
sensors

Article

Incremental Construction for Scalable
Component-Based Systems

Tauseef Rana 1,* and Abdullah Baz 2

1 Department of Computer Software Engineering, MCS, National University of Sciences and Technology,
Islamabad 44000, Pakistan

2 Department of Computer Engineering, College of Computer and Information Systems,
Umm Al-Qura University, Makkah P.O.Box 715, Saudi Arabia; aobaz01@uqu.edu.sa

* Correspondence: tauseefrana@mcs.edu.pk

Received: 7 February 2020; Accepted: 4 March 2020; Published: 6 March 2020
����������
�������

Abstract: The availability of smart and intelligent sensors has changed the monitoring, control and
maintenance of a conventional and advanced cyber-physical system used in public or private sectors
of a society. For example, internet of things (IoT)-based health, agricultural and weather management
systems. With the emergence of such sensors, along with the new ways to communicate or coordinate
with them, we need to analyze and optimize the system construction processes. In this paper,
to address the issue of scalability for bigger and complex systems based on sensors, we redefine
an incremental construction process with an emphasis on behavior preservation and study the
effectiveness of the use of software component models from the component-based development
domain. In this paper, to deal with the issue of scalability, we investigate component-based
development approaches with respect to our defined process and propose a taxonomy of component
models with respect to component/system behavior. Moreover, based on the outcome of our analysis,
we recommend the EX-MAN component model as the most suitable approach. We investigate
incremental construction in the context of the three main categories of current component models,
namely models where components are: (i) objects, (ii) architectural units and (iii) encapsulated
components. Furthermore, to evaluate our defined process and selection of EX-MAN, we designed
three examples of systems using our proposed process in EX-MAN component model.

Keywords: incremental construction; EX-MAN; ADLs; web-services; composition; component model;
exogenous connector

1. Introduction

Technological advancements have made many dreamed autonomous and intelligent systems
possible these days. The role of smart sensors [1] for the construction of a cyber-physical system (CPS)
is vital. Based on the internet of things (IoT) [2,3], many companies offer services to quickly make
such systems. Some of these systems are critical systems [4,5]. Keeping in view the aforementioned,
we have entered in the era where bigger and complex systems are created from existing heterogeneous
subsystems. In this context, for the CPS domain, the open issues may include scalability, heterogeneity,
distribution, real-time optimization, self-adaptability and etc. The scope of this paper is to work on the
scalability issue as the construction of bigger and complex systems in a shorter time is more needed
than ever.

In general, there are two kinds of software based systems: systems with changeable requirements
and systems with relatively fixed requirements. The system specifications driven by external factors
(e.g., government policies) are best built by following agile methods [6]. However, a CPS is more stable
for its specifications and such a system can be best built by a more bureaucratic process models (e.g.,

Sensors 2020, 20, 1435; doi:10.3390/s20051435 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9292-7705
https://orcid.org/0000-0002-8669-6883
http://www.mdpi.com/1424-8220/20/5/1435?type=check_update&version=1
http://dx.doi.org/10.3390/s20051435
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 1435 2 of 28

waterfall model [7]). In constructing a CPS, coping with the scale and ever-increasing complexity in
manageable incremental and iterative steps is highly desired.

The concept of an incremental and iterative process to construct systems is very old [8,9].
In practice, many system development/construction processes deal with incompleteness or imprecision
in system requirements. For example, in an incremental step, an existing system behavior may be
changed or deleted in the agile and evolutionary software development methods [6,10]. Hence,
the natural benefit of such a construction process is its ability to incorporate the change in the system
requirement; however, an incremental step does not mean adding new functionality.

Incremental system construction aims to build systems iteratively by adding increments in
a stepwise manner, starting from a small initial system. Such an approach holds the promise of
managing scale and complexity, and should therefore be useful for building large systems. In the
context of software development, many approaches based on refinement have been proposed for
incremental system construction. In general, these approaches are top-down and not bottom-up.
The view taken in this paper is that incremental construction is intrinsically bottom-up and would
therefore be easier to achieve by means of component-based development (CBD), which is also
intrinsically bottom-up.

In this paper, based on the behavior containment and preservation, we define our notion of
incremental construction by which we focus only on growing the system in increments, i.e., incremental
construction. In our view, an iterative software construction approach is incremental if the functionality
of the system under construction is incremented in each successive iteration. This means that in the
construction process functionalities are only added, and not altered or deleted. Such an approach is
applicable to construct systems with fixed requirements or specifications.

This paper contributes a redefinition of the notion of incremental construction with an emphasis
on the behavior containment. Next, in the context of incremental construction, we contribute a study
of current component models to investigate how incremental construction can be achieved in the three
main categories of current component models, namely models where components are: (i) objects,
(ii) architectural units, and (iii) encapsulated components. This study has not been presented in the
literature before. By studying and comparing the strengths and weaknesses of component models from
the three categories, we propose a taxonomy of component models with respect to component/system
behavior and select the EX-MAN component model (EX-MAN) [11,12] for its comparative suitability for
incremental construction. For the evaluation of our scalable approach, using EX-MAN, we constructed
and tested many systems. In this paper, we discuss three such system construction.

The rest of the paper is organized into six sections. Section 2 presents the salient approaches known
for incremental and iterative development; moreover, the CBD domain is introduced here. In Section 3,
we introduce CBD by different kinds of components and compositions; the contribution here is
a taxonomy of composition mechanisms in CBD. Moreover, we redefine the notion of incremental
construction based on behavior containment for CBD in this section. Furthermore, this section outlines
the methodology of our study in this paper. Next, in Section 4, we analyze achieving incremental
construction in the three categories of component models. Furthermore, this section contributes
a taxonomy of component models with respect to component/system behavior. Using the best
component model EX-MAN, we present the few system designs in Section 5. Section 6 includes
discussion and Section 7 presents the conclusion and set directions for future work.

2. Related Work

Developing a program/software in steps by following an incremental and iterative process is
an old and fundamental approach [8,13,14]. Primarily, software development/construction approaches
are either a top-down approach or a bottom-up approach. In top-down program development
approaches, a top level abstract program with intended functional interface (and no code) is created as
an initial step. As a consequence, these approaches do not scale up in general. In our view, CBD can
help to improve the situation. In CBD, system construction is bottom-up. In contrast to the top-down

Sensors 2020, 20, 1435 3 of 28

construction approaches, in bottom-up approaches, program units are composed to yield a larger
program unit. For system construction in a bottom-up (or synthesis) approach, software composition
plays a key role.

In a published article in year 2003, Larman and Basili highlight the concept of incremental
and iterative development (IID) process to construct systems in the historical perspective [9].
These approaches allow software construction in steps; in a step, the under construction system
gets new features or existing features may be altered or deleted. Our proposed approach is for CBD;
hence, in this context, incremental approaches and CBD are our closely related work areas.

In CBD, in a system, interactions between the components is an important element that can
help in finding the ways of composing components together [15]. For CPS construction, CBD-based
development, by using and reusing secure components [16,17], is in need of the latest development
methodologies. These systems may be comprised of many soft and hard components distributed in
different locations [18]. In the aforesaid context, the importance of interfaces of components becomes
very important.

Reuse of existing work in software engineering is highly demanded to reduce the development
cost and to gain high quality software [19]. In CBD [20,21], basic and composite components are
developed for reuse and composite components and systems are created by reuse [22]. A generic
component in CBD (Figure 1a) can be represented by a component diagram from UML. Components
in CBD can be divided into three groups (objects, architectural units and encapsulated components)
based on the interfaces of components [15].

An object (Figure 1b) has public methods (correspond to the provided services of the generic
component) and external method calls (corresponding to the required services of the generic
component) in the computation code of public methods. Components in ADLs are referred to as
architectural units (AUs) (Figure 1c). An AU has in-ports and out-ports; ports are interaction points (or
channels) for communication (by passing data/control) with the AU. The encapsulated component
category (Figure 1d) includes EX-MAN components and web services; these components do not have
the required interface. EX-MAN is an extended version of the X-MAN component model [23].

(d) An encapsulated
component

out-portin-port

unit
(c) An architectural

method
public

call
method

(b) An object

service
providedrequired

service

component
(a) A generic

Figure 1. Components in current component models.

In CBD, a component model defines a unit of programs, called component and composition
mechanisms, to create bigger composite components from smaller components. The behavior and
structure of this bigger unit is defined by the composing mechanism. A bigger system can be created
by the composition mechanism if the mechanism is algebraic [24]; in other words, the composition
of two or more components is another component of the same type to be composed further for
system construction. In [15], these composition mechanisms are of four kinds (as shown in Figure 2):
(i) containment, (ii) extension, (iii) connection and (iv) coordination.

Sensors 2020, 20, 1435 4 of 28

...
...

U3

channel
communication

U1 U2

Coordinator
U2U1

delegation

connectorplug

(ii) By indirect message passing

U2U1

(i) By direct message passing

(d) Coordination(c) Connection(a) Containment (b) Extension

U1

U2

extension

U1 U2

U3

Figure 2. Four general categories of composition mechanisms.

In containment, to define a component, at least two components are put together for the composite.
In extension, a composite is defined by extending the behavior from two existing components.
A connection mechanism defines the interactions between two components; a connection can be either
to pass messages directly or indirectly. In coordination, to create a composite of two components, a third
coordinator program unit defines the coordination of control/data between the composed components.

3. Component-Based Incremental Construction Process

Components in many component models are objects developed in an object-oriented
programming language. For example, using Java, an EJB component can be created by using object
aggregation/composition or inheritance mechanisms for objects. A COM component model supports
a containment composition mechanism [25]. In the object-oriented development (OOD) paradigm,
a class can be composed with aspects [26], mixins [27] and traits [28]. Hence, to complete our study
of achieving incremental construction independent of any specific object-based component model,
OOD itself is considered as a component model. Such a consideration is in compliance with the
reference framework for the survey of component models defined in [29]. Using the four general
categories of composition mechanisms, our proposed taxonomy (extracted from a survey on software
composition mechanisms [15]) of software composition mechanisms in CBD is shown in Figure 3.

