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Abstract. We consider the elliptic system ∆u=p(|x|)uavb, ∆v=q(|x|)ucvd on Rn (n≥3)
where a, b, c, d are nonnegative constants with max{a,d}≤1, and the functions p and
q are nonnegative, continuous, and the support of min{p(r),q(r)} is not compact. We
establish conditions on p and q, along with the exponents a, b, c, d, which ensure the
existence of a positive entire solution satisfying lim|x|→∞ u(x)= lim|x|→∞ v(x)=∞.
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1 Introduction and main results

In this paper we establish the existence of positive solutions (u,v) to the elliptic system

∆u= p(|x|)uavb,

∆v=q(|x|)ucvd , x∈Rn, (n≥3),
(1.1)

that satisfy

u(x)→∞ and v(x)→∞ as |x|→∞. (1.2)

Such solutions of (1.1) are called entire large solutions. The exponents a,b,c d are nonneg-
ative; the functions p, q are radial (i.e., spherically symmetric), nonnegative, and contin-
uous; and the function m(r)≡min{p(r),q(r)} has noncompact support.
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Although the existence of large solutions to semilinear systems began with [1], the
study of large solutions to the more general competitive systems such as (1.1) started
with Garcı́a-Melián and Rossi [2] where the authors considered the system on a bounded
domain with min{a,d}>1 and unit weights (i.e., p= q=1). For both the subcritical case
(i.e., (a−1)(d−1)> bc) and the critical case (i.e., (a−1)(d−1)= bc) necessary and suffi-
cient conditions were given for the existence of boundary blow-up (or large) solutions.
In addition, they established existence for the subcritical case when the weights are non-
constant, nonradial, and possibly blow up on the boundary with a prescribed asymptotic
behavior. Garcı́a-Melián [3] extended existence of blow-up solutions to the case where
the weights, if unbounded, have prescribed growth rates at the boundary. Mu et al [4] al-
so considered the subcritical case and proved existence when the weights are allowed to
vanish on the boundary. Large solutions of the quasilinear problem where the Laplacian
in (1.1) is replaced with the p−Laplacian have also been studied. (See, e.g., [5, 6]).

All of these results apply only to bounded domains. Here we study the existence of
large solutions on all of Rn (n≥3). Except for special cases (e.g., [7] and [1] where a=d=0),
the only other results known to the author is his work with Mohammed [8] where (1.1)
is studied with unit weights and exponents that are radial functions of x. When applied
to the present case where the exponents are constant, we proved that with unit weights a
postive entire large solution exists if and only if max{a,d}≤1 and (1−a)(1−d)≤ bc ([8]
Corollary 4.6). One consequence of this is, of course, that (1.1), with unit weights, will
not have an entire large solution if min{a,d}>1.

Before stating our results, we note some related problems that remain unsolved. For
a nontrivial system (i.e., bc> 0) with nonconstant nonradial weights, there is no known
existence theorem for entire large solutions, even in the case where a= d=0. Even with
nonconstant radial weights, as considered here, it remains unknown as to whether an en-
tire large solution exists when min{a,d}>1, regardless of the case: subcritical, critical, or
supercritical (i.e., (a−1)(d−1)>bc). In particular, what are the appropriate conditions on
the radial weights to ensure that such a solution exists? As mentioned above, the weights
must be nonconstant in (1.1) since, otherwise, it will have a solution only if max{a,d}≤1.

In order to state our main results we define G and H as follows where P(r)=
∫ r

0 sp(s)ds
and Q(r)=

∫ r
0 sq(s)ds and note some equivalences (See (10) and (11) in [9]).

G(r)≡
∫ r

0
t1−n

∫ t

0
sn−1 p(s)dsdt= r2−n

∫ r

0
tn−3

∫ t

0
sp(s)dsdt= r2−n

∫ r

0
tn−3P(t)dt,

H(r)≡
∫ r

0
t1−n

∫ t

0
sn−1q(s)dsdt= r2−n

∫ r

0
tn−3

∫ t

0
sq(s)dsdt= r2−n

∫ r

0
tn−3Q(t)dt.

