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Teaser  

This review will focus on currently available methods for the selection of the most suitable protein 

conformations for multi-target structure-based drug design. 
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Highlights  

 Structure-based approaches play a central role in polypharmacology drug design.  

 Similar protein conformations are able to accommodate similar ligands. 

 The use of selected protein conformations affects structure-based drug design results. 

 In silico approaches for protein conformation selection are presented. 

 Examples of protein conformation selection for structure-based drug design are reported. 

 

 

 

 

 

 

 

 

ABSTRACT  

Several drugs exert their therapeutic effect through the modulation of multiple targets. Structure-based 

approaches hold great promise for identifying compounds with the desired polypharmacological profiles. 

These methods employ the knowledge of the protein binding sites to identify stereoelectronically 

complementary ligands. The selection of the most suitable protein conformations to be used in the design 

process is of paramount importance, especially for multi-target drug design in which the same ligand has 

to be accommodated in multiple binding pockets. Herein, we will focus on currently available techniques 

for the selection of the most suitable protein conformations for multi-target drug design, compare 

potential advantages and limitations of each method, and comment on how their combination could help 

in polypharmacology drug design. 

 

Introduction 

The simultaneous modulation of multiple targets by means of a single drug, i.e., polypharmacology, is 

increasingly recognized as a valuable opportunity in drug discovery [1]. Several drugs are known to 

simultaneously bind to multiple biological targets, thus eliciting either unwanted side effects or beneficial 

synergistic activities [2]. However, designing drugs with a polypharmacological profile represents a 

challenging task [1,3,4] and the few examples of intended polypharmacology are usually within related 

protein families. However, recent efforts in predicting polypharmacology for distantly related targets 

have started to yield promising results [5–7]. Indeed, computational approaches have certainly proved to 

play a key role in exploiting the available structural information, and to perform de novo multi-target 

drug design and in silico profiling [8]. Moreover, a multitude of molecular modeling methods, which can 
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be broadly classified into structure- and ligand-based approaches, are currently available to aid in 

polypharmacology drug design [9,10].   

In general, structure-based methods allow the discovery of potentially active compounds according to 

their structural complementarity to a receptor, being molecular docking one of the most frequently used. 

In this context, the selection of the most suitable protein conformations to be used in a structure-based 

virtual screening (VS) campaign undoubtedly represents a challenging task. In fact, proteins are known 

to undergo significant conformational changes depending on the activation/inactivation state, catalytic 

activity, protein-protein interactions and binding of substrates or different modulators. Therefore, 

selected protein conformations and peculiar amino acid rearrangements induced by co-crystallization 

might bias the outcome of a structure-based drug design project [11,12]. Moreover, it has already been 

reported that: (i) better enrichments can be obtained in docking-based VS when the screened compounds 

are structurally similar to the co-crystallized ligands [13–15]; and (ii) the ability of structure-based 

methods (e.g., molecular docking) in discriminating active from inactive compounds is highly dependent 

on the used protein structure [14,16,17]. If this is not negligible in standard in silico structure-based drug 

discovery (i.e., the one drug – one target paradigm), this concept is even truer when designing molecules 

that are expected to simultaneously bind to more than one biological target.  

Importantly, the degree of similarity of the binding pockets of the studied targets is a critical aspect for 

the selection of protein conformations in a multi-target structure-based drug design project. In fact, it is 

well known that proteins with a high degree of binding site similarity are likely to bind similar ligands, 

as reported in drug repurposing or ligand promiscuity investigations [18,19]. Moreover, the more two 

proteins display similar binding sites and common interaction hot spots, the higher are the chances of 

identifying low molecular weight compounds that are stereoelectronically complementary to the targets 

under study. In the light of this, the selection of the most suitable protein conformations has a dramatic 

effect on in silico structure-based polypharmacology approaches, such as ligand profiling and de novo 

design. However, it has to be pointed out that the design of compounds with multi-target activity is also 

possible by developing ambivalent, chimeric ligands that bind head-to-tail in their respective protein 

targets. Nevertheless, these chimeric ligands usually have high molecular weight and unfavorable drug-

like properties.  

In this article, we will focus on the utility of different in silico approaches to select the most suitable 

protein conformations for structure-based multi-target drug design. This is still an emerging and largely 

unexplored topic. The following sections will provide the reader with an excursus of the currently 

available in silico approaches for protein conformation selection. A few illustrative examples will also 

be provided, demonstrating potential shortcomings and complementarities of the different approaches.  