Coordination

Orchestration
(Control coordination)

Exogenous composition
(Control coordination)

Connection

Invasive composition

Port connection

Trait-class composition

Object delegation

Extension

Invasive composition

Weaving

Trait-class composition

Mixin-class inheritance

Multiple inheritance

Containment

Object aggregation
Object composition

Class nesting

Composition Mechanism

Aspect/class

Trait/class

Mixin/class

Class

Web service

Architectural unit

Fragment box

X-MAN component

Unit
of

Composition

Figure 3. A taxonomy of software composition mechanisms.

We conclude that the composition mechanisms from containment and extension categories, by and
large, are used to define larger basic program units from the smaller program units. In contrast,
composition mechanisms from connection (except trait–class composition) and coordination
categories define interactions among the composed program units in the resultant composite unit;
these mechanisms are useful to construct systems [30].

In CBD, a system is a pair 〈Comp, Comm〉 of computation (components) and communication
(connections or coordinators). Starting from S0 (a component or a composite of components and
connectors), incremental construction is a process (Figure 4a) to construct systems by adding increments

Sensors 2020, 20, 1435 5 of 28

(a component/connector/composite) to an incomplete system. The behavior of a system is based on
both the computation and communication. It is a set of services exhibited by the system; a service’s
role is the execution of computation from one or more components and possible interactions between
the components. An incremental step (Figure 4b), relates the two consecutive systems as BSi ⊆ BSi+1 .
In this relation, BSi and BSi+1 represent the behaviors of systems Si and Si+1 respectively; the symbol
‘⊆’ represents the behavior containment, i.e., the functionality of the new system (Si+1) contains the
functionality of the old system (Si). However, the exact structure of an increment and the precise
nature of the behavior of the increment is different for different categories of component models.

(a)

S1

0S

nS

i
S

i
BS

i+1SBSB
i

U

(b)

Construction
Incremental

S
i S

i+1

i
inc

where:

={Services exhibited by }

Figure 4. Incremental construction process.

The concept of behavior containment is based on the functionality of components and system.
Adding further details, the system pair (〈Comp, Comm〉) can be represented as a tuple 〈Comp, C, D〉
of computation (Comp), control (C) and data (D). An execution of a system’s service may invoke
computations from more than one component. Hence, for a service’s execution request, a system’s
functionality is the result of executing its computations (according to its control flow) on its data.
As with the system, the functionality of a component can be defined as a set of (provided) services
exhibited by the component, e.g., component C in Figure 5a. The control flow in the computation of
a service of a component defines interactions (tuple of 〈Req, Res〉 sending/receiving messages) on the
component’s ports; this knowledge of interactions through ports is required to use the component in
a system. Hence, the component’s functionality is a set of message sequences (Figure 5a). Interaction
protocols in Wright [31], behavior protocol in SOFA2 [32], gate (port) protocols in TrustMe [33] and
RDSEFFs (resource demanding service effect specification) in Palladio [34] component models use the
concept of interactions on component ports.

SB
2S,S 1 }={ , S 5

={ }1S , S 2

S 32S

(c)(b)(a)

S 1

Response message
Request message

where:

A

BA={set of provided services}

m
S

S
m ,

C

CB

BC

4S
S j aS

S n iS

= a sequence of port messages.

D

A

5S

S 4

S 2

1S

3S

Figure 5. (a) Component definition, (b) Component behaviour, and (c) System behavior.

In Figure 5b, we consider component A with two provided services S1 and S2 (with specific
message sequences) and two required services (S3 and S4). As shown, service S1 has dependency
upon two external services S3 and S4 whereas service S2 is independent of any external dependency.
In a system, assuming that a provided port can be connected to more than one required port and
a required port can be connected to one provided port, all provided and unconnected required
component ports are ports of the system. A system by composing components A (initial system) and

Sensors 2020, 20, 1435 6 of 28

D (an increment with one provided service S5) is shown in Figure 5c. The system’s functionality is
a set of three provided services (S1, S2 and S5); services on system ports (shown as B′S) or on system’s
components’ ports (shown as BS). The incremented system contains the behavior of the current system
in two ways: (i) original services (e.g., S2 of A) of the current system are exhibited by the new system
and (ii) the incremented system offers new services (e.g., S1 in Figure 5c) by combining services of
the current system (e.g., S1 of A) and of the increment (e.g., S5 of D). The containment relationship
between the two behaviors is expressed as ‘BA ⊆ BS’. In incremental construction, one advantage
of this containment is that test cases of a current system Si can be useful for testing the incremented
system Si+1.

Out of many demanded features required for the construction of CPS, in this paper, we focus on
achieving the feature of scalability by using our defined incremental construction approach. In this era
of technology, an IoT-based CPS is constructed from a big set of requirements in steps. In a system
construction method, with a support of reuseability in the construction step, smaller units are composed
or constructed to make bigger units. The outcome of each such step should be a defined type for further
reuse without losing the existing features of the composed units. In other terms, the composition
is algebraic; this means the system construction can be achieved recursively. The incremental way
of constructing systems would help us to construct systems of systems. IoT-based systems and
cloud-based systems are two such examples of bigger systems constructed by composing existing
conventional physical systems in order to work together. Keeping in view the complexity of these
bigger systems, after each incremental step the outcome can be tested by using certain test cases. As no
functionality is removed, test cases of previous partial systems can also be executed on the later partial
and final systems; hence, the one direct benefit of our incremental construction process is the ability to
automate the automatic testing of the intermediate as well as the final system. This feature of automatic
testing is out of scope of this paper.

In truly CBD-based approaches, system construction is a bottom-up process, i.e., starting system
construction from pre-built system-independent components [35,36]. For this study, we assume
all components with functionality are available for system construction. In the rest of the paper,
the behavior containment of the current system in the incremented system is investigated at the
service level which can also be investigated at the messages level if necessary. In order to study the
construction process in the three categories of component models, we consider a simple calculator
example that evaluates a mathematical expression (c = a2 + b3; where a, b and c are numeric variables).
For the example in the study, we assume that each computational function is a provided service of
a component (which may be calling other services in its code).

4. Incremental Construction in CBD

In this section, we investigate the current software component models with respect to the
composition mechanisms defined in these models. The purpose of this investigation is to identify the
most suitable component model for the construction of large scale systems incrementally. As mentioned
in the previous section, current component models are of three kinds. Hence, we investigate these
three kinds of models, and then based on a comparative analysis, identify EX-MAN as the suitable
candidate for incremental construction.

4.1. Object-Based Component Models

In this section, we go through the composition mechanisms for objects (from Figure 3) to explore
the possibility of using them to increment the behavior of a system. In this section, we also analyze the
possibility of incrementing a system by adding code.

Objects/classes are composed by containment (class nesting, object composition and object
aggregation), by extension (inheritance) and by connection (object delegation) mechanisms. For classes,
containment and extension composition mechanisms construct a single class. In contrast, in OOD
and CBD paradigms, a system is a composition of two or more objects connected by object delegation

Sensors 2020, 20, 1435 7 of 28

(message passing mechanism). The functionality of a single object (the sys class) is the execution result
of the object’s main method, as shown in Figure 6a. The system’s behavior is to instantiate an object
and to execute its run method.

(b)(a)

 ...
 public void m1(){

 }
 public void run(){
 m1();
 }
 public static void main(String args[]){

 u.run();
 }
}

public class sys{

 sys u=new sys();

sys

C1

C2...
...

Figure 6. (a) Class nesting, object composition and object aggregation, (b) block diagram.

For class nesting (from Figure 3), Java allows the code of inner classes (which are instantiated and
used as normal objects) to be part of a class, as shown in Figure 6b. In order to achieve an increment in
the system’s functionality by the composed inner classes, code must be added to instantiate the objects
of the inner classes as data members of sys and then their methods must be called within the behavior
of sys.

Similarly, sys can be incremented by multiple inheritance without overriding (Figure 7a) by
the public members of the two parent classes C1 and C2. In invasive software composition [37],
‘single inheritance’ is also a composition mechanism because this composes two independently
developed fragment boxes (class boxes corresponding to classes in OOD), as shown in Figure 7b,c.
The inherited class is a pair of inherited part and incremented part [38]. Composition in Figure 7b is
incremental if C1 does not override any method of sys. As an alternate, composition in Figure 7c is
incremental for not destroying (or overriding) the system’s behavior. However, the system functionality
is not incremented by class inheritance alone; the extended member methods must be called from
inside the system’s functionality.

(b) (c)(a)

sys

C1 C2

sys

C1 sys

C1

class inheritance

Figure 7. (a) Multiple inheritance, (b) Single inheritance, and (c) Single inheritance.

Object delegation is a composition mechanism which composes two objects by one calling
a method of another object. In Figure 8, we increment the functionality of the system by adding
a method call (shown in bold) to object C1 inside the functionality of the system. To increment
a system’s functionality, object delegation is an example of incremental construction if the method call
is added in the behavior of the system.

Sensors 2020, 20, 1435 8 of 28

 C1.m2();

(b)(a)

 ...
 public void m1(){

 }
 public void run(){
 m1();
 }
 public static void main(String args[]){

 u.run();
 }
}

public class sys{

 sys u=new sys();
C1sys

delegation

Figure 8. Object delegation in: (a) Code and (b) Block diagram.

In aspects [26] (crosscutting concern), advices represent behavior that can be added at various join
points. In Figure 9, we show how an aspect after weaving increments the behavior of sys. The aspect
adds the effects of object delegations to object C1 in the method m1 of sys. To increment a system’s
functionality, aspect weaving is an example of incremental construction if an aspect is weaved in the
behavior of the system.