Notice also that (See (12) and (13) of [9]).

lim
r→∞

G(r)=∞ if and only if lim
r→∞

P(r)=∞, (1.3)

lim
r→∞

H(r)=∞ if and only if lim
r→∞

Q(r)=∞. (1.4)
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Our first result extends Theorem 4.3 of [8] where p = q = 1, and both of the results
below extend Theorem 2 of [9] where a=d=0.

Theorem 1.1. Assume max{a,d}≤1 and bc≤ (1−a)(1−d). If p and q satisfy both∫ ∞

0
rp(r)Hb(r)dr=∞, (1.5)

∫ ∞

0
rq(r)Gc(r)dr=∞, (1.6)

then (1.1) has a positive entire large solution.

It remains open as to whether the conditions (1.5) and (1.6) are necessary; i.e., if either
(1.5) or (1.6) fails to hold, then it is unknown as to whether (1.1) has a positive entire large
solution.

Theorem 1.2. Assume max{a,d}≤1 and bc> (1−a)(1−d). If max{a,d}<1 and if p and q
satisfy either ∫ ∞

0
rp(r)Hα(r)dr<∞, (1.7)

or ∫ ∞

0
rq(r)Gβ(r)dr<∞, (1.8)

where α=b/(1−d) and β=c/(1−a), then (1.1) has a positive entire large solution. On the other
hand, if max{a,d}=1 (and hence either (1.7) or (1.8) is undefined) and if p and q satisfy∫ ∞

0
rp(r)dt<∞ and

∫ ∞

0
rq(r)dt<∞, (1.9)

then (1.1) has a positive entire large solution.

2 Auxiliary results and proofs

Before proving our results, we note first that for u0>0, v0>0, any solution of the system

u(r)=u0+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)ua(s)vb(s)dsdt, (2.1)

v(r)=v0+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc(s)vd(s)dsdt (2.2)

valid for all r≥0 will also be a positive entire solution to (1.1) but not necessarily (1.2).
Proof of Theorem 1.1. We first consider the case max{a,d}=1, and we assume with no
loss of generality that a=1 and d≤1. Since, by hypothesis, bc≤(1−a)(1−d), we get bc=0.
We assume b=0, and note that if instead c=0 the proof is similar. Thus (1.1) becomes

∆u= p(|x|)u, ∆v=q(|x|)ucvd. (2.3)
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The first of these equations has a positive entire large radial solution u since p satisfies
(1.5) with b=0 (See Theorem 1 of [10]), and it satisfies, for any u0>0,

u(r)=u0+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)u(s)dsdt.

Since u is positive, the right side of this equation gives u≥u0, and substituting this back
into the equation yields

u(r)≥u0+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)u0dsdt≥u0G(r). (2.4)

Now with this solution u used in the second equation in (2.3), we define the sequence
{vk} as follows: let v0 to be any constant v0≥1 and

vk(r)=v0+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc(s)vd

k−1(s)dsdt (k≥1). (2.5)

Since 1 ≤ v0 < v1 and hence 1 ≤ v1 < v2, it is clear that the sequence {vk} is increasing.
Furthermore, using integration by parts and the monotonicity of {vk}, we get

vk(r)=v0+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc(s)vd

k−1(s)dsdt

=v0+
1

n−2

∫ r

0
sq(s)uc(s)vd

k−1(s)ds− 1
n−2

r2−n
∫ t

0
sn−1q(s)uc(s)vd

k−1(s)dsdt

≤v0+
∫ r

0
sq(s)uc(s)vd

k−1(s)ds≤v0+
∫ r

0
sq(s)uc(s)vk(s)ds

where the last inequality follows from the monotonicity of {vk} so that vd
k−1 ≤ vd

k and
vd

k ≤ vk since vk ≥ 1 and d≤ 1. Now Gronwall’s inequality provides an upper bound for
the sequence {vk} in terms of u. Hence {vk} converges for all r ≥ 0; let limk→∞ vk = v.
Clearly, v satisfies (2.2), and hence (u,v) satisfies (2.3). We now show that v is large. Since
b = 0, equation (1.5) reduces to P(∞) = ∞ which, by (1.3), is equivalent to G(∞) = ∞.
Therefore, using (1.6), (2.4), and elementary estimates we get

v(r)=v0+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc(s)vd(s)dsdt

≥uc
0vd

0

∫ r

0
t1−n

∫ t

0
sn−1q(s)Gc(s)dsdt

≥ uc
0vd

0
2(n−2)

