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Abstract Global climate model (GCM) forecasts are an integral part of long-range hydroclimatic
forecasting. We propose to use clustering to explore anomaly correlation, which indicates the performance of
raw GCM forecasts, in the three-dimensional space of latitude, longitude, and initialization time. Focusing
on a certain period of the year, correlations for forecasts initialized at different preceding periods form a
vector. The vectors of anomaly correlation across different GCM grid cells are clustered to reveal how GCM
forecasts perform as time progresses. Through the case study of Climate Forecast System Version 2 (CFSv2)
forecasts of summer precipitation in China, we observe that the correlation at a certain cell oscillates with
lead time and can become negative. The use of clustering reveals two meaningful patterns that characterize
the relationship between anomaly correlation and lead time. For some grid cells in Central and Southwest
China, CFSv2 forecasts exhibit positive correlations with observations and they tend to improve as time
progresses. This result suggests that CFSv2 forecasts tend to capture the summer precipitation induced by
the East Asian monsoon and the South Asian monsoon. It also indicates that CFSv2 forecasts can potentially
be applied to improving hydrological forecasts in these regions. For some other cells, the correlations are
generally close to zero at different lead times. This outcome implies that CFSv2 forecasts still have plenty of
room for further improvement. The robustness of the patterns has been tested using both hierarchical
clustering and k-means clustering and examined with the Silhouette score.

1. Introduction

Coupled ocean-atmosphere global climate models (GCMs) have been steadily improved over the past years
due to accumulations of scientific and technological advances, such as supercomputing and global data
observation/assimilation systems [Barnston et al., 2012; DelSole et al., 2014; Bauer et al., 2015; Li et al., 2015;
Infanti and Kirtman, 2016; Tian et al., 2016]. One key strength of GCMs is that they formulate the interactions
among the atmosphere-ocean-land processes and therefore take advantage of the slowly varying compo-
nents, e.g., sea surface temperature and soil moisture, to predict global climate at subseasonal, seasonal,
and even interannual time scales [Koster et al., 2010; Yuan et al., 2011; Kirtman et al., 2014]. Nowadays,
GCMs have been developed and adopted by major climate agencies around the world to provide climate
outlooks, for example, the Climate Forecast System Version 2 (CFSv2) at the U.S. National Centers for
Environmental Prediction [Saha et al., 2014] and the European Centre for Medium-Range Weather
Forecasts’s System 4 model [Molteni et al., 2011]. In the North American Multimodel Ensemble (NMME)
project, the operational predictive capabilities and the strengths/weaknesses of more than 10 GCMs have
been investigated [Kirtman et al., 2014].

GCMs provide forecast information at a long lead time, and their forecasts have a great potential to improve
environmental management [Leung and Qian, 2005; Maurer and Lettenmaier, 2004; Cloke and Pappenberger,
2009]. The applications include flood warning [e.g., Alfieri et al., 2013; Siegmund et al., 2015], drought prepara-
tion and recovery [e.g., Pan et al., 2013; Sheffield et al., 2014], and agricultural planning [e.g., Ines and Hansen,
2006]. However, raw GCM forecasts are largely unusable, though they contain an ensemble of scenarios
regarding future climate. This is because raw ensemble mean is, in general, biased; raw ensemble spread is
typically overconfident; and further raw ensemble forecasts are usually not as skillful as reference climatology
forecasts [Gneiting et al., 2005;Wilks and Hamill, 2007; Zhao et al., 2017]. As a result, postprocessing is a neces-
sary step before GCM forecasts can be readily used. Various postprocessing methods are available. They

ZHAO ET AL. CLUSTERING OF CFSV2 ANOMALY CORRELATION 1

PUBLICATIONS
Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2017JD027018

Key Points:
• Clustering analysis of the oscillated
anomaly correlation for CFSv2
forecasts of summer precipitation in
China

• Illustration of two robust patterns
regarding the relationship between
anomaly correlation and forecast lead
time

• Revelation of the grids where CFSv2
forecasts exhibit strong correlations
with observations at a long lead time

Correspondence to:
P. Liu,
liupan@whu.edu.cn

Citation:
Zhao, T., P. Liu, Y. Zhang, and C. Ruan
(2017), Relating anomaly correlation to
lead time: Clustering analysis of CFSv2
forecasts of summer precipitation in
China, J. Geophys. Res. Atmos., 122,
doi:10.1002/2017JD027018.