C1.m3();}

C1.m2();}

execution(public * *.m1());

public aspect trace{

after() returning : log(){ //after advice
}

before() : log(){ //before advice

pointcut log():

 sys u=new sys();

public class sys{

}
 }
 u.run();

 public static void main(String args[]){
 }

 public void run(){
 }

 public void m1(){

(a) (b)

 m1();

 //effect of C1.m2() is added here
 ...
 //effect of C1.m3() is added here

Figure 9. Aspect weaving: (a) Class, and (b) Aspect.

In mixin-class inheritance (from Figure 3) a mixin (an abstract subclass [27]) is composed with
a class to increment the class. As with class inheritance, mixin-class inheritance without overriding adds
functionality to the class but not to the system. Mixin-class inheritance with overriding overrides the
functionality of the system; this mechanism is not behavior preserving and therefore not incremental.

Trait is a unit of reuse [28] which provides a set of services (shown with lollipop symbol and
undertakes some useful computation) and may also require a set of services (shown with arrow
symbol). In Figure 10, we show a composition of a TDisplay trait with sys. Composing a system class
with traits by trait–class composition does not increment the functionality of the system. To increment
the system’s functionality, the print method (newly added functionality to sys) must be called within
the functionality of the system (e.g., the main method of sys).

TDisplay

print getx

run
m1

sys
x
getx

Figure 10. Trait-class composition.

We now show an increment based on code for a repetition construct, as shown in Figure 11. In the
example shown, a repetition construct (for-loop) is added in the system behavior. In this increment,
the functionality of the system is incremented by adding a loop to repeat calling a local method.
Similarly, an increment to represent a select construct can be added to the system functionality to
execute some behavior subject to the selection criteria.

Sensors 2020, 20, 1435 9 of 28

Si
 m1();

 ...

 ...

 ...

 ...

for(int i=0;i<=10;i++)
 m1();

inc

for(int i=0;i<=10;i++)

Si+1

+

Figure 11. Increment by adding repetition construct.

For the expression calculator example, we start with one component calObj (S0) which has
one method m3 with minimum functionality (to add two numbers). In the next step, using aspect
weaving, inc0 sObj is added to the system by object delegation, as shown in Figure 12b. This increment
adds a method call in calObj for a method of sObj. In the next step, we increment the system by
inheritance (sObj has a new method from cObj) and add a local method call (again by aspect weaving)
in calObj, as shown in Figure 12c. In both increments, the incremented system’s behavior contains the
functionality of the system.

...m2(...)

...m1(...)
...m1(...)

sObj

cObj

calObj

i+1SBBSi

U
S

21
S

S
0

(c)(b)(a)

sObj
calObjcalObj

int m3(int,int)
int m1(int)

int m3(int,int)

int m1(int)

int m2(int)

int m2(int)

int m3(int,int)

Figure 12. A system to evaluate a mathematical expression: (a) S0, (b) S1 and (c) S2.

Another way of construction is to create a new coordination class S and construct the system by
programming. In the system class S, first a call to method m1 of sObj is made to get the squared value
of a number. Next, a method call to m2 of cObj is made to get the cubed value of a number. Lastly,
a method call to method m3 of calObj is made to get the addition of the squared and the cubed values.
The system class S is coordinating with the three components.

4.2. Architecture Description Languages

In CBD, many component models are categorized as ADLs [29]. Composition in the mainstream
ADLs do not change the internal computation code. Conversely, the invasive software composition
(ISC) [37] changes the code of the composed components. For mainstream ADLs, components can
have data, procedure (service) and/or event ports. A port connection can be of three types [39]
a pipe (one-way data communication), a procedure-call (two-way message communication) and/or
an event-broadcast (one-way message communication). The composition of AUs with three types
of connectors creates three composition/architectural styles [40,41] (referred to as interaction styles
in [42]): (i) pipe-and-filter style, (ii) client–server style and (iii) publish–subscribe style. A composition
style with all three types of AUs and connectors is a hybrid style.

Component models support different architectural styles in different ways; for example, filter
components in [43] have data (stream) ports and filter components in ProSave component model [44]
have control ports. In this section, in order to avoid dissimilar features amongst component models
with the same architectural style, we define three basic component models and analyze their support
for incremental construction. The composition mechanism in these three component models is port
connection and unconnected ports of the composed components are ports of the composite.

Sensors 2020, 20, 1435 10 of 28

4.2.1. The Basic Pipe-And-Filter Component Model

In CBD, for pipe-and-filter architectural style [41], a filter is an independent component with
one or more input/output data ports; filter components read data from input ports, transform data
and write data to the output ports. A pipe transfers data from the sender to the receiver ports.
Pipe-and-filter architecture is formally defined in [43] and the ProSave component model (in the
ProCom component model [45]) is based on a pipe-and-filter paradigm [44].

In the basic pipe-and-filter component model (basic-pnf), a component is an AU with many
in-/out-ports (Figure 13a). A component with at least one in-port/out-port is an eligible filter
component in basic-pnf. Ports in filter components are channels for data communication. A data type
is associated with each port that represents the type of data allowed to be communicated through
the port. The behavior of a filter component is a set of functions and a function is a relation between
a non-empty sub-set of in-ports and one out-port (Figure 13b shows the functionality of a specific
component K). In order to keep the model simple, we assume that an in-port is related to one out-port.
The functionality of a component can also be represented as a set of out-ports; where an out-port is
simply a function of in-ports, as shown in Figure 13c for K. Figure 13c shows the execution semantics
of a function of a component. In run-time, as soon as the data is available on in-ports, the related
function is evaluated in three steps: (i) read in-ports atomically, (ii) compute the computation and
(iii) write data on an out-port. Ports are read-destruct, which means that the data on ports will be
destroyed once read.

M
B

={f2,f5,f4}BAC

CB ={f3,f4}

BA={f1,f2}

AB ACB

U

f
1

f
k

m
f

o
k

(c)

(b)(a)

m
oi

n

Out-ports

2
o

o
1

i
2

1
i

In-ports

atomic
read write

atomic
compute

f

(d)

in

1i 1f in()

1i i2(,)fm

AC

f5(a)

={ ,..., }
m

ff
1

1
f f

m
={ ,..., }

B
K

K

M

ni

i1 1
o

o
m

f3(e)
g

e
f1(a)

f2(b)

c

dA

b

a
C

h

i
f4(g)

Figure 13. (a) A filter component, (b) Port relations, (c) Execution semantics, and (d) a composite.

In a basic-pnf, filter components are composed by port connections (referred to as a pipe to
transfer between ports) between two non-similar (one in-port and one out-port) ports by matching
the associated data types. The port of a filter component can be connected to one pipe. Composing
two or more filters with pipes produces a composite filter (Figure 13d). All unconnected ports are the
ports of the composite. In Figure 13d, initial system S0 (component A) is incremented by connecting
inc0 (component C) through a pipe to create system S1 (the composite AC). Function f5 (a compound
function f1 of S0 and f3 of inc0) of AC relates the composite’s out-port ‘h’ with the composite’s in-port
‘a’. Corresponding with the definition of incremental construction from Section 3, f5 contains f1; hence,
the relation of behavior containment between the two systems holds (BA ⊆ BAC). The basic-pnf
component model supports incremental construction.

In order to illustrate incremental construction in basic-pnf, we use Modelica [46] to construct the
system to evaluate a mathematical expression (c = a2 + b3; where a, b and c are numeric variables).
We develop three filter components (with one function each): (i) calc to add two integer values, (ii) sCom
to square an integer value and (iii) cCom to cube an integer value. The system is constructed in two
steps, as shown in Figure 14.

Sensors 2020, 20, 1435 11 of 28

calc1.f1(square1.f1(square1.a),calc1.b) calc1.f1(square1.f1(square1.a),cube1.f1(cube1.a))

U

BS 0 1SB

(b)(a)

BS 21SB

U
Figure 14. A basic-pnf System in Modelica: (a) First system and (b) Second system.

4.2.2. The Basic Client–Server Component Model

Many component models (e.g., ACME, SOFA and UML) support the client–server composition
style. In this style, two components communicate by passing messages through their ports.
The execution of the caller service is paused by making a call and resumed on receiving the response
from the called component. In our basic client–server component model (basic-cs), a component is
an AU with many required ports (r-ports) and provided ports (p-ports), as shown in Figure 15a.

K

s ()nr1

ms 1r(,)r2

1r

rn

K
B

m
ss

1={ ,..., }

={ ,..., }1
s s

m

p
m

p
1

1r

rn

c
s1(a)

s2(b)

dA

b

a

AC
(d)

provided port
required port

p
2

k
p

1
r

r
2

p-portsr-ports

m
p

p
1

r
n

(c)

(b)(a)

2
s

s
k

s
1

s
m

empty set

C
e

g

h

s4(g)
i

s3(e)
s5(a)

AB ACB

UACB
BC

AB
={s3,s4}
={s1,s2}

={s2,s5,s4}

M

B
M

interactcompute

s
0..*

Figure 15. (a) A component, (b) Port relations, (c) Execution semantics, and (d) A composite.

In basic-cs, a component with at least one p-port and zero or more r-ports is an eligible component.
A port represents a message communication channel between a component and its environment.
A signature (of a procedure/service) is associated with each port that represents the type of message
allowed to be communicated through the port. A component’s functionality is a set of services and
a service is a relation between a sub-set of r-ports and one p-port (Figure 15b shows the functionality
of a specific component K). For a component, an interaction (sending a request message and receiving
a response message) on an r-port is initiated from within the computation code of a service in the
component. In basic-cs, an r-port of a component may be related to one or many p-ports and a p-port
may be related to zero or more r-ports, as shown in Figure 15b. A p-port not related to any r-port
represents that there is no external service request initiated within the computation associated with the
p-port. The behavior of a component can also be represented as a set of p-ports; a p-port is simply
a function of related r-ports, as shown in Figure 15c for K.