∫ r/2

0
tq(t)Gc(t)dt→∞ as r→∞. (2.6)

The last inequality can be easily obtained using integration by parts (see p. 748 of [10]).
Now suppose max{a,d}< 1. By hypothesis then αβ= b

1−d
c

1−a ≤ 1, and consequently,
either α≤1 or β≤1. We assume without loss of generality that β≤1. We first show that
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system (1.1) has an entire solution and then show that it is large. Define sequences {uk}
and {vk} as follows with u0=v0=ρ and for any ρ≥1

uk(r)=ρ+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)ua

k−1(s)v
b
k−1(s)dsdt, (2.7)

vk(r)=ρ+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc

k(s)v
d
k−1(s)dsdt. (2.8)

Any solution to this system will also be a solution to the system

∆uk = p(|x|)ua
k−1vb

k−1 ∆vk =q(|x|)uc
kvd

k−1. (2.9)

Note that both sequences are monotonically increasing since obviously u0<u1 and v0<v1
which, in turn, yields u1 < u2 so that v1 < v2. Continuing in this manner produces the
monotonicity of the two sequences. We will show that both sequences are bounded above
on an arbitary bounded interval [0,R] and hence the limit will be a solution to (2.1) and
(2.2). To do this, let wk =u1−a

k and zk =v1−d
k . It is easy to see that (r≡|x|)

∆wk =−a(1−a)u−1−a
k |∇uk|2+(1−a)u−a

k ∆uk ≤ (1−a)u−a
k ∆uk

=(1−a)p(r)u−a
k ua

k−1vb
k−1≤ (1−a)p(r)vb

k−1≤ p(r)zα
k−1. (2.10)

Similarly, we can get
∆zk ≤q(r)wβ

k . (2.11)

Integrating these inequalities we obtain

wk(r)≤ρ1−a+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)zα

k−1(s)dsdt, (2.12)

zk(r)≤ρ1−d+
∫ r

0
t1−n

∫ t

0
sn−1q(s)wβ

k (s)dsdt. (2.13)

Clearly the sequences {wk} and {zk}, like {uk} and {vk}, are monotonically increasing
so if we can show that both are bounded above on [0,R], then both converge on [0,∞).
Consequently, {uk} and {vk} would converge. From the monotonicity of the sequence
{zk} of monotonically increasing functions, inequality (2.12) yields

wk(r)≤ρ1−a+

(∫ r

0
t1−n

∫ t

0
sn−1 p(s)dsdt

)
zα

k (r)=ρ1−a+G(r)zα
k (r). (2.14)

We substitute this into (2.13) and use the well known inequality (A+B)β≤Aβ+Bβ which
holds for any nonnegative A and B since β≤1 to get

zk(r)≤ρ1−d+
∫ r

0
t1−n

∫ t

0
sn−1q(s)

(
ρ1−a+G(s)zα

k (s)
)β

dsdt
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≤ρ1−d+
∫ r

0
t1−n

∫ t

0
sn−1q(s)

(
ρβ(1−a)+Gβ(s)zαβ

k (s)
)

dsdt

=ρ1−d+ρβ(1−a)H(r)+
∫ r

0
t1−n

∫ t

0
sn−1q(s)Gβ(s)zαβ

k (s)dsdt.