Received 24 APR 2017
Accepted 18 AUG 2017
Accepted article online 24 AUG 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0001-6943-258X
http://orcid.org/0000-0002-3777-6561
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1002/2017JD027018
http://dx.doi.org/10.1002/2017JD027018
mailto:liupan@whu.edu.cn


range from simple regression and ensemble dressing models [Wilks and Hamill, 2007] to more complicated
nonhomogeneous Gaussian regression [Gneiting et al., 2005; Thorarinsdottir and Gneiting, 2010] and
Bayesian joint probability models [Robertson et al., 2013; Shrestha et al., 2015; Schepen et al., 2016].

One common characteristic of postprocessing methods is that they explicitly account for “how well raw
ensemble forecasts are correlated with observations” [Gneiting et al., 2005; Wilks and Hamill, 2007; Zhao
et al., 2017]. The spatial-temporal GCM forecasts have overall five dimensions, namely, latitude, longitude,
initialization time, lead time, and ensemble members [Molteni et al., 2011; Saha et al., 2014; Kirtman et al.,
2014]. To characterize the performance of raw GCM forecasts, the simplest and most popular measure is
probably the anomaly correlation between the mean values of raw ensemble forecasts and the correspond-
ing observations [e.g., Yuan et al., 2011; Luo et al., 2013; Liu et al., 2014; Ma et al., 2016; Infanti and Kirtman,
2016; Dirmeyer and Halder, 2017]. Although to take the ensemble mean help to eliminate the fifth dimension,
the anomaly correlation still has up to four dimensions. The dimensionality complicates the analysis of GCM
forecasts. In forecast evaluation, people tend to additionally fix one or two dimensions and further simplify
the problem. For example, in analyzing the CFSv2 forecasts, Regonda et al. [2016] investigated the forecasts
at 1 month lead time considering forecasts at longer lead times would be less skillful; Lang et al. [2014] and
Ma et al. [2016] paid attention to case study river basins, instead of GCM grid cells, and evaluated the forecast
skill of spatial averaging precipitation.

This paper aims to derive the patterns that relate the anomaly correlation of GCM forecasts to lead time in the
three-dimensional space of latitude, longitude, and forecast initialization time. Focusing on a certain period
of the year and a certain grid cell, the correlations for forecasts initialized at different preceding periods form
a vector. We propose to link the vectors and pool the correlations across different cells using clustering. In this
way, the performance of GCM forecasts, as is indicated by anomaly correlation, across many cells can be illu-
strated. While clustering is a popular method in the data mining area, there are few studies using clustering to
explore the anomaly correlation for GCM forecasts. This paper provides a novel application of clustering. As
will be demonstrated through the case study of CFSv2 forecasts of summer precipitation in China, the clus-
tering analysis efficiently reveals the relationship between anomaly correlation and lead time for all the CFSv2
grid cells across China. One remarkable outcome is that it tells where the forecasts exhibit a positive correla-
tion with observations even at a long lead time and where the correlation is close to zero across different
lead times.

The remainder of the paper is organized as follows. Section 2 introduces the data sets of forecasts and obser-
vations. Section 3 describes the methods, including the clustering algorithm and the selection of clusters.
Section 4 presents the results and illustrates the spatial and temporal patterns of anomaly correlation.
Section 5 discusses the results, and section 6 concludes the paper.

2. Data

This paper investigates monthly precipitation forecasts from CFSv2, the current operational forecasting
model at the National Centers for Environmental Prediction (NCEP). CFSv2 was implemented in 2011. It is
built upon CFSv1, the operational model at the NCEP between 2004 and 2011, by a number of new packages
for atmosphere-ocean-land processes and also a new data assimilation system [Jiang et al., 2013; Saha et al.,
2014; Dirmeyer and Halder, 2017]. CFSv2 is known for its promising performance in the NMME project that
have compared multiple GCMs [Kirtman et al., 2014]. The global hindcast data of CFSv2 are downloaded from
the data library of the International Research Institute for Climate and Society (https://iridl.ldeo.columbia.edu/
SOURCES/.Models/.NMME/.NCEP-CFSv2/.HINDCAST/). The forecasts are at a spatial resolution of 1.0° × 1.0°.
They cover the period from 1982 to 2010 and are initialized in each month. It provides monthly ensemble
precipitation forecasts for the next 10 months, each ensemble containing 24 members.