In basic-cs, during execution, only one service of a component may be executed at a time.
Figure 15c shows the execution semantics of a service of a component; a service interacts zero or more
times on its r-ports. The execution of a service with associated r-ports is paused by requesting external
services on its r-ports. The paused service resumes its execution after receiving a response message
(control/data) from the requested service. In basic-cs, components are composed by port connection
between ports with matching associated service signatures. For simplicity, we consider only one

Sensors 2020, 20, 1435 12 of 28

connection for a port. A composite of two components is shown in Figure 15d; all unconnected ports
are composite’s ports and the behavior of the composite is a set of services (or unconnected p-ports).

In Figure 15d, an initial system S0 (component A) is incremented inc0 (component C) by port
connection and the composite AC is the incremented system S1. A compound service s5 relates the
composite’s p-port ‘h’ with the composite’s r-port ‘a’. As the relation of behavior containment between
the two systems holds (BA ⊆ BAC), basic-cs component model supports incremental construction.

In order to illustrate incremental construction, we consider constructing a system to evaluate
the mathematical expression (c = a2 + b3). We develop three components Calc (to add two numbers),
sCom (to square a number) and cCom (to cube a number) in ArchJava [47,48]; the desired system is
constructed in two steps, as shown in Figure 16.

int s1(int,int)

int s2(int)

int s3(int)
int s1(int,int)int s3(int)

(a) (b)

p1sCom1

BS 10SB

U

p1r1

r2

Calc1

U

BS 1 2SB

Calc1

r2

r1

cCom1

sCom1
p1

p1

p1

Figure 16. A basic-cs system in ArchJava: (a) First system and (b) Second System.

4.2.3. The Basic Publish–Subscribe Component Model

In the publish–subscribe architectural style, messages flow from one publisher component to
many subscriber components. The publish–subscribe style is suitable to construct a system where
many different components have to perform their specific computations subject to an event in one
common component. In CBD, many component models (e.g., ACME, C2 [49] and SOFA) support
this style.

In the basic publish–subscribe (basic-ps) component model, a component is an AU with zero
or more publisher ports (pub-ports) and with one or more subscriber ports (sub-ports) (Figure 17a).
A message signature is associated with each port that represents the type of message allowed to be
communicated through the port. The functionality of a component is a set of services and a service
is a relation between a subset of pub-ports and one sub-port (Figure 17b shows the functionality of
a specific component K). A sub-port only allows a message to pass into the component and a pub-port
only allows a message to go out of the component. In basic-ps, for a component, one pub-port may
be related to many sub-ports, as shown in Figure 17b for K. A component may have services in
which no event is raised within the service. The behavior of a component can also be represented
as a set of sub-ports; sub-ports are simply functions of pub-ports, as shown in Figure 17c for K.
Components in basic-ps have their own control. Figure 17c shows the execution semantics of a service
of a component. A service executes by receiving notification on the associated sub-port and raises
event(s) on associated pub-port(s).

Sensors 2020, 20, 1435 13 of 28

B
K

K

m
ss

1
={ ,..., }

M
B ={ ,..., }

1
s s

m

M

r1 ()n
rs1

1
r r

2
(,)msrn

(d)

0..*
s

compute
raise
eventp

m

1
p

nr

r1

subscriber port
publisher port

empty set

sub-portspub-ports

p
2

k
p

1
r

r
2

m
p

p
1

r
n

(c)

(b)(a)

2
s

s
k

s
1

s
m

b
c

A

AC

a

s3(d)

C
ed s1(a)

s2(a)

s4(d)

s5(d)

={s4,s5}
={s3}
={s1,s2}BA

CB
BAC U

BACBA

Figure 17. (a) A component, (b) Port relations, (c) Execution semantics, and (d) A composite.

In basic-ps, components are composed by port connection between matching ports, as shown
in Figure 17d; the result of composition is a composite. In basic-ps, for simplicity, we consider that
a sub-port may be connected to one pub-port at a time and a pub-port may be connected to zero or
more sub-ports. All unconnected ports of the composed components are the respective ports of the
composite. In Figure 17d, considering component A as initial system S0 and component C as increment
inc0. Composite AC is the incremented system S1 and service s5 of S1 contains s2 and s3. As the
relation of behavior containment between the two systems holds (BA ⊆ BAC), basic-ps component
model supports incremental construction.

To illustrate incremental construction, a system to evaluate a mathematical expression (c = a2 + b3)
is constructed from three components calc, sCom and cCom in ArchJava as shown in Figure 18. The op
service of calc accepts two numbers (of type integer) as arguments and broadcasts on its ports ‘b’ and
‘c’. Service getSq receives the result on port ‘e’ and raises an event on port ‘d’ if port ‘f’ has been notified.
Service getCu receives result on port ‘f’ and raises an event on port ‘d’ if port ‘e’ has been notified.
Component sCom offers service sq to square a number and to broadcast the result on port ‘h’. Similarly
a component cCom offers service cu to cube a number and to broadcast the result on port ‘h’.

U

SB BS1 2

U

BS 0 1SB

getCu(int)

op(int,int)

getSq(int)

cu(int)

sq(int)

g

h

cCom1

h

g

sCom1

getCu(int)

getSq(int)

sq(int)

op(int,int)
e

d
c

a
b

f

g

h

(a)

f

b
a

c
d

e

(b)

sCom1

calc1

calc1

Figure 18. A basic-ps component model system in ArchJava: (a) First system and (b) Second System.

4.2.4. Special Cases of Incremental Construction

For constructing a system by using ADLs, the only way to add an increment is by port connection.
Practically, we may face situations when an increment component cannot be connected to the current
system. Considering generic AUs, we discuss two such cases shown in Figure 19 in this section.

In the first case, considering any two components A (as S0) and B (as inc0) with generic provided
ports only (Figure 19a), a special component is needed just to compose these two components in two
possible ways. The component C (Figure 19b) can coordinate communications between components
A and B. Similarly, just to compose, a component can be created to forward the ports of the two

Sensors 2020, 20, 1435 14 of 28

components, as shown in Figure 19c. In order to compose such components, the ProCom component
model introduces special AUs (called connectors) to coordinate components [44].

0inc bB

A a
S0

(c)(b)(a)

C
c

d

f
A

B

b

a

S1

b

a
D

c

d

1S

a

b

B

A

Figure 19. Components with provided ports only: (a) Components, (b) First system, and (c)
Second system.

In the second case, as shown in Figure 20, we consider two components A and B with no matching
ports. In order to compose such components, an adapter component is needed that does not have any
functional behavior in the system. Components with incompatible ports in [50] are connected by using
adapting filters; these filters adapt the type of message from one port to the acceptable type by the
other port.

C ef d cBAb a
inc00S

(a) (b) (c)

ab A d cB
S1

Figure 20. Components with incompatible ports: (a) Component, (b) Increment, and (c) System.

4.2.5. Invasive ADL

Invasive software composition (ISC) [37] uses the concept of aspect weaving (described in
Section 4.1) to change the code of a component. Hence, this component model is different than
the mainstream ADLs. This model uses another different way to increment a system and that is by
transforming the component code to extend and to connect with other components. For incremental
construction of the calculator, we consider three components with provided ports only (Figure 21a).

Sqr1

Cube1

Sqr1

Cube

calc

int s3(int)

Sqr

point
code variability

declared hook

implicit hook

S
2

1
S

(c)(b)

UBSi i+1SB

(a)
int s1(int,int)

int s2(int)
int s2(int)

int s2(int)

int s3(int)

int s1(int,int)

int s1(int,int)calc1

calc1

Figure 21. A system of invasive ADL components: (a) Components, (b) First system, and (c)
Second system.

Component calc has two declared and one implicit hook. In the first incremental step, component
calc1 (S0) is composed with component Sqr1 (inc0) by using a composer program comp1 (not shown).
Composer comp1 invades into one of the declared hooks to extend and connect calc1 with Sqr1, as shown
in Figure 21b. In the next incremental step, the system from Figure 21b (S1) is composed with Cube1
by using another composer program comp2. Composer comp2 invades into calc1’s declared hook to
extend and connect calc1 from (S1) with Cube1 (Figure 21c).

Through the composer program, the declared hooks from a component’s composition interface
are disappeared. However, the implicit hooks are still available in the component interface for further

Sensors 2020, 20, 1435 15 of 28

transformations. In the example used, the transformed functionality of calc1 is contained by the three
connected components. After each incremental step, the behavior of the incremented system (BSi+1)
contains the functionality of the previous system (BSi). Using this component model, components with
incompatible ports are not required to be composed by a third component (as shown in Figure 20),
but such components can be transformed by a composer program for connection.

4.3. Component Models with Encapsulated Components

From the current component models, we have included two component models in which
components have provided ports (interfaces) only; such components are referred to as encapsulated
components. In this section, we briefly investigate system construction with web services and with
encapsulated components in EX-MAN. As there are no dependencies in this category of components,
component model (web services, X-MAN and EX-MAN) with these components are more suitable
than other two categories.

4.4. Web Services

Web services can be composed by either using orchestration mechanism or by using choreography
mechanism [51,52]. A composite web service using the choreography mechanism will not be
an encapsulated component. In contrast, a composite web service using orchestration mechanism
is an encapsulated component. As orchestration is a more common mechanism, we consider this
mechanism in this paper for making the composite service an encapsulated component.

The behavior of a web service is a set of its operations specified in its web service description
language (WSDL); web services are composed by programming a BPEL process which coordinates
control between the composed web services [52]. The BPEL process can then be converted to a web
service for further composition. To illustrate incremental construction by web services, we construct
the calculator as shown on Figure 22.

BPEL
workflow

U

BSi i+1SB

request

response
interaction

web service

(WSDL)
interface

f(a,b)=(axa)+(bxbxb)

SCA
1

21

f(a)=axa f(b)=bxbxb

f(a,b)=<axa,bxbxb>

S
21

S

(b)(a)

SC

f(a,b)=<axa,bxbxb>

f(b)=bxbxbf(a)=axa

21

2

f(a,b)=a+b

A

SC

CC SS

Figure 22. Web services: (a) First system, and (b) Second system.