 

In silico approaches for the selection of the most suitable protein conformations 

The selection of the most suitable protein conformations in multi-target drug design projects represents 

a challenging task, especially when the studied targets are structurally distant and belong to different 

protein families. However, medicinal chemistry data available from public repositories, which in the last 

decades have entered the so called “big data era” [20], could offer valuable opportunities for inferring 

new relationships between known modulators and different proteins. Indeed, several computational 

approaches have been successfully applied to identify potential activities of molecules on other targets, 
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e.g., on the basis of their structural similarity with already reported modulators [21,22]. At present, a 

variety of structure and ligand-based methods are available to analyze the wealth of information provided 

by public databases [23,24], and to guide the selection of the most suitable protein conformations for 

structure-based drug design [13,25].  

Ligand-based approaches in protein conformation selection 

Ligand-based methods enable the identification of new small-molecules through the knowledge of the 

structural details of known active and inactive compounds. Several approaches with different levels of 

abstraction (e.g., molecular descriptors, sets of bit-strings and spatial arrangements of pharmacophoric 

features) and algorithms allow encoding ligand properties and estimating the degree of similarity with 

respect to a reference compound [26,27]. Such methods could be profitably applied in protein 

conformation selection. In particular, conformations of different targets can be selected on the basis of 

the cross similarities of their ligands (Figure 1, panel a). For example, a recent study by Broccatelli F. et 

al. reported how ligand-based methods can be used to select the most suitable receptor conformations for 

a docking-based VS [13]. In this study, the authors compared the performance of different docking 

protocols (i.e., Glide HTVS, SP, and XP protocols) [28] in retrieving compounds active on the CDK2 

protein kinase (PK) within the ChEMBL [29,30] and Directory of Useful Decoys [31] datasets. In 

particular, they performed docking calculations by selecting CDK2 conformations on the basis of the 

similarity of the screened compounds with the co-crystallized ligands. The ligand-based analyses were 

performed by using the Pipeline Pilot Extended Connectivity Fingerprints (ECFP4) and the ROCS 

software that allowed taking into account the different aspects of the ligand similarity (i.e., chemical 

structure or shape and chemical pattern) [32,33]. The authors also suggested the use of multiple protein 

conformations in a VS to achieve higher hit rates. In fact, by combining docking to different CDK2 

conformations and ligand-based similarity approaches, Broccatelli F. et al. demonstrated that the more 

the screened compounds are structurally similar to the co-crystallized ligand in a given protein 

conformation, the higher are the hit rates obtained with docking [13]. Similar considerations to those 

argued by Broccatelli F. et al. can also be drawn by a more recent study proposed by Xu X. et al., in 

which  the authors were able to predict binding modes and affinities of a series of Hsp90 inhibitors [34]. 

Results were in good agreement with the experimental data and were obtained by docking the ligands to 

Hsp90 conformations selected on the basis of the similarity with the co-crystallized compounds. 

Moreover, this study also demonstrated that if a number of ligand-protein complexes are available for 

the target under study, significant improvements in binding mode prediction can be achieved by 

performing docking in conformations carefully selected on the basis of ligand similarity rather than 

through ensemble-based strategies, which use multiple protein conformations [34]. Similar 

improvements in binding mode prediction were also achieved by Duan R. et al. [35] that successfully 

implemented a workflow combining 3D ligand similarity evaluations for protein conformation selection 

and MD simulations of the obtained complexes to prospectively predict binding modes of a series of 

FXR ligands [35]. Despite the aforementioned studies were not aimed at identifying multi-target ligands, 

similar results, in principle, could be obtained when selecting the most suitable conformations of different 

proteins in multi-target projects, provided that the ligands co-crystallized with the two targets present 

overlapping pharmacophoric and/or structural features. In general, protein conformations in complex 

with the same inhibitor, or with similar ligands, should be preferred in polypharmacology studies. This 

rationale has been applied in the selection of protein conformations to get some insights into the 

mechanism of dual inhibition of a PI3K/mTOR dual inhibitor [36] and for prospective multi-target drug 



5 
 

design of dual p53-MDM2/MDMX interaction inhibitors [37]. However, the ability of ligands to bind to 

different biological targets by using separate chemical moieties (head-to-tail ligands) and/or adopting 

different conformations cannot be neglected [38,39].  