The observed precipitation is obtained from the Global Precipitation Climatology Centre (GPCC, https://www.
esrl.noaa.gov/psd/data/gridded/data.gpcc.html). The GPCC data set is established on the basis of quality-
controlled observation data from more than 85,000 precipitation gauges, which are selected from between
150,000 and 250,000 stations worldwide [Schneider et al., 2014]. GPCC overcomes the data format issues and
provides integrated gridded global monthly precipitation at three spatial resolutions, which are 0.5° × 0.5°,
1.0° × 1.0°, and 2.5° × 2.5°. This study uses the 1.0° × 1.0° full V7 data. This data set lasts from 1901 to 2013
and covers the whole period of CFSv2 hindcast.
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It is necessary to note that the grid latitude and longitude of CFSv2 and GPCC data sets vary by 0.5°.
Specifically, the centers of CFSv2 grid cells are at (longitude, latitude) (longitude = 0, 1,…, 359; latitude =�90,
89,…, 89, 90), while the centers of GPCC grid cells are at (longitude, latitude) (longitude = 0.5, 1.5,…, 359.5;
latitude = �89.5, �88.5, …, 88.5, 89.5). To facilitate the cell-by-cell correlation analysis, the GPCC data set is
regridded to match the CFSv2 data set using bilinear interpolation [Alfieri et al., 2013; Jiang et al., 2013;
Tian et al., 2016]. In this paper, the analysis is concentrated on the forecasts of summer (June, July, and
August) precipitation in China. In summer, heavy precipitation caused bymonsoon leads to widespread flood
inundation [Ding and Chan, 2005]. The analysis of the performance of CFSv2 precipitation forecasts is
expected to provide some information for seasonal flood forecasting [e.g., Luo et al., 2013; Lang et al.,
2014; Ma et al., 2016]. We investigate the seasonal forecasts initialized in January, February, March, April,
May, and June. These forecasts are respectively at lead times of 5, 4, 3, 2, 1, and 0 months.

3. Methods

There are two steps in data processing and analysis. First, the cell-by-cell anomaly correlation is derived for
the CFSv2 forecasts of summer precipitation in China. The correlation vector for forecasts initialized in
January, February, March, April, May, and June depicts the performance of forecasts with lead time. Then,
the clustering is employed to group the vectors and deal with the oscillation of anomaly correlation as time
progresses from January to June. The Silhouette score is used to elicit the clusters that best characterize the
relationship between anomaly correlation and lead time.

3.1. Spearman’s Rank Correlation

The ensemble mean of GCM forecasts can exhibit nonlinear relationships with observations [e.g., Yuan et al.,
2011; Luo et al., 2013; Liu et al., 2014]. Considering this, the Spearman’s rank correlation, instead of the
Pearson’s linear correlation, is used in this study. On the other hand, it is noted that the Spearman’s correla-
tion treats the variables as ranked and is otherwise similar to the Pearson’s correlation. Let’s denote yi as the
summer precipitation at the grid cell under investigation in year k (k = 1982, 1983, …, 2010) and xm,k as the
corresponding ensemble mean of forecasts made in month m (m = 1, 2, …, 6). The Pearson’s correlation ρm
between xm and y is calculated as follows:

ρm ¼
P

k xm;k � xm
� �

yk � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k xm;k � xm
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k yk � yð Þ2
q (1)

As shown in equation (1), ρm measures how the anomaly of xm,k—the departure from its mean—is linearly
correlated with the anomaly of yk. In calculating the Spearman’s correlation rm, the formula is similar to
equation (1), but the rank of data values is used:

rm ¼
P

k rxm;k � rxm
� �

ryk � ryð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k rxm;k � rxm
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k ryk � ryð Þ2
q (2)

In equation (2), the ranks of xm,k and yk, i.e., rxm,k and ryk, are used. In this way, rm is able to capture nonlinear
relationships between xm,k and yk.