For constructing the calculator example, we start by composing a web service S (S0; with one
operation) with another web service C (inc0) by a BPEL process; the BPEL process is then converted
to a web service SC (S1 shown in Figure 22a). This composite has one operation which accepts two
numbers and returns a pair. In the second incremental step (Figure 22b), SC is composed with web
service A (inc1) by a BPEL process; the BPEL process passes the values returned by SC as input to A.
The BPEL process is then converted to a web service SCA (S2). In Figure 22, numeric labels next to the
interaction arrows represent the order of their occurrence. After each incremental step, the functionality
of the incremented system (BSi+1) contains the behavior of the previous system (BSi).

Sensors 2020, 20, 1435 16 of 28

4.5. EX-MAN Component Model

The conventional and fundamental X-MAN component model was defined with encapsulated
components and exogenous connectors [53,54]. Pre-defined exogenous connectors [55] is a unique set
of connectors which play a vital role for the suitability of X-MAN for incremental system construction.
The concept of exogenous connectors are also proposed to compose web services [56]. However,
being an abstract component model, X-MAN does not define many features precisely. For this reason,
there are many different definitions of some exogenous connectors and these are implemented in many
different ways in the supporting tools (used in [57–62]) of X-MAN which is not re-producible. In order
to overcome these limitations of X-MAN, without violating the fundamental concepts of the model,
we extended the model by addressing the limitations of X-MAN; this extended model is referred as
EX-MAN [11,12,63]. With regards to the strongest feature of X-MAN, the exogenous connectors are
precisely defined to be functioning with fixed behavior with the help of flow constraint language
(FCL) [63] defined in EX-MAN.

In EX-MAN, components have one provided interface and components do not call other
components’ services directly. Components are composed by exogenous composition connectors.
The functionality of a component is the set of services exhibited by its interface. To construct the
calculator example, we assume three atomic components Calc (with a service to add two numbers),
sCom (with a service to square a number) and cCom (with a service to cube a number). By using
instances of these components, we compose the system in two constructional steps, as shown in
Figure 23. In the first step, we compose sCom1 (S0) with cCom1 (inc0) by a sequencer connector (SEQ1).
In composite S1 (Figure 23a) SEQ1 executes a service from sCom and then a service from cCom. In the
second step, we add Calc1 (inc1) with the current system S1 by means of a pipe connector (PIPE1).
In this composite S2 (Figure 23b), the computed results from SEQ1 are passed as input values to Calc1
by PIPE1. After each incremental step, the functionality of the incremented system (BSi+1) contains the
behavior of the previous system (BSi). To avoid cluttering, we only shown the minimum feature of the
EX-MAN system which is necessary for this study.

Calc1cCom1sCom1cCom1sCom1

SEQ1

1
S PIPE1

SEQ1

(a) (b)

S
2

UBSi i+1SB

Figure 23. EX-MAN: (a) First system, and (b) Second system.

4.6. A Comparative Study of the Three Categories of Component Models

With respect to component behavior, we categorize the current component models from the
three categories into two groups, as shown in Figure 24. Using component models from the category
of not-fixed behavior for incremental construction, a system’s functionality may be fixed once the
system is completed. In contrast, using component models from the category of fixed functionality for
incremental construction, the final system as well as the intermediate systems have fixed functionality;
the functional behavior of such systems can be verified.

Sensors 2020, 20, 1435 17 of 28

Component Models with
Encapsulated Components

Basic Pipe-And-Filter ADL

Basic Publish-Subscribe ADL

Basic Client-Server ADL

Component Models
Object-Based

Component ModelsComponent Behaviour

Fixed

Not-Fixed

Figure 24. Behavior-based categories.

In a composite of two components A and B (Figure 25), component interaction begins/ends on
a provided port with a request/response message, as described in Section 3. In general, objects have
external method calls in their methods; an object with external method calls (Figure 25a) does not have
fixed functionality with respect to control and computation. With respect to control and computation,
the functionality of A and B are not fixed as including one of these components implies to have more
components; hence, this leads the developer to add more components. In object-based component
models (from Section 4.1), a truly component-based construction may be achieved artificially if
components are implemented as encapsulated components, as shown in Figure 12. However, achieving
incremental construction by the weaving mechanism is limited as the code (e.g., external method calls)
cannot be inserted everywhere in a component to achieve behavioral increment to the system.

(b)

m1(){

...
...

}

...
...

B

m3(){

c.m4(...);

}
m2(...){...

A

b.m2(...);

...
...

}

...
...

(a)

s4(...);

...
...

}

...
...

A

s1(){

s2(...);

...
...

}

...
...

B

}
s2(...){...

s3(){

Figure 25. Behavior of Components: (a) First view, and (b) Second view.

In basic-cs (from Section 4.2.2), a typical AU has required ports; hence, functionality of an AU
is not-fixed with respect to control and computation. Required ports of a component represent the
dependencies of the component upon other components with matching ports. As with object specific
composites, the functionality of component A (Figure 25b) depends on the functionality of some
component (e.g., B) compatible to be connected with component A. Computation of component
A’s method or service halts by making request to a method or service of component B; A’s halted
computation resumes after receiving response from B. In contrast, AUs in basic-pnf and basic-ps
styles have their own control. For a filter component, a computation is fixed to read data from the
in-ports and to produce data on the out-ports. Similarly, in the publish–subscribe style, computation
of a component is fixed to listen to event notifications on the sub-ports (subscriber ports) and to raise
events on the pub-ports (publisher ports). Component for these two styles have fixed behavior.

For not having required ports, component models with encapsulated components are placed in the
category of fixed behavior. In some component models, increments can also be added by programming
(or by refactoring) and by adapting. Another way to increment an existing system seems to be by
substituting an existing component with another component (with the signature based compatible
ports). However, substituting a component by another component with the compatible ports may
raise port tracing issue (sequence of messages of provided services) [33]. Moreover, non-functional

Sensors 2020, 20, 1435 18 of 28

properties of the services offered by the two components (developed by different vendors) may
be different.

5. System Construction in EX-MAN

Using the defined process of incremental construction in Section 3, we have modeled and
simulated a number of EX-MAN systems in a tool called Exogenous Composition Framework (ECF).
In this section, we show an ATM system example with full details and another two system designs
without details. The details of these systems can be found in [11,12]. The ATM system constructed in
the ECF tool of EX-MAN is shown in Figure 26. The details of this system in shown in Figure 27.

5.1. ATM System

Using EX-MAN for incremental construction, Figure 26 shows the design of an ATM system in
the ECF tool of EX-MAN. The system is constructed incrementally by following our defined approach.
The final system as well as the intermediate partial systems during the incremental construction
process were tested for the added and preserved behavior.

Figure 26. The ATM system.

A system in EX-MAN (shown in Figure 27) is comprised of components to perform computational
tasks (in the bottom layer of the architecture) and connectors to perform control/data coordination (in
multiple layers). The EX-MAN design of the ATM system includes the details of component interfaces,
connector’s flow constraints (written in flow constraint language (FCL) [63] for EX-MAN) and overall
request/response flow with arrows in the system.

Sensors 2020, 20, 1435 19 of 28

Interface

<constraint>
<connector>

constraint
FCL connector adaptor

GuardLoop
adaptor

connector
Composition

A

Encapsulated
component A

15

CC
16

PIPE2

cshWithdraw{
 param0=L1.login.param2;

 param1=G1.readAmount.param0:

 param0=L1.login.param2 }

 param2=L1.login.param2;

 param0=L1.login.param0:

G1.readAmount::

G2.withdraw::

G3.confiscate::

param2=true}
 iterate 3 times or
login{

L1

n numbered request message, n numbered response message

14

G3
17

10

CB
11 16

RA

15

L2

PIPE2

0

1 24/18

20

Bank2
2121

Bank1

20

PR

7 8

SEQ1

4 9

17
G1

14 23

22

SEL1

19

18

G2

13

123

2

PIPE1

L1

G2

param2=true}
withdraw{

G1

param0=true}
readAmount{

G3
confiscate{
param0=false}

SEL1

withdraw{
Bank1--param0 startswith "111";
Bank2--param0 startswith "222"}

6

CR

5

login{

 param0=SEQ1.getData.param0:
 CB.authorise::

 param1=SEQ1.getData.param1}

PIPE1

where: s=string,i=int and b=boolean.

confiscate()

G3

G2

L2

PIPE2

CC

[i] withdraw(s,i,b)

confiscate(b)

(s,i,b,[i],[i]) cshWithdraw()

cshWithdraw()

SEL1 i withdraw(s,i)

i readAmount()

G1

RA

[i] readAmount(b)

Bank1,Bank2,

PIPE1,L1

b authorise(s,i)

(s,i) getData()

i readPin()

CB

PR

CR

SEQ1

(s,i,b) login()

s readCard()

Component Interface

*

Figure 27. The ATM system detailed design.

A component interface is a collection of services. In the ATM system, each component has
a single service. A connector in the architecture can be either a composition connector (sequencer
SEQ, pipe PIPE and selector SEL) or an adaptor (guard and finite/infinite loop). In the system
architecture, an interface appearing on a connector represents a composite component (if on
a composition connector) or an adapted component (if on the adaptor connector); hence, components
with the respective interface are shown including the encapsulated components as well as the
composite/adapted components.

On installation of the ATM system, request annotated with ‘0’ is initiated to the root loop connector
L2; L2 is an infinite loop connector which passes the request to the adapted system (PIPE2). On a service
request, a PIPE connector makes a request to each connected component in order from left to right.
This connector is enabled to pass the results of a service from a component as input arguments in
a service request to other components. These details of passing results are defined in a FCL constraint
for the PIPE. PIPE2 makes the first request to the finite (marked with ‘*’) loop connector L1. L1 is
constrained to repeat a request until the true result is produced in maximum three iterations by
the adapted component. From L1 to PIPE1 and then to sequencer SEQ1. A sequencer is similar to
pipe with the ability to pass the results of a service as arguments to another service. SEQ1 makes
a request to component CR to read an ATM card number and then a request to PR to read pin number;
these two numbers are passed to component CB in the request by PIPE1. If the card is authenticated by
component CB then L1 terminate its iterations and returns the response to PIPE2. PIPE2 then passes
the request to next component; after checking the authentication by guard G1, the request is sent to
component RA to get a transaction details from the system user. The next request by PIPE2 is checked
by guard G2 for card authentication and passes the request to one of two bank components. In case

Sensors 2020, 20, 1435 20 of 28

the card authentication failed, the last request by PIPE2 (after being checked by guard G3) is passed to
component CC to confiscate the card.

