mathematics of Program Construction, Lecture Notes in Computer Science,
pages 228 – 251, 2004.

[MG90] C. C. Morgan and P. H. B. Gardiner. Data Refinement by Calculation. Acta

Informatica, 27(6):481—503, 1990.
[MGW96] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus.

Formal Aspects of Computing, 8(4):479–489, 1996.
[Mor94] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition,

1994.
[Rew03] I. Rewitzky. Binary Multirelations. In H. Swart, E. Orlowska, G. Schmidt,

and M. Roubens, editors, Theory and Application of Relational Structures as

Knowledge Instruments, volume 2929 of Lecture Notes in Computer Science,
pages 256 – 271, 2003.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In
D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: For-

mal Specification and Development in Z and B, volume 2272 of Lecture Notes

in Computer Science, pages 184 – 203. Springer-Verlag, 2002.
[WC04] J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to

Designs in Unifying Theories of Programming. In E. A. Boiten, J. Derrick,
and G. Smith, editors, IFM 2004: Integrated Formal Methods, volume 2999
of Lecture Notes in Computer Science, pages 40 – 66. Springer-Verlag, 2004.
Invited tutorial.