Recalling that αβ≤1 and that zk ≥1 since ρ≥1, we get

zk(r)≤ρ1−d+ρβ(1−a)H(r)+
∫ r

0
t1−n

∫ t

0
sn−1q(s)Gβ(s)zk(s)dsdt

≤CR+
∫ r

0
sq(s)Gβ(s)zk(s)dsdt

where CR = ρ1−d+ρβ(1−a)H(R). Gronwall’s inequality may now be used to get {zk}
bounded independently of k on [0,R], and hence on any bounded interval. Consequent-
ly, (2.14) gives {wk} bounded also on any bounded interval. Therefore we obtain the
existence of a positive entire solution to (2.1) and (2.2) (and (1.1)) for any ρ≥1.

To show that these solutions are large, we note that as a consequence of (1.5) and (1.6),
we must have either P(∞)=∞ or Q(∞)=∞. We assume with no loss in generality that
P(∞)=∞ and thus G(∞)=∞ so that using u≥ρ and v≥ρ in (2.1) (with u0=v0=ρ) yields

u(r)≥ρ+ρa+bG(r)→∞ as r→∞.

For v we note that from (2.1), we get

u(r)≥ρa
∫ r

0
t1−n

∫ t

0
sn−1 p(s)vb(s)dsdt

which, when substituted into (2.2) and using elementary estimates, yields

v(r)≥ρ+ρac
∫ r

0
t1−n

∫ t

0
sn−1q(s)

(∫ s

0
ξ1−n

∫ ξ

0
τn−1 p(τ)vb(τ)dτdξ

)c

vd(s)dsdt

≥ρ+ρac+bc+d
∫ r

0
t1−n

∫ t

0
sn−1q(s)

(∫ s

0
ξ1−n

∫ ξ

0
τn−1 p(τ)dτdξ

)c

dsdt

=ρ+ρac+bc+d
∫ r

0
t1−n

∫ t

0
sn−1q(s)Gc(s)dsdt.

Applying integration by parts as in (2.6) and using simple estimates along with (1.6) we
get

v(r)≥ρ+
ρac+bc+d

2(n−2)

∫ r/2

0
tq(t)Gc(t)dt→∞ as r→∞.

This completes the proof. �
Before proving Theorem 1.2, we need to establish a preliminary result on the existence

of a large solution of (1.1) on a ball of finite radius. Our proof will somewhat parallel
those of [9] (see Theorem 3.1) and [8]. There are, however, important differences since
a=d=0 in [9] and p=q=1 in [8].
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Lemma 2.1. Assume max{a,d}< 1, α and β are defined as in Theorem 1.2, and let R be any
positive number for which m(R)> 0. If bc> (1−a)(1−d), then the system (1.1) has a positive
large solution on the ball |x|≤R.

Proof. We show that the system (2.1) and (2.2) has a large solution on |x| ≤ R provided
ρ>0 is chosen appropriately. First we show that the system has a solution valid on |x|≤R
and then establish that ρ can be chosen so that that solution is large. To do this let ζ be a
positive large solution of

∆ζ=h(r)ζαβ

on |x|≤R where h(r)=2βq(r)Pβ(r). Such a solution exists (See Theorem 1 of [11]) since
h(R)>0, and bc> (1−a)(1−d) so that αβ>1. Now choose ρ>0 small so that

ρ1−d+2βρβ(1−a)H(R)< ζ(0). (2.15)

With this value of ρ, we define sequences {uk} and {vk} as in (2.7) and (2.8) for r∈ [0,R].
As noted earlier these sequences are monotonically increasing so if we can show that
they are bounded independently of k, then they must converge to a solution (u,v), not
necessarily large, on the same ball. Letting wk=u1−a

k , zk=v1−d
k as in (2.10) and (2.11), and

using (2.12) along with the monotonicity of {zk} and integration by parts, we get

wk(r)≤ρ1−a+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)zα

k−1(s)dsdt

≤ρ1−a+
∫ r

0
tp(t)zα

k−1(t)dt≤ρ1−a+
∫ r

0
tp(t)zα

k (t)dt

≤ρ1−a+P(r)zα
k (r). (2.16)

Using this inequality in (2.13), we get

zk(r)≤ρ1−d+
∫ r

0
t1−n

∫ t

0
sn−1q(s)

(
ρ1−a+P(s)zα

k (s)
)β

dsdt

≤ρ1−d+
∫ r

0
t1−n

∫ t

0
sn−1q(s)2β

(
ρβ(1−a)+Pβ(s)zαβ

k (s)
)

dsdt

≤ρ1−d+2βρβ(1−a)H(R)+2β
∫ r

0
t1−n

∫ t

0
sn−1q(s)Pβ(s)zαβ

k (s)dsdt.