5.2. Weather Information System

A weather information system case study from [7] is linked with many remotely located weather
stations. A weather station has a system linked with a number of sensors and devices to read different
values from the weather. These values are collected through the sensors automatically and a number
of times in a day. The central weather information system collects the data from these weather stations
through a satellite communication link. In this section, using our approach, we construct a system for
weather information system to get data from two remote weather stations.

First of all, using EX-MAN, we prepared a repository of nine basic components (ground
temperature (GT), air temperature (AT), air pressure (AP), wind speed (WiSp), rain fall (RF),
wind direction (WD), humidity (HM), store data (DS) and component (SC)) required for the
construction of considered case study. A component to read the ground temperature (GT) is created.
This component is capable to compute minimum, maximum and average temperature values from the
collected data from any specific period. Similarly, in the repository, another component to read the air
temperature (AT) is created; this component provides minimum, maximum and average temperature
values form the collected data form any specific period. Another component to compute the minimum,
maximum and average values for the air pressure (AP) is created. For measuring the minimum,
maximum and average values for the wind speed (WiSp) is created. A component to measure rain fall
(RF) and a component to get the wind direction (WD) are created. To measure minimum, maximum
and average values for humidity (HM) is created. A component to store data (DS) is created to save
data from components connected to sensors. Lastly, a component (SC) is created to establish the
satellite link with the remote weather station.

In order to create the desired system by using our approach, we constructed a composite
component linked weather station (LWS) for the linked weather station. For this purpose, the nine basic
components created are used to construct the composite LWS in eight steps from S0 to S7, as shown in
Figure 28. In the construction step, from the repository components, component instances are created
for composite construction. In the first step, two component instances GT1 and AT1 are composed
with a PIPE instance PIPE1; this composite is referred to as partial system S0. In the second iteration,
S0 is incremented by an instance of AP1; this composite is referred to as partial system S1. Next, S1 is
incremented with component WiSpi to create S2. In the next incremental step, partial system S2 is
incremented with component RF1 to create partial system S3. Similarly, for the next step, partial system
S3 is incremented with component WD1 to produce partial system S4 and S4 is incremented with the
component HM1 for the creation of partial system S5. Next, partial system S5 is incremented with DS1
component to create partial system S6. In the last incremental step, partial system S6 is incremented
with a component SC1 and two connectors PIPE2 and guard G1 to create composite component S7.
This component is saved in the repository as component LWS.

PIPE2 LWS

7S

0S

S1

DS1HM1WD1RF1WiSp1AP1AT1GT1SC1

PIPE1 WS1

G1

Figure 28. Construction of linked weather station (LWS) composite component.

Sensors 2020, 20, 1435 21 of 28

Next, we have constructed a prototype for a weather information system linked with two remote
wilderness weather stations (shown in Figure 29). For this construction, in the first step, an instance of
composite component (shown in Figure 28) LWS1 is created and is composed with another instance of
the same composite component LWS2 by using a sequencer connector instance SEQ1. In order to get
the data from these two linked weather stations, a request will be made through the SEQ1 connector
and a response containing the data from both weather stations will be generated by SEQ1.

PIPE2PIPE2

GT1 AT1 AP1 WiSp1 RF1 WD1 HM1 DS1SC1

Request Response

DS1HM1WD1RF1WiSp1AP1AT1GT1

SEQ1

PIPE1 WS1

LWS2

WS1PIPE1

LWS1

G1
G1

3

4
8

7 9

10

23

6

5

24

2

25

50

1

11

12 14

13 15

16 18

17 19

20 22

21

SC1

27

28
32

31 33

34

35

36 38

37 39

40 42

41 43

44 46

45

47

30

29

48

49

26

Figure 29. Two linked weather stations (LWS) in the Weather Information System.

In Figure 28, the internal construction of the two weather stations LWS1 and LWS2 are shown
with request/response arrows to depict the flow of data and control through the system. To get
weather data from two weather stations, a request (numbered 1) is made through the SEQ1 connector.
This connector splits the received request into sub-requests (one for each composed component) to
LWS1 and LWS2. Once the response of the first request to the first composed component LWS1 is
received then the next sub-request is made to next composed component. This sequence is also shown
with the help of numbered arrows.

The request to the first LWS1 is received by PIPE2 connector. This connector is basically
a sequencer with an added feature of passing data from the response of one component into the
request of later components. PIPE2 sends the request to SC1 to establish the satellite link and pass the
response of this request (successful or unsuccessful) from SC1 to guard connector G1. If the result from
SC1 is successful then the G1 allows the request to go ahead to the WS1 component. PIPE1 in WS1
makes seven requests in sequence to the connected components from component GT1 to component
HM1. For each request, the respective component returns the observed and computed data to PIPE2
as a response. After getting data from these seven components, PIPE1 passes the collected data from
seven components as request to component DS1 to store the data locally. Finally, PIPE1 prepares
a response for the received request from G1 which is then sent to PIPE2 and then to SEQ1 as the final
response from component LWS1. Similarly, SEQ1 makes the request to the second component LWS2
and collects the response and then prepares a response numbered as 50 for the request numbered 1.

5.3. Cash Desk System

Using our approach for constructing systems in EX-MAN, we have developed a complex system
using the common component modeling (CoCoME) defined in [64]; this system is a benchmark in
CBD. The cash desk sub-system (linked with many devices as shown in Figure 30) of CoCoME was
modeled and simulated in ECF.

The cash desk system of CoCoME is a typical point-of-sale (PoS) system operating in department
stores; this system is connected with many devices as shown in Figure 30. However, the system may be
installed with a shopping cart in the future to implement the concept of a smart shopping cart. In the

Sensors 2020, 20, 1435 22 of 28

conventional set up, a customer comes to the cash desk to get the shopping items processed and to pay
the bill for check out. The human attendant operating the system scans each item to get its price and
other details from the system. After scanning all items the customer is given the option to pay either
by a bank card or by cash. The cashbox component communicates with three peripherals (cash drawer,
keyboard and VDU). The barcode reader is used to scan item IDs one by one; a barcode can also be
entered from the keyboard if the barcode reader is unable to scan the code correctly. The VDU displays
a list of scanned items with their prices. In order to accept payments from a customer’s card (read by
the card reader device), the PoS system communicates to the bank system. Cash and receipts of card
payments are kept in the cash drawer. The printer is used to print receipts for purchased items and
card payments. With the display of a colored light bulb, the system either runs in normal mode or in
express checkout mode. In express checkout mode, customers are restricted to checking out at most
eight products, and the card payment is prohibited.

Bank sSys

card reader printer barcode readerlight display

cashBox PoS

cash
drawer VDUkeyboard

Cash Desk Store Server

Figure 30. The cash desk system of common component modeling (CoCoME).

The EX-MAN design of the cash desk system with the ECF tool is shown in Figure 31.
The complete system is created in 26 incremental steps. Initially, component SS (to start sale) is
selected from the repository to make S0 and then in the next step component KB (to allow bar code
entry by keyboard) is selected to increment the system S1. Similarly, in 24 incremental steps the
complete system is constructed. After adding each increment, the system was tested for the previous
system behavior and for the incremented system behavior. To avoid cluttering, the request and
response arrows are not shown in Figure 31. The complete and detailed operational working of the
system is given in [11].

Sensors 2020, 20, 1435 23 of 28

Figure 31. EX-MAN design of cash desk sub-system in Exogenous Composition Framework (ECF).

6. Discussion

With the advancements in the sensor technology, IoT-based systems are constructed by integrating
hardware and software components together. Incremental construction defined in this paper is suitable
for systems developments in a domain in which a system’s requirements do not change quite often,
e.g., the automotive domain in which features/specification of future products/systems is fixed.
So which component model should we choose for incremental construction? The intention is to pick
a component model which can help constructing a system incrementally (in many iterations) such that
the system has fixed functionality after each increment. The benefit of a system with fixed behavior is
that the system’s functionality is verifiable after each increment without stubs (artificial components
producing expected result values without real computation). Being able to verify a system with fixed
functionality reduces the extra overhead of stubs for sub-components [65].

With the defined incremental construction process (from Section 3), we investigated the possibility
of using current component models to address the scalability issue of bigger and complex systems.
In regard to the fixed or not-fixed behavior of a system, we comparatively analyzed (in Section 4.6) the
current component models and found encapsulated components as the most appropriate choice to
achieve the scalability issue.

Encapsulated components are defined in X-MAN, EX-MAN and service oriented architecture
(SOA [66,67]). In the absence of dependability, all these three approaches inherently support
incremental system construction. EX-MAN is an extended version of X-MAN with many advantages.
For the composition of encapsulated components in SOA, there are no pre-defined composition
programs of connectors; to compose existing services, orchestration is the common practice by using
BPEL. In contrast, for the composition of encapsulated components in X-MAN and in EX-MAN,
pre-defined program units called exogenous connectors are available. In contrast to exogenous
connectors in X-MAN, connectors in EX-MAN are annotated with specifications written in a flow
constraint language to fix the data/control flow for composition [63]. Hence, in this paper, using
EX-MAN, we demonstrated the construction of two toy systems (calculator and ATM), one large and
complex cash desk system and a CPS weather information system.