Ligand information derived by protein-ligand complexes has also been exploited for structure-based drug 

repositioning. In particular, Kalinina O.V. et al. [40] were able to predict thousands of known and 

unknown protein-drug interactions by first superimposing 3D structures of distant proteins in complex 

with a common active ligand and then, evaluating the structural complementarity of the newly identified 

cross protein-ligand complexes [40]. Even if this study did not focus on protein conformation selection, 

the obtained results highlighted the importance of selecting the most suitable protein conformations for 

drug repurposing. In particular, the identification of ligand-target associations with such a method was 

possible considering that: (i) proteins sharing a common ligand will likely accommodate other binders 

of the targets [40]; and (ii) cross protein-ligand compatibility can be appropriately evaluated using 

receptor conformations of the targets whose binding pockets present similarities and/or accommodate 

similar ligands. Interestingly, these considerations are, to some extent, in line with those reported in 

recent papers by Tyzack J.D. et al. and Das S. et al., in which the authors compared ligand-enzyme 

complexes from the PDB on the basis of the similarity of the bound ligands and discussed on how such 

results could be used to select the most relevant complexes for structure-based drug design [41,42]. 

Nevertheless, the selection of the most suitable protein conformations on the basis of the similarity of 

the co-crystallized ligands obviously presents some limitations. Firstly, it is possible only for those 

targets for which an adequate number of protein-ligand complexes are available [13]. Moreover, intrinsic 

limitations of ligand-based approaches should also be considered [43]. In addition, the identification of 

multi-target ligands structurally similar to that already co-crystallized might be unfavorable when 

searching for novel chemotypes, e.g., to avoid patent issues. On the other hand, several advantages can 

also be envisioned. In particular, if the structure of the identified hits is similar to those of the co-

crystallized ligands, the newly identified multi-target hits are less likely to be false positives [39]. In 

addition, structure-activity relationships of already reported crystallographic congeners might also help 

to identify which chemical moieties are important for the activity. However, one should be aware that 

the application of different ligand-based approaches in the similarity assessments may result in different 

protein conformation selections. In fact, different degree of similarity might be evaluated for the same 

pair of compounds on the basis of the chosen method (e.g., 2D vs. 3D ligand-based approaches). In this 

regard, a recent study by Chen et al., which reported an exhaustive analysis of a subset of the PDB 

structures by using different protein-centric and ligand-centric approaches, demonstrated that different 

performances in retrieving protein pairs sharing common ligands could be obtained according to the 

employed method [44]. Interestingly, the reported results allow to derive some guidelines for multi-target 

drug-design as well. In particular, they showed that 3D-based approaches outperformed 2D methods in 

retrieving structurally unrelated ligands and sequence unrelated proteins (but with similar binding sites), 

whereas 2D methods outperformed 3D ones in recognizing “obvious” structural relationships [44]. For 

the purpose of this review, these results could be reworded as follows: if the targets under study share a 

number of significantly similar co-crystallized ligands, 2D methods should be preferred for identifying 

the most suitable protein conformations for polypharmacology design. On the contrary, if available 

crystal structures of the targets are in complex with structurally unrelated ligands, 3D methods might 

help in identifying the most appropriate conformations. 
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Structure-based approaches in protein conformation selection 

A variety of protein-centered approaches might represent efficient tools to identify suitable protein 

conformations for polypharmacology studies [9,18,25,45]. In fact, the shape and properties of a binding 

site are mostly dependent on amino acid rearrangements, switches between active and inactive protein 

states, and the presence and chemical nature of the bound ligand. For example, the conformations of 

active and inactive states of PKs are known to be significantly different, leading to distant binding 

pockets. Selecting an active or an inactive PK conformation for polypharmacology ligand design would 

most likely lead to different sets of retrieved hits [46]. Moreover, PK structures may show additional 

allosteric pockets or sub-pockets that are not accessible in crystal structures with non-allosteric ligands.  