The Spearman’s correlation is calculated for forecasts initialized in themonths from January to June. These six
correlations form a vector:

R ¼ r1 r2 r3 r4 r5 r6½ � (3)

In equation (3), R tells how the correlation between raw ensemble mean and observations changes as time
progresses from January to June.

3.2. Agglomerative Hierarchical Clustering

In exploratory analysis of the anomaly correlation, we find that in most cases it does not increase as time
progresses but oscillates instead. In other words, for a certain grid cell, the forecasts can exhibit a positive
correlation with observations in May but a negative correlation in June. The noisy oscillations are attributable
to the chaotic nature of the climate system and relate to the issues of GCM setting, grid resolution, and

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027018

ZHAO ET AL. CLUSTERING OF CFSV2 ANOMALY CORRELATION 3



ensemble size [Barnston et al., 2012; DelSole et al., 2014; Saha et al., 2014]. In the field of data mining, the clus-
tering has been shown to be a robust method that filters noise and exploits useful information [Cheng and
Wallace, 1993; Xu and Wunsch, 2005; Rau et al., 2017]. In this study, we use the agglomerative hierarchical
clustering to investigate the correlation vectors across CFSv2 grid cells. For hierarchical clustering, there
are, in general, three steps [Xu and Wunsch, 2005; Zhang et al., 2015]. First, each vector is treated as an inde-
pendent cluster. Then, small clusters are gradually merged into large ones. And finally, a hierarchy of clusters
is created. At the top of the hierarchy is one single cluster comprised by all the vectors; at the bottom are the
smallest clusters, each containing one individual vectors; and the hierarchy illustrates how the clusters
are organized.

To facilitate clustering, one basic issue is the distance metric. It not only measures the similarity among the
vectors but also determines merging vectors into clusters. The popular Euclidean distance is used in this
study. That is, for cell i and cell j, the distance between Ri and Rj is calculated as follows:

d i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri � Rj
�� ��2q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6

m¼1
rm;i � rm;j
� �2r

(4)

Based on equation (4), the total within-cluster variance, which tells how similar the vectors within a cluster are
to each other, can be calculated:

var d i; jð Þð Þ i; j∈Cð Þ (5)

In equation (5), var() is the operator of the variance of pair-wise distances among all the vectors in the cluster
C. To create a hierarchy, small clusters are merged using the Ward’s method [Xu and Wunsch, 2005].
Specifically, two clusters are merged into a new cluster if the merging leads to the minimum increase in total
within-cluster variance. From the perspective of distance, it means that the vectors would be the most similar
within the new cluster.

3.3. Silhouette Score

After obtaining the hierarchy of clusters, the next task is to pick out the clusters that most efficiently represent
all the vectors. The clusters at the bottom of the hierarchy represent individual correlation vectors; they are
step by step merged until finally becoming one cluster at the top of the hierarchy. To elicit the best clusters,
we use the classical Silhouette score [Rousseeuw, 1987]:

s ið Þ ¼ b ið Þ � a ið Þ
max a ið Þ; b ið Þf g (6)

In equation (6), a(i) is the average distance of vector i in cluster C to the other vectors in C, whereas b(i) repre-
sents the shortest average distance of i to the clusters other than C. When i is very similar to the other vectors
in C and quite distinct from vectors in other clusters, we have a(i) ≪ b(i). In this case, s(i) is close to 1. On the
other hand, when i is neither similar to the other vectors in C nor distinct from vectors in other clusters, s(i)
would be close to 0 since a(i)≈ b(i). In an extreme case where i is distinct from the other vectors in C but
similar to vectors in other clusters, s(i) would approach �1 as a(i) ≫ b(i). By pooling the Silhouette score for
individual vectors, the average Silhouette score indicates whether similar vectors have been merged into
one cluster.

In the hierarchy, the number of selected clusters is gradually increased from 2 to 10 and the Silhouette scores
are recorded. The optimal number of clusters is the one that corresponds to a peak average Silhouette score;
i.e., the corresponding clusters best characterize the anomaly correlation vectors [Rousseeuw, 1987; Xu and
Wunsch, 2005; Rau et al., 2017].