By our choice of ρ in (2.15), it is clear that zk(r)< ζ(r) for r small. Letting R0 = sup{r0 >
0 | zk(r)< ζ(r) for all r ∈ [0,r0]}, we can use analysis very similar to that in [9] (see p.
327) to prove that R0 =R so that zk < ζ on [0,R], and hence {zk} (and consequently {vk})
converges on [0,R). Using (2.16) we also get wk (and consequently {uk}) convergent on
[0,R). Hence {uk} and {vk} converge on [0,R) and therefore the system (2.1) and (2.2)
has a positive entire solution (u,v) for ρ small.

We now show that ρ can be chosen so that the solution obtained is large. Since the
details of the proof are similar to those of [9] (see proof of the lemma) and [8] (see proof
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of Theorem 3.1), we merely outline the proof here. Define the set T by

T={ρ>0 | (2.1),(2.2) has a solution on [0,R)} ,

and we show that T is bounded. To do this, define the constant γ by (see (3.3) in [8])

γ= a+
(1+b−a)(1+c−a)

2+b+c−a−d
>1,

and let R1 be any number in the open interval (0,R) for which m(R1)>0. Then let ξ be a
positive large solution of ∆ξ=m(|x|)ξγ on |x|<R1. It then follows (see p. 327 of [9]) that√

max{1,ξ(0)} is an upper bound for T. Likewise it also follows (see [8] p. 1486) that
A≡ sup(T)∈ T, and the solution of (2.1) and (2.2) corresponding to ρ= A is large. This
completes the proof.

Proof of Theorem 1.2. We first consider the case max{a,d}< 1 and will assume that
(1.7) holds; the proof when (1.8) holds is similar and therefore omitted. Let rk be any
increasing sequence of positive numbers diverging to infinity for which m(rk)> 0 for
each k. Let (uk,vk) be a positive large solution to (1.1) on the ball |x|< rk which was
established by the lemma and satisfies

uk(r)=ρk+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)ua

k(s)v
b
k(s)dsdt, (2.17)

vk(r)=ρk+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc

k(s)v
d
k(s)dsdt. (2.18)

We show first that this sequence is monotonically decreasing on [0,rk); i.e.,

uk+1(r)<uk(r) , vk+1(r)<vk(r) for all r∈ [0,rk). (2.19)

(For brevity, we write (uk+1,vk+1)<(uk,vk)). In particular, we show that (u2,v2)<(u1,v1)
on [0,r1); a similar proof, which we omit, gives (uk+1,vk+1)<(uk,vk) on [0,rk). Obviously
ρ1 ̸= ρ2, otherwise (u2,v2)=(u1,v1) on [0,r1), which is impossible since (u1,v1) blows up
at r1 and (u2,v2) does not. Thus suppose ρ1 < ρ2, and let R = sup(S) where S ≡ {η ∈
[0,r1) : (u1(r),v1(r))< (u2(r),v2(r)) for all r∈ [0,η)}. The set S is clearly nonempty since
0∈S and thus 0<R≤ r1. If R= r1, then we have a contradiction since that would mean
that limr→r1 u2(r)= limr→r1 v2(r)=∞ which cannot occur since (u2,v2) is continuous on
[0,r1]⊆ [0,r2). So, suppose R< r1. Then

u1(R)=ρ1+
∫ R

0
t1−n

∫ t

0
sn−1 p(s)ua

1(s)v
b
1(s)dsdt

≤ρ1+
∫ R

0
t1−n

∫ t

0
sn−1 p(s)ua

2(s)v
b
2(s)dsdt

<ρ2+
∫ R

0
t1−n

∫ t

0
sn−1 p(s)ua

2(s)v
b
2(s)dsdt=u2(R).
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Thus u1<u2 on [0,R]. Similarly, we can get v1<v2 on [0,R]. Thus there exists ε>0 so that
(u1,v1)< (u2,v2) on [0,R+ε) which contradicts the definition of R. Hence we must have
(u2,v2)< (u1,v1) on [0,r1). A similar proof produces (uk+1,vk+1)< (uk,vk) on [0,rk) for all
k∈N.