Binding site similarity evaluations allow the comparison of protein binding cavities [18]. Methods 

enabling the evaluation of the 3D similarity (on the basis of shape or geometrical similarities) between 

binding sites of structurally unrelated proteins have gained a considerable attention in medicinal 

chemistry, especially for the prediction of off-target activities [18,19]. Such methods allow the 

identification of binding pockets with similar anchoring points (or similar shapes) among different 

biological targets [18]. Moreover, they might also help identifying common “hot spots” across different 

targets derived by the presence of specific residues or water molecules involved into relevant H-bond 

networks that could explain ligand promiscuity [47]. Methods for 3D binding site similarity prediction 

have been successfully applied to assist polypharmacology-related tasks [18,48,49]. For example, 

BioGPS [50], which performs a binding site comparison by first detecting cavities in a given crystal 

structure, and, then, by evaluating the overlap in the molecular interaction fields (MIFs) between two 

different targets, allowed Siragusa L. et al. to unveil new potential target combinations for multi-target 

drug design [50]. In particular, the authors reported similarities between the binding site of the 

Sarcoplasmic Reticulum Ca2+ ion channel ATPase and the Estrogen Receptor alpha, even if the two 

proteins present a distant structural folding. Moreover, the authors also identified the structural 

determinants of sub-family selectivity in both the p38a/ERK2 and PPARα/PPARγ proteins [50]. 

Similarly, Niu M. et al. [51] identified Gefitinib as an inhibitor of β-secretase (BACE-1) by performing: 

(i) an extensive similarity analysis between BACE-1 and PK structures with the TM-align tool [52], 

which suggested the EGFR protein as one of the most structurally similar PKs to BACE-1; (ii) local 

binding site comparisons between BACE-1 and EGFR by using the SMAP software [53] further 

demonstrating that these proteins present a high local binding site similarity; and, finally, (iii) in vitro 

testing 13 FDA-approved drugs targeting EGFR on BACE-1 [51]. Combinations of different approaches 

for binding site comparisons have also successfully explained the promiscuity of ligands from a receptor-

based point of view, outperforming the use of a single method [47]. However, to the best of our 

knowledge, no systematic study has been performed so far to explore the possibility of identifying the 

most suitable protein conformations by means of binding site similarity in a multi-target drug design 

context. Given the potentialities of currently available binding site comparison methods, we believe that 

such approaches will play an important role for the selection of the most suitable protein conformations 

in future structure-based polypharmacology drug design. Sequence similarity-based methods have also 

been shown to be particularly efficient in identifying closely related targets, being often more efficient 

than 3D methods [44]. However, as the 3D coordinates of protein residues cannot be taken into account 

with such methods, they cannot be used for the protein conformation selection. 
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Although recent progresses in structural biology and crystal structure determination have increased the 

number of accessible protein conformations [54,55], the applicability of structure-based approaches to 

identify suitable receptor conformations accommodating similar ligands remains limited by the 

availability of 3D structures. Moreover, chosen criteria for the binding site definition (i.e., the residues 

selected for the binding site definition) may affect the final results. Interestingly, these methods could be 

used in combination with molecular dynamics (MD) to further explore the conformational space of the 

investigated binding cavity. MD is mainly used to: (i) describe the dynamic behavior of proteins at 

different timescales; (ii) understand the events occurring during the ligand-protein interaction process; 

and (iii) interpret the results of biophysical experiments and modeling studies [56,57]. However, MD 

approaches have also been applied in combination with the analyses of molecular descriptors, as 

molecular shape and volumes (POVME) [58], and statistical procedures (TRAPP) [59] to identify 

transient receptor conformations and help accounting for protein flexibility. Indeed, protein flexibility 

could strongly bias VS results [60,61] so that a variety of computational approaches has been developed 

to tackle this issue [62–66]. Combinations of MD and appropriate analysis tools could help exploring 

binding site flexibility, and thus obtaining representative structures, including alternative protein 

conformations such as different protein functional states, metastable intermediate conformations, and 

structures with transient pockets, to be employed for drug design [67]. For example, Osguthorpe D.J. et 

al. successfully performed MD simulations and binding site clustering to identify a subset of 

conformations of the Androgen Receptor for VS, thus improving database enrichment and the chemical 

diversity of the retrieved actives with respect to screening to a single conformation [64]. Moreover, the 

authors also applied the same binding site clustering approach on sets of HIV protease and CDK2 crystal 

structures, demonstrating that enrichments and ligand diversity can be also improved when docking is