4. Results

The anomaly correlation between CFSv2 forecasts and summer precipitation in China is calculated. The six
correlations, which are for forecasts initialized in January, February, March, April, May, and June, form a vector;
the vectors across different CFSv2 grid cells are grouped into clusters through hierarchical clustering. The
clusters show where CFSv2 forecasts perform well and where the forecasts are not skillful.
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4.1. Spatial and Cumulative Distributions of Anomaly Correlation

For the purpose of data exploration, the anomaly correlation for CFSv2 forecasts in May and June are illu-
strated in Figures 1 and 2, respectively. In the plots, each CFSv2 grid cell is represented by a square. The color
of the squares indicates the value of correlation: redder colors indicate higher positive correlations, while
bluer colors represent lower negative correlations. Both figures show that CFSv2 forecasts exhibit positive
correlations with observations in many cases. In the meantime, there also exist negative correlations.
Comparing Figure 1 to Figure 2, it can be observed that the spatial distributions of anomaly correlations
are different in May and June. For a certain cell, a high anomaly correlation in May, in general, does not cor-
respond to a similarly high or even higher correlation in June. The indication is that measured by anomaly
correlation, the forecast skill of summer precipitation does not steadily improve as time progresses. Or in
other words, CFSv2 forecasts at a short lead time are not necessarily more skillful than CFSv2 forecasts at a

Figure 1. Spatial distribution of anomaly correlation between CFSv2 forecasts initialized in May and GPCC precipitation.

Figure 2. As for Figure 1 but for CFSv2 forecasts initialized in June.
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long lead time. This characteristic of precipitation forecasts is quite different from that of streamflow fore-
casts, for which a shorter lead time in most cases corresponds to a higher forecast skill [Alfieri et al., 2013;
Bennett et al., 2016; Zhao et al., 2016a].

The cumulative distribution of anomaly correlation across the grid cells is presented in Figure 3. While the
cell-based analysis does not show patterns regarding the relationship between anomaly correlation and lead
time (Figures 1 and 2), the results across the cells collectively illustrate that the anomaly correlation tends to
improve as time progresses from January to June. In Figure 3, the x axis indicates the value of correlation from
negative to positive and the y axis illustrates the proportion of grid cells. The shaded region represents the
interval (�0.245, 0.245), within which the anomaly correlation is not significant. The distribution at different
months are marked by different colors. As is shown by the thick purple line, the distribution for forecasts in
June is at the top. Since anomaly correlation is a positively oriented metric, this result means that for a certain
correlation value, the proportion of cells, at which the anomaly correlation between forecasts and observa-
tions is equal to or higher than that value, is the highest in June. That is, forecasts in June are overall the most
skillful. They exhibit significant anomaly correlation with observations in nearly 30% of the cells. By contrast,
the cumulative distribution of correlation in January is at the bottom (the thick blue line). This outcome sug-
gests that forecasts in January tend to be the least skillful.

4.2. Silhouette Score-Based Hierarchical Clustering

In the previous section, the comparison between Figure 3 and Figures 1 and 2 suggests that some patterns of
the anomaly correlation can be observed by investigating the cells collectively. In this section, the hierarchical
clustering pools the correlation vectors across the cells in the analysis and explores the relationship between
anomaly correlation and lead time.

The average Silhouette score is employed to determine the number of clusters under which the clustering is
the most efficient. With the number of clusters increasing from 2 to 10, the average Silhouette score is pre-
sented in Figure 4 (left). It can be observed that this score exhibits a peak value when the number of clusters
is 2. According to its definition (equation (6)), the peak value means that when the anomaly correlation
vectors are partitioned into two clusters, anomaly correlation vectors tend to be the most similar within
one cluster and the most different from the other cluster. For the case of two clusters, we denote the clusters
as A and B. For individual anomaly correlation vectors in A and B, we rank their Silhouette scores from lowest
to highest and illustrate them in Figure 4 (right). It can be observed that the Silhouette scores for individual
vectors in the two clusters are mostly positive. There are only a few, less than 10%, anomaly correlation

Figure 3. Cumulative distribution of anomaly correlation for CFSv2 forecasts initialized in the months from January to June;
the shaded region represents the interval (�0.245, 0.245) within which the anomaly correlation is nonsignificant and with P
value larger than 20%.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027018