It is thus clear that the positive decreasing sequence {(uk,vk)} has a limit (u,v) on Rn

and that (u,v) satisfies (2.1), (2.2). We need to show that (u,v) is both positive and large.
To this end, let Θ be a positive entire large solution of (ν≡ (1−d)/(1−a))

∆Θ= p(r)(1+H(r))α(Θν+Θβ)α.

Such a solution exists (see Theorem 2 of [7]) since αβ>1 and∫ ∞

0
rp(r)(1+H(r))αdr<∞.

As in the proof of Threorem 1.1, we define wk=u1−a
k and zk=v1−d

k so that, similar to (2.10)
and (2.11), we get

∆wk ≤ p(r)zα
k , ∆zk ≤q(r)wβ

k , (2.20)

which yields

wk(r)≤ρ1−a
k +

∫ r

0
t1−n

∫ t

0
sn−1 p(s)zα

k (s)dsdt, (2.21)

zk(r)≤ρ1−d
k +

∫ r

0
t1−n

∫ t

0
sn−1q(s)wβ

k (s)dsdt. (2.22)

From (2.22) and the fact that wk is an increasing function, we get

zk(r)≤ρ1−d
k +

∫ r

0
t1−n

∫ t

0
sn−1q(s)wβ

k (s)dsdt≤wν
k(r)+H(r)wβ

k (r).

Using this in (2.20), we get

∆wk ≤ p(r)
(

wν
k+H(r)wβ

k

)α
≤ p(r)(1+H(r))α(wk+wβ

k )
α on [0,rk).

This inequality and the maximum principle along with the property wk(r)→∞ as r→ rk
shows that Θ ≤ wk on [0,rk) which yields Θ ≤ u1−a on Rn, and hence u is positive and
u(r)→∞ as r→∞.

To show that v is also both positive and large, we first note that since uk(0)=vk(0) for
all k, and u(0)>0, then clearly v(0)>0 so v is positive. To prove v is large, we consider
two cases: Q(∞)<∞ and Q(∞)=∞. If Q(∞)<∞, then H(∞)<∞ by (1.4). Consequently
since (1.7) holds we must have P(∞)<∞, and thus (1.3) gives G(∞)<∞. Therefore (1.8)
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holds and an argument very similar to the proof above that u is large will give v large. If,
on the other hand, Q(∞)=∞, then (1.4) gives H(∞)=∞ so that (2.2) yields

v(r)>
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc(s)vd(s)dsdt≥uc(0)vd(0)H(r)→∞ as r→∞.

For the case max{a,d}= 1, we assume for simplicity that a = 1 and d ≤ 1 and use
the sequences {uk} and {vk} from (2.7) and (2.8) except that the constant ρ is merely
positive. Clearly the sequences are monotonically increasing, but we must show that,
for ρ small, they are bounded above for all r ≥ 0 and therefore converge to an entire
solution of (2.1), (2.2). Then we must prove that there is a value ρ for which the positive
limit function (u,v) is both entire and large. Let w be an positive entire large solution of
∆w=(p(r)+q(r))(w1+b+wc+d) (see Theorem 2 of [7]) and choose ρ<w(0). Then u1 <w
since (u0=v0=ρ)

u1(r)=ρ+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)u0(s)vb

0(s)dsdt

≤ρ+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)w1+b(s)dsdt

<w(0)+
∫ r

0
t1−n

∫ t

0
sn−1(p(s)+q(s))(w1+b(s)+wc+d(s))dsdt=w(r).