7. Conclusions and Future Work

To have a system with fixed functionality by using a component model from the ‘Not-Fixed’
category, the construction process may begin with a component without any dependencies (e.g.,

Sensors 2020, 20, 1435 24 of 28

an encapsulated component). Then an increment is added to the system to create the incremented
system such that the system has fixed functionality. In the worst case, the system may be constructed
in a single step (big-bang integration) if there is no encapsulated component for constructing a system.
In contrast, component models from the other (fixed functionality) category can be used to construct
the system in the desired way. Pipe-and-filter style systems are data driven systems. A component
model with publish–subscribe composition style is more appropriate for building graphical user
interface (GUI) software [49]. In both styles, a system has many connections (one way flows of
data/control) between the components. Systems constructed by with web-services or by EX-MAN
have tree structure architecture and the composition mechanism is control coordination (Figure 3).
In contrary to the composition (an arbitrary BPEL process) in web-services, the composition (by
pre-defined exogenous connectors) produces an encapsulated component to be further composed;
hence, behavior containment is automatically preserved in EX-MAN. Moreover, in EX-MAN systems,
computation (within components) and control (within connectors) can be clearly segregated; this may
not be possible in a system constructed by web services as the BPEL processes can also have some
computation code [65].

There are many methodologies to address the issue of constructing large software systems in steps.
In a step, a functionality may be added, amended or deleted. The unique advantage of the proposed
approach is the addition of newer functionality in each step. For the construction of system in which
the change is minimum, the proposed approach can be applied. After adding each step the system
may be tested automatically. With the defined approach, the selected EX-MAN component model is
used for the fixed pre-defined connectors. Such a component model makes the use of incremental
construction process easier.

With a special emphasis on the behavior containment, this paper contributes a redefinition of
the notion of incremental construction for the construction of large and complex systems. Next,
we contribute a study of applying the defined approach on current component models to investigate
how easily large systems can be constructed in CBD. By studying and comparing the strengths
and weaknesses of current component models, we propose a taxonomy of component models with
respect to component/system behavior and select the EX-MAN component model (EX-MAN) for its
comparative suitability for incremental construction. For the evaluation of our scalable approach,
in this paper, we discuss three different systems in EX-MAN.

In conclusion to our study of achieving incremental in the current component models, we find
EX-MAN the most appropriate model for the construction of systems incrementally. However,
the majority of the component models in CBD are ADLs; for future work, we would like to work on an
ADL with the property to achieve incremental construction with ease. The automatic testing benefit
of our defined approach (discussed in Section 3) can be worked on in our future endeavors for the
continuity of this research.

Author Contributions: Writing—original draft, T.R.; Writing—review & editing, A.B. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for
supporting this work by grant codes: 17-COM-1-01-0009 and 18-COM-1-01-0001.

Acknowledgments: We would like to thank all who have directly and indirectly assisted us to achieve the work
presented in this paper. Special thanks go to the research group of Kung-Kiu Lau and to Suzanne Embury from
the School of Computer Science at Manchester University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Spencer, B.; Ruiz-Sandoval, M.; Kurata, N. Smart Sensing Technology: Opportunities and Challenges.
Struct. Control Health Monit. 2004, 11, 349–368. [CrossRef]

2. Lee, E. Cyber Physical Systems: Design Challenges. In Proceedings of the 2008 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing, Washington, DC, USA, 5–7 May 2008; pp. 363–369.

http://dx.doi.org/10.1002/stc.48

Sensors 2020, 20, 1435 25 of 28

3. Bellekens, X.; Atkinson, R.; Seeam, A.; Tachtatzis, C.; Andonovic, I.; Nieradzinska, K.
Cyber-Physical-Security Model for Safety-Critical IoT Infrastructures. In Proceedings of the Wireless World
Research Forum Meeting, Santa Clara, CA, USA, 21–23 April 2015.

4. Medikonda, B.S.; Panchumarthy, S.R. A Framework for Software Safety in Safety-critical Systems. SIGSOFT
Softw. Eng. Notes 2009, 34, 1–9. [CrossRef]

5. Knight, J.C. Safety critical systems: Challenges and directions. In Proceedings of the 24th International
Conference on Software Engineering, ICSE 2002, Orlando, FL, USA, 25 May 2002; pp. 547–550.

6. Schwaber, K.; Beedle, M. Agile Software Development with Scrum, 1st ed.; Prentice Hall PTR: Upper Saddle
River, NJ, USA, 2001.

7. Sommerville, I. Software Engineering, 10th ed.; Pearson Education Limited: Essex, UK, 2016.
8. Mills, H. Software Development. IEEE Trans. Software Eng. 1976, SE-2, 265–273. [CrossRef]
9. Larman, C.; Basili, V. Iterative and Incremental Development: A Brief History. Computer 2003, 36, 47–56.

[CrossRef]
10. Sommerville, I. Software Engineering, 8th ed.; Addison-Wesley: Essex, UK, 2007.
11. Rana, T. Incremental Construction of Component-Based Systems: A Study Based on Current Component

Model. Ph.D. Thesis, School of Computer Science, The University of Manchester, Manchester, UK, 2015.
12. Rana, T. EX-MAN Component Model for Component-Based Software Construction. Arabian J. Sci. Eng.

2019, 44, 1–14. [CrossRef]
13. Dijkstra, E. Stepwise program construction. In Selected Writings on Computing: A Personal Perspective;

Springer: New York, NY, USA, 1982; pp. 1–14.
14. Wirth, N. Program development by stepwise refinement. Commun. ACM 1971, 14, 221–227. [CrossRef]
15. Lau, K.K.; Rana, T. A Taxonomy of Software Composition Mechanisms. In Proceedings of the

Thirty-sixth EUROMICRO Conference on Software Engineering and Advanced Applications, Lille, France,
1–3 September 2010; pp. 102–110.

16. Jha, S.K.; Mishra, R.K. Predicting and Accessing Security Features into Component-Based Software
Development: A Critical Survey. In Software Engineering; Hoda, M.N., Chauhan, N., Quadri, S.M.K.,
Srivastava, P.R., Eds.; Springer: Singapore, 2019; pp. 287–294.

17. Jha, S.K.; Mishra, R.K. A Review on Re-usability of Component Based Software Development. Reliab.
Theory Appl. 2019, 14, 32–36.

18. Saia, R.; Carta, S.; Recupero, D.; Fenu, G. Internet of Entities (IoE): A Blockchain-Based Distributed
Paradigm for Data Exchange between Wireless-Based Devices. In Proceedings of the 8th International
Conference on Sensor Networks (SENSORNETS 2019), Prague, Czech Republic, 26–27 January 2019;
pp. 77–84. [CrossRef]

19. Krueger, C. Software reuse. ACM Comput. Surv. (CSUR) 1992, 24, 131–183. [CrossRef]
20. Heineman, G.; Councill, W. Component-Based Software Engineering; Addison-Wesley: Boston, MA,

USA, 2001.
21. Szyperski, C.; Gruntz, D.; Murer, S. Component Software: Beyond Object-Oriented Programming, 2nd ed.;

Addison-Wesley: New York, NY, USA, 2002.
22. Lau, K.K.; Taweel, F.; Tran, C. The W Model for Component-based Software Development. In Proceedings

of the Thirty-seventh EUROMICRO Conference on Software Engineering and Advanced Applications,
Oulu, Finland, 30 August–2 September 2011; pp. 47–50.

23. Lau, K.K.; Cola, S. An Introduction to Component-Based Software Development; World Scientific:
Singapore, 2017.

24. Arellanes, D.; Lau, K.K. Algebraic Service Composition for User-Centric IoT Applications. In Proceedings
of the 3rd International Conference on Internet of Things, San Francisco, CA, USA, 2–7 July 2018.

25. Sullivan, K.; Marchukov, M.; Socha, J. Analysis of a Conflict between Aggregation and Interface Negotiation
in Microsoft’s Component Object Model. IEEE Trans. Software Eng. 1999, 25, 584–599. [CrossRef]

26. Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.M.; Irwin, J. Aspect-oriented
programming. In Proceedings of the Eleventh European Conference on Object-Oriented Programming,
ECOOP ’97, Jyväskylä, Finland, 9–13 June 1997; pp. 220–242. [CrossRef]

http://dx.doi.org/10.1145/1507195.1507207
http://dx.doi.org/10.1109/TSE.1976.233831
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1007/s13369-019-04213-x
http://dx.doi.org/10.1145/362575.362577
http://dx.doi.org/10.5220/0007379600770084
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1109/32.799960
http://dx.doi.org/10.1007/BFb0053381

Sensors 2020, 20, 1435 26 of 28

27. Bracha, G.; Cook, W. Mixin-Based Inheritance. In Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications/Proceedings of the European Conference on
Object-Oriented Programming, Ottawa, ON, Canada, 21–25 October 1990; Meyrowitz, N., Ed.; ACM Press:
Ottawa, ON, Canada, 1990; pp. 303–311.

28. Ducasse, S.; Nierstrasz, O.; Schärli, N.; Wuyts, R.; Black, A. Traits: A mechanism for fine-grained reuse.
ACM Trans. Program. Languages Syst. (TOPLAS) 2006, 28, 331–388. [CrossRef]

29. Lau, K.K.; Wang, Z. Software Component Models. IEEE Trans. Software Eng. 2007, 33, 709–724. [CrossRef]
30. Back, R.J. Software Construction by Stepwise Feature Introduction. In Proceedings of the Second

International Conference of B and Z Users on Formal Specification and Development in Z and B, ZB ’02,
Grenoble, France, 23–25 January 2002; Springer: London, UK, 2002; pp. 162–183.

31. Allen, R.; Garlan, D. A formal basis for architectural connection. ACM Trans. Software Eng. Method.
(TOSEM) 1997, 6, 213–249. [CrossRef]

32. Bures, T.; Hnetynka, P.; Plasil, F. SOFA 2.0: Balancing Advanced Features in a Hierarchical Component
Model. In Proceedings of the Fourth International Conference on Software Engineering Research,
Management and Applications, Seattle, WA, USA, 9–11 August 2006; IEEE Computer Society: Washington,
DC, USA, 2006; pp. 40–48. [CrossRef]

33. Schmidt, H.; Poernomo, I.; Reussner, R. Trust-By-Contract: Modelling, Analysing and Predicting behavior
Of Software Architectures. J. Integr. Des. Process Sci. 2001, 5, 25–51.