ZHAO ET AL. CLUSTERING OF CFSV2 ANOMALY CORRELATION 6



vectors with negative Silhouette scores. This result confirms the peak average Sihouette score at Figure 4
(left). Meanwhile, it is pointed out that the maximum Silhouette score is around 0.5 as opposed to 1.0 (the
theoretical maximum value). This is mainly because of the oscillation of anomaly correlation with lead time
(Figure 5), which makes it difficult to obtain distinct clusters to classify the correlation vectors. In this study,
in addition to the hierarchical clustering, the k-means clustering is later on applied to examine the robustness
of the results.

For clusters A and B, the corresponding anomaly vectors are illustrated in Figure 5. It can be observed that the
two clusters represent two distinct patterns. In cluster A, the anomaly correlations at different lead times are
overall positive. In addition, they tend to increase as time progresses from January to June. This result
suggests that the CFSv2 forecasts corresponding to the vectors in cluster A tend to be skillful in capturing
the observed summer precipitation and that they gradually improve as time progresses. On the other hand,

Figure 4. (left) The average Silhouette score as the number of clusters increases from 2 to 10 and (right) the ranked silhou-
ette score for individual anomaly correlation vectors when the number of clusters is 2.

Figure 5. Clustering of anomaly correlation vectors when the number of clusters is 2 (the blue and red lines indicate the
average anomaly correlation for clusters A and B, respectively).
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the anomaly correlation vectors in cluster B tend to be close to zero. This result implies that the correspond-
ing CFSv2 forecasts are not skillful and that the anomaly correlation does not seem to improve as
time progresses.

It is pointed out that the correlation vectors for individual cells are shown to be noisy in Figure 5. That is, the
correlation oscillates as time progresses, which implies that the skill of raw ensemble does not steadily
improve. In addition, there exist a considerable number of instances with negative correlations, which mean
that a high forecast ensemble mean may correspond to a low observation. Nevertheless, clustering analysis
efficiently filters the noises and reveals two meaningful patterns for the relationship between anomaly
correlation and lead time.

4.3. Clusters A and B by Hierarchical Clustering

The grid cells corresponding to the clusters A and B are illustrated in Figure 6. Overall, there are 386 cells in
cluster A: 370 cells are with positive Silhouette scores (blue squares) and 16 cells are with negative scores
(white squares). In the meantime, there are 723 cells in cluster B: 646 cells are with positive scores (red circles)
and 77 cells are with negative scores (white circles). According to the patterns of anomaly correlation in
Figure 5, CFSv2, in general, provides potentially skillful forecasts for about 35% of the cells covering China.
These forecasts even exhibit positive correlations with observations at a lead time of 5 months. The forecasts
can be further postprocessed to generate reliable and sharp forecasts for environmental management
[Gneiting et al., 2005;Wilks and Hamill, 2007; Zhao et al., 2017]. For the remainder 65% of the cells, the correla-
tion is overall close to zero at different lead times, although the correlation can be positive at certain cells and
lead times. In these cases, postprocessing would be of limited use since raw CFSv2 forecasts are not informa-
tive, i.e., poorly correlated with observations.

The spatial map of CFSv2 grid cells helps to identify for which parts of China CFSv2 forecasts tend to be
skillful. From Figure 6, it is observed that a considerable number of cells in cluster A are in Central China, in
particular the Yellow River basin. This river is known for its water scarcity problem. While its catchment area
is as large as 752,546 km2, its flow has partially ceased in 19 years between 1972 and 1996 mainly due to a dry
climate and a huge agricultural/industrial water use. The blue cells in Figure 6 suggest that the CFSv2 fore-
casts can provide useful information regarding summer precipitation for the Yellow River, which can be

Figure 6. CFSv2 cells in cluster A, where the anomaly correlation tends to be positive at different lead times, and cluster B,
where anomaly correlation is generally neutral at different lead times (the “plus” and “minus” signs represent positive and
negative Silhouette scores, respectively).
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useful for long-range water resources scheduling. In the meantime, it is noted that the cells in cluster A also
cover part of Southwest China. In this region are the catchments of the Brahmaputra River (the upstream of
Ganges River) and the Lancang River (the upstream of the Mekong River). This suggests that CFSv2 forecasts
can also be helpful for international water management.