Similarly, we get v1 <w which, in turn, will yield uk ≤w and vk ≤w for all k. Thus the
sequences {uk} and {vk} converge for ρ sufficiently small.

We now show that there exists ρ0 > 0 for which the corresponding solution is both
entire and large. To do this, we first note that it is easy to prove that for u0=v0=ρ in (2.1)
and (2.2), the solution (uρ,vρ) is monotonically increasing in ρ. To establish the existence
of ρ0 we first prove that there exists γ > 0 such that the solution (uγ,vγ) is not entire.
Without loss of generality, we assume that 0< c≤d and let δ=bc/(1+b). Then there is a
positive solution z to (see Theorem 1 of [11])

∆z=m(r)z1+δ on [0,1) with z(r)→∞ as r→1−. (2.23)

Choose γ2 > max{1,z(0)}, and we show that (uγ,vγ) is not entire. It is obvious that
z(0)< γ2 = uγ(0)vγ(0), and therefore there exists η > 0 for which z(r)< uγ(r)vγ(r) on
[0,η). Let R= sup{η | z(r)<uγ(r)vγ(r) for all r∈ [0,η)}. If R=1, then we are done since
that shows uγ(r)vγ(r)→∞ as r → 1, and hence (uγ,vγ) cannot be entire. Thus assume
R<1. Then (we now drop the subscript γ for simplicity)

z(R)= z(0)+
∫ R

0
t1−n

∫ t

0
sn−1m(s)z1+δ(s)dsdt

≤ z(0)+
∫ R

0
t1−n

∫ t

0
sn−1m(s)(u(s)v(s))1+δdsdt. (2.24)
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However, since δ/c+1/(1+b)=1, 0< c≤d, and v≥1, we get

(uv)1+δ =(ucvc)
δ
c (v1+b)

1
1+b u≤

(
δ

c
(uv)c+

1
1+b

v1+b
)

u≤u1+cvd+uv1+b.

Using this in (2.24), we get

z(R)≤ z(0)+
∫ R

0
t1−n

∫ t

0
sn−1m(s)

(
u1+c(s)vd(s)+u(s)v1+b(s)

)
dsdt

<γ2+
∫ R

0
t1−n

∫ t

0
sn−1m(s)

(
u1+c(s)vd(s)+u(s)v1+b(s)

)
dsdt. (2.25)

However, ∆(uv)=u∆v+2∇u·∇v+v∆u≥u∆v+v∆u=puv1+b+qu1+cvd so that integration
gives

u(r)v(r)≥u(0)v(0)+
∫ r

0
t1−n

∫ t

0
sn−1

(
p(s)u(s)v1+b(s)+q(s)u1+c(s)vd(s)

)
dsdt

≥γ2+
∫ r

0
t1−n

∫ t

0
sn−1m(s)

(
u(s)v1+b(s)+u1+c(s)vd(s)

)
dsdt.

Using this in (2.25), we get z< uv on [0,R] so there must exist ε> 0 such that z< uv on
[0,R+ε), contradicting the definition of R. Therefore, it must be that R = 1, and hence
u(r)v(r)→∞ as r→ 1 so (u,v) is not entire for this choice of γ and hence for any larger
value. Thus the set T ≡{ρ | (uρ,vρ) is entire} is bounded; let A= supT. We show now
that (uA,vA), the solution when ρ=A, is entire and large.

To prove that (u,v) (We drop the subscript A) is entire, we show for an arbitrary R>0
that (u,v) is finite on [0,R). To do this we define the monotonically increasing sequence
(uk,vk) of entire functions defined by

uk(r)=A− 1
k
+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)uk(s)vb

k(s)dsdt,

vk(r)=A− 1
k
+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)uc

k(s)v
d
k(s)dsdt,

and show that (uk,vk) is bounded above [0,R], and therefore its limit (u,v) is bounded
above. To do this let z satisfy the equation in (2.23) on [0,R+1) with z(R+1)=∞. From
the work above it is clear that ∆(ukvk−z)≥m(r)

(
(ukvk)

1+δ−z1+δ
)

for all r< R+1, and
since ukvk−z<0 near r=R+1, the maximum principle can be used to show that ukvk≤z
on [0,R+1). Hence uv and therefore (u,v) does not blow up in the interval [0,R]. Since R
was chosen aribrarily, we conclude that (u,v) is entire.