34. Becker, S.; Koziolek, H.; Reussner, R. The Palladio component model for model-driven performance
prediction. J. Syst. Softw. 2009, 82, 3–22. [CrossRef]

35. Jakobsson, L.; Christiansson, B.; Crnkovic, I. Component-Based Development Process. Building Reliable
Component-Based Software Systems; Crnkovic, I., Larsson, M., Eds.; Artech House, Inc.: Norwood, MA, USA,
2002; pp. 89–113.

36. Crnkovic, I.; Chaudron, M.; Larsson, S. Component-Based Development Process and Component Lifecycle.
In Proceedings of the International Conference on Software Engineering Advances, Papeete, French
Polynesia, 29 October–3 November 2006; IEEE Computer Society: Washington, DC, USA, 2006; pp. 44–53.
[CrossRef]

37. Assman, U. Invasive Software Composition, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003.
38. Korson, T.; McGregor, J.D. Understanding object-oriented: A unifying paradigm. Commun. ACM 1990,

33, 40–60. [CrossRef]
39. Garlan, D.; Monroe, R.; Wile, D. Acme: Architectural Description of Component-Based Systems.

In Foundations of Component-Based Systems; Leavens, G.T., Sitaraman, M., Eds.; Cambridge University
Press: Cambridge, UK, 2000; pp. 47–68.

40. Garlan, D.; Allen, R.; Ockerbloom, J. Exploiting style in architectural design environments. In Proceedings
of the Second ACM SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT ’94,
New Orleans, LA, USA, 6–9 December 1994; ACM: New York, NY, USA, 1994; pp. 175–188. [CrossRef]

41. Garlan, D.; Shaw, M. An Introduction to Software Architecture; Technical Report; Carnegie Mellon University:
Pittsburgh, PA, USA, 1994.

42. Crnkovic, I.; Sentilles, S.; Vulgarakis, A.; Chaudron, M. A Classification Framework for Software
Component Models. IEEE Trans. Softw. Eng. 2011, 37, 593–615. [CrossRef]

43. Allen, R.; Garlan, D. Towards Formalized Software Architectures; Technical Report; Carnegie Mellon University:
Pittsburgh, PA, USA, 1992.

44. Bures, T.; Carlson, J.; Crnkovic, I.; Sentilles, S.; Vulgarakis, A. ProCom—The Progress Component Model
Reference Manual, Version 1.0; Technical Report ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE;
Målardalen University: Västerås, Sweden, 2008.

45. Sentilles, S.; Vulgarakis, A.; Bureš, T.; Carlson, J.; Crnković, I. A Component Model for Control-Intensive
Distributed Embedded Systems. In Proceedings of the Eleventh International Symposium on
Component-Based Software Engineering, CBSE ’08, Karlsruhe, Germany, 14–17 October 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 310–317. [CrossRef]

46. Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1; Wiley-IEEE Computer
Society Press: Linköping, Sweden, 2003.

http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1145/258077.258078
http://dx.doi.org/10.1109/SERA.2006.62
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/ICSEA.2006.28
http://dx.doi.org/10.1145/83880.84459
http://dx.doi.org/10.1145/193173.195404
http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1007/978-3-540-87891-9_21

Sensors 2020, 20, 1435 27 of 28

47. Aldrich, J.; Chambers, C.; Notkin, D. Component-Oriented Programming in ArchJava. In Proceedings of
the First OOPSLA Workshop on Language Mechanisms for Programming Software Components, Boston,
MA, USA, 14–15 October 2001; pp. 1–8.

48. Aldrich, J. ArchJava Language Reference Manual. Available online: http://archjava.fluid.cs.cmu.edu/
papers/archjava-language.pdf (accessed on 3 March 2015).

49. Taylor, R.; Medvidovic, N.; Anderson, K.; Whitehead, E.J.; Robbins, J. A component- and message-based
architectural style for GUI software. In Proceedings of the Seventeenth International Conference on
Software Engineering, ICSE ’95, Seattle, WA, USA, 23–30 April 1995; ACM: New York, NY, USA, 1995;
pp. 295–304. [CrossRef]

50. Barros, F. Achieving reuse with pluggable software units. In Proceedings of the Twelfth International
Conference on Top Productivity through Software Reuse, ICSR’11, Pohang, Korea, 13–17 June 2011;
Springer: Berlin, Germany, 2011; pp. 183–191.

51. Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V. Web Services: Concepts, Architectures and Applications; Springer:
Berlin, Germany, 2004.

52. Granell, C.; Poveda, J.; Gould, M. An Incremental Approach to Web Service Composition. Rev. Colomb.
Comput. 2004, 5, 1–13.

53. Lau, K.K.; Ornaghi, M.; Wang, Z. A Software Component Model and Its Preliminary Formalisation.
In Formal Methods for Components and Objects. FMCO 2005. Lecture Notes in Computer Science; Springer:
Heidelberg, Germany, 2006; pp. 1–21.

54. Lau, K.K.; Velasco Elizondo, P.; Wang, Z. Exogenous Connectors for Software Components.
In Component-Based Software Engineering. CBSE 2005. Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 90–106.

55. Lau, K.K.; Tran, C. Composite Web Services. In Emerging Web Services Technology; Pautasso, C., Gschwind,
T., Eds.; Birkhauser Verlag: Basel, Switzerland, 2008; Volume II, pp. 77–95.

56. Arellanes, D.; Lau, K.K. Exogenous Connectors for Hierarchical Service Composition. In Proceedings of
the 2017 IEEE 10th International Conference on Service-Oriented Computing and Applications, Kanazawa,
Japan, 22–25 November 2017; pp. 125–132.

57. Lau, K.K.; Ling, L.; Velasco Elizondo, P.; Ukis, V. Composite Connectors for Composing Software
Components. In Proceedings of the Sixth International Symposium on Software Composition, Braga,
Portugal, 24–25 March 2007; Lumpe, M., Vanderperren, W., Eds.; Springer: Heidelberg, Germany, 2007;
pp. 266–280.

58. Lau, K.K.; Ntalamagkas, I.; Tran, C.; Rana, T. (behavioral) Design patterns as composition operators.
In Proceedings of the Thirteenth International Symposium on Component-based Software Engineering,
LNCS 6092, Prague, Czech Republic, 23–25 June 2010; Grunske, L., Reussner, R., Plasil, F., Eds.; Springer:
Heidelberg, Germany, 2010; pp. 232–251.

59. Velasco Elizondo, P.; Lau, K.K. A Catalogue of Component Connectors to Support Development with
Reuse. J. Syst. Softw. 2010, 83, 1165–1178. [CrossRef]

60. Cola, S.D.; Lau, K.K.; Tran, C. A Graphical Tool for Model-Driven Development Using Components and
Services. In Proceedings of the 41st EUROMICRO Conference on Software Engineering and Advanced
Applications, Funchal, Portugal, 26–28 August 2015; pp. 181–182.

61. Arellanes, D.; Lau, K.K. D-XMAN: A Platform For Total Compositionality in Service-Oriented Architectures.
In Proceedings of the 2017 IEEE 7th International Symposium on Cloud and Service Computing, Kanazawa,
Japan, 22–25 November 2017; pp. 283–286.

62. Lau, K.K.; Tran, C. X-MAN: An MDE Tool for Component-Based System Development. In Proceedings of
the 38th EUROMICRO Conference on Software Engineering and Advanced Applications, Izmir, Turkey,
5–8 September 2012; pp. 158–165.

63. Rana, T.; Bangash, Y.A.; Abbas, H. Flow Constraint Language for Coordination by Exogenous Connectors.
IEEE Access 2019, 7, 138341–138352. [CrossRef]

64. Rausch, A.; Reussner, R.; Mirandola, R.; Plasil, F. The Common Component Modeling Example: Comparing
Software Component Models, 1st ed.; Springer Publishing Company: Basel, Switzerland, 2008.

http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf
http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf
http://dx.doi.org/10.1145/225014.225042
http://dx.doi.org/10.1016/j.jss.2010.01.008
http://dx.doi.org/10.1109/ACCESS.2019.2943164

Sensors 2020, 20, 1435 28 of 28

65. Atkinson, C.; Hummel, O. Interactive and Incremental Development of Component-Based Software
Architecture. In Proceedings of the Fifteenth International ACM SIGSOFT Symposium on
Component-Based Software Engineering, Bertinoro, Italy, 26–28 June 2012; ACM: New York, NY, USA,
2012; pp. 77–82.

66. Almonaies, A.; Cordy, J.; Dean, T. Legacy System Evolution towards Service-Oriented Architecture. 2010.
Available online: https://pdfs.semanticscholar.org/578c/066684ebe715d087a9eaa2d5e666d04037bc.pdf
(accessed on 6 March 2020).

67. Ganesan, A.; Chithralekha, T. A Survey on Survey of Migration of Legacy Systems. In Proceedings of the
International Conference on Informatics and Analytics; ACM: New York, NY, USA, 2016. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pdfs.semanticscholar.org/578c/066684ebe715d087a9eaa2d5e666d04037bc.pdf
http://dx.doi.org/10.1145/2980258.2980409
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Component-Based Incremental Construction Process
	Incremental Construction in CBD
	Object-Based Component Models
	Architecture Description Languages
	The Basic Pipe-And-Filter Component Model
	The Basic Client–Server Component Model
	The Basic Publish–Subscribe Component Model
	Special Cases of Incremental Construction
	Invasive ADL

	Component Models with Encapsulated Components
	Web Services
	EX-MAN Component Model
	A Comparative Study of the Three Categories of Component Models

	System Construction in EX-MAN
	ATM System
	Weather Information System
	Cash Desk System

	Discussion
	Conclusions and Future Work
	References