4.4. Clusters B1, B2, and B3 by Hierarchical Clustering

One feature of hierarchical clustering is that it illustrates how a cluster at a higher hierarchy is composed of
clusters at a lower level [Xu andWunsch, 2005]. By setting the number of clusters as 4, the anomaly correlation
vectors are partitioned into four clusters—A, B1, B2, and B3. The clusters B1, B2, and B3 comprise the cluster B
in Figures 5. For B1, B2, and B3, the anomaly correlation vectors are illustrated in Figure 7 and the mean of the
vectors are highlighted. It can be observed that in cluster B1, the anomaly correlations are close to zero or
negative in January, February, and March, but they tend to improve from April to June and turn to be positive
in June. For clusters B2 and B3, the anomaly correlations are overall close to zero or negative, even in June.

The spatial distribution of grid cells in clusters B1, B2, and B3 are further illustrated in Figure 8. Cells marked by
B1+, B2+, and B3+ are with positive Silhouette scores, while these by B123� are with negative Silhouette
scores. It is observed that more than half of the cells for cluster B1+ (blue circles) with positive Silhouette
scores are in Northeast China. This pattern can be confirmed from the spatial distribution of anomaly correla-
tion in Figures 1 and 2: some cells in Northeast China tend to exhibit a positive correlation in June, but the
correlation is low in May (and also in other months). Again, it is illustrated that a high correlation at one lead
time does not necessarily correspond to a high correlation at other lead times. For cells marked by B1+, skillful
forecasts of summer precipitation can only be achieved at a short lead time, i.e., in June. For cells in B2+ and
B3+, they spread in South, East, and North China. The anomaly correlations in these two clusters cannot be
deemed satisfactory across different lead times, which implies that CFSv2 forecasts still have plenty of room
for further improvement.

Further, it is pointed out that there are more instances of negative Silhouette scores in Figure 8 compared to
Figure 6. The indication is that the anomaly correlation vectors are not quite distinct across the clusters B1, B2,
and B3. The similarity leads to low and even negative Silhouette scores. It also supports Figure 4 in that with
two clusters, the patterns of anomaly correlation are the most evident.

4.5. Analysis by k-Means Clustering

There is also a popular k-means clustering algorithm [Xu and Wunsch, 2005]. Compared to hierarchical clus-
tering that derives a hierarchy of clusters, k-mean is more straightforward. It directly classifies the anomaly

Figure 7. Anomaly correlation vectors in clusters B1, B2, and B3 (the blue, yellow, and red lines indicate the mean of the
vectors in clusters B1, B2, and B3, respectively).
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correlation vectors into k clusters (k is a predefined number). The application of k-means clustering yields
similar results to that of hierarchical clustering. The optimal number of clusters is 2. That is, k = 2 corresponds
to the peak average Silhouette score as the value of k increases from 2 to 10. The anomaly correlation vectors
in the two clusters are shown in Figure 9. It can be observed that one cluster contains anomaly correlation
vectors that tend to be positive across different lead times and the other cluster includes vectors that are
close to zero. The patterns are similar to those in Figure 5. Further, the cells in the two clusters are illustrated
in Figure 10. It can be seen that the cells, which exhibit consistently high anomaly correlation and are with
positive Silhouette scores, are situated mostly in Central and Southwest China. Therefore, the patterns of

Figure 9. k-means clustering of the anomaly correlation vectors when the number of clusters is set as 2 (k = 2).

Figure 8. CFSv2 cells with positive Silhouette scores (marked by plus sign) in clusters B1, B2, and B3; the cells with negative
Silhouette scores are pooled and marked as B123� for the sake of simplicity.
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anomaly correlation are not only illustrated by the hierarchical clustering. The similar outputs by the two
clustering methods suggest that the patterns are robust and that the clustering is efficient in exploring
the patterns.