To show that (u,v) is large, we define the sequence (uk,vk) by

uk(r)=A+
1
k
+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)uk(s)vb

k(s)dsdt, (2.26)
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vk(r)=A+
1
k
+
∫ r

0
t1−n

∫ t

0
sn−1 p(s)uc

k(s)v
d
k(s)dsdt. (2.27)

Since (uk,vk) is not entire, at least one of the functions blows up at some Rk < ∞; we
assume uk(r)→∞ as r→Rk. However, it must also be that vk(r)→∞ as r→Rk since (2.26)
yields the estimate

uk(r)≤A+
1
k
+
∫ r

0
tp(t)uk(t)vb

k(t)dt

so that Gronwall’s inequality applied to this produces

uk(r)≤A+
1
k
+
∫ r

0
tp(t)vb

k(t)exp
[∫ r

t
sp(s)vb

k(s)ds
]

dt, (2.28)

and therefore vk blows up at Rk since uk does. Furthermore, it is easy to show that
(uk+1,vk+1)< (uk,vk) and hence Rk ≤Rk+1. Using (2.27), we get

vk(r)=A+
1
k
+
∫ r

0
t1−n

∫ t

0
sn−1q(s)uc

k(s)v
d
k(s)dsdt

≤A+
1
k
+
∫ r

0
tq(t)uc

k(t)(1+vk(t))dt= gk(r)+
∫ r

0
tq(t)uc

k(t)vk(t)dt,

where gk(r)=A+ 1
k +

∫ r
0 tq(t)uc

k(t)dt so that Gronwall’s inequality gives

vk(r)≤ gk(r)+
∫ r

0
tq(t)uc

k(t)gk(t)exp
[∫ r

t
sq(s)uc

k(s)ds
]

dt. (2.29)

Using (1.9), we get the existence of a constant C1 such that gk(r)≤ C1uc
k(r). Substitut-

ing this into (2.29) and using (1.9) once again gives the existence of constants C and K,
independent of k, such that

vk(r)≤Cexp(Kuc
k(r)).

Substituting this into the first equation of (1.1), we get

∆uk ≤Cb p(r)uk exp(bKuc
k(r))≡ p(r) f (uk). (2.30)

Define
F(s)=

∫ ∞

s

dt
f (t)

and note that F′(s)=−1/ f (s)<0 and F′′>0. Using this along with (2.30) gives

∆F(uk)=F′(uk)∆uk+F′′(uk)|∇uk|2≥F′(uk)∆uk ≥−p(r),

or equivalently
d
dr

(
rn−1 d

dr
F(uk(r))

)
≥−rn−1 p(r).
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Integrating this over [0,r] for r<Rk, we get

d
dr

F(uk(r))≥−r1−n
∫ r

0
tn−1 p(t)dt.

Noting that uk(Rk)=∞ so that F(uk(Rk))=0, we integrate over [r,Rk] to get

F(uk(r))≤
∫ Rk

r
s1−n

∫ s

0
tn−1 p(t)dtds.

However, since F′(s)<0 we get

uk(r)≥F−1
(∫ Rk

r
s1−n

∫ s

0
tn−1 p(t)dtds

)
and letting k→∞ so that Rk →R≤∞ and uk →u produces

u(r)≥F−1
(∫ R

r
s1−n

∫ s

0
tn−1 p(t)dtds

)
.

Letting r→R and using F−1(s)→∞ as s→0, we have

lim
r→R

u(r)≥ lim
r→R

F−1
(∫ R

r
s1−n

∫ s

0
tn−1 p(t)dtds

)
=∞.

However, u is entire so we conclude that R=∞ and limr→∞ u(r)=∞. Using an argument
similar to that which produced (2.28), it can be shown that v also blows up at infinity.
This completes the proof.
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