5. Discussion

The clustering analysis reveals useful patterns from the anomaly correlation of CFSv2 forecasts. We note that
the summer precipitation in China is largely dominated by the Asia-Pacific monsoon, which is generally due
to the land-sea thermal contrast between the Asian continent and the adjacent Pacific and Indian Oceans
[Ding and Chan, 2005; Zhou and Zou, 2010]. Specifically, it is subject to the East Asian Monsoon (EAM) and
the South Asian Monsoon (SAM). The EAM is a subtropical monsoon featured by the low-level winds rever-
sing from winter northerlies to summer southerlies; by contrast, the SAM is a tropical monsoon characterized
by the low-level easterlies in winter and westerlies in summer [Ding and Chan, 2005]. The patterns illustrated
by clustering reflect the capacity of CFSv2 in predicting the monsoon climate in China.

The EAM has a prevailing effect on precipitation in Central, South, East, and North China [Ding et al., 2009;
Qian et al., 2009; Zhao et al., 2016b]. The grid cells in Cluster A cover part of Central China. This result implies
that CFSv2 tends to capture the effect of EAM in this region. On the other hand, the cells in Cluster B cover
large parts of South, East, and North China, which means the performance of CFSv2 is not satisfactory. We
note that in these regions, the effect of EAM is subject to other climate processes. In South China, there
are interactions between EAM and SAM [Ding and Chan, 2005]; in East China, EAM is additionally affected
by the zonal thermal contrast between East Asian and the North Pacific Ocean [Qi et al., 2008]; and in
North China, EAM is impacted by the midlatitude westerly wind belt in the northern hemisphere [Qian
et al., 2009; Zhao et al., 2016b]. In these regions, one cause of the unsatisfactory CFSv2 forecasts can relate
to the setting of GCM. For example, Gao et al. [2008] observed that GCM with a low resolution leads to the
displacement of monsoon front in China and that the displacement can be mitigated by regional climate
models at a high resolution; Chen et al. [2010] found that cumulus convection affects large-scale circulation
and that modifications of the convection scheme improve the simulation of EAM. Another cause is about the
predictability. In an investigation of EAM, Zhou and Zou [2010] identified that the meridional thermal contrast
between East Asia and the tropical western Pacific is reasonably predictable, but the zonal thermal contrast
across the East Asian continent and the North Pacific is largely unpredictable. In the future, more efforts are in

Figure 10. CFSv2 cells in clusters A and B by k-means clustering (the plus and minus signs represent positive and negative
Silhouette scores, respectively).
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demand to associate the output by clustering with the physical influencing factors and to yield
understandings of the EAM.

The SAM mainly determines the precipitation in the Indian subcontinent, but it can extend to the southern
part of China [Ding et al., 2009; Qian et al., 2009; Zhou and Zou, 2010]. The cells in Cluster A cover part of
Southwest China (Figures 6 and 10). This result suggests that CFSv2 tends to capture the effect of SAM in this
region. In this meantime, it implies that CFSv2may to some extent capture the effect of SAM in South Asia. On
the other hand, it is noted that the onset of SAM is, in general, earlier than the onset of EAM and that SAM
usually starts in May [Ding and Chan, 2005]. For future studies, it is worthwhile to investigate the performance
of CFSv2 in predicting the SAM-induced precipitation.

6. Conclusions

This paper has investigated the performance of raw CFSv2 forecasts, as measured by anomaly correlation
between raw ensemble mean and observations, in predicting summer precipitation in China. By forming
the correlations for forecasts initialized in different months as a vector, we use clustering and reveal two
meaningful patterns. For CFSv2 forecasts, they exhibit high correlations with summer precipitation in
Central China and Southwest China; the corresponding anomaly correlations tend to be positive even in
January. Meanwhile, the forecasts do not show positive anomaly correlations at different lead times in South,
East, and North China.

For GCM forecasts, it is well known that the forecast skill exhibits spatial and temporal variations. In this paper,
we highlight that the clustering represents an efficient approach to exploring how the forecast skill varies
spatially and temporally. There are two prominent advantages for the clustering analysis. First, it can be
implemented conveniently, and second, the investigation can be scaled up easily. In future studies, the
analysis can be extended to forecasts from GCMs other than CFSv2. To know the comparative performance
of multiple GCM forecasts can lead to more efficient combined use of GCM outputs for subseasonal to
seasonal hydroclimatic forecasting.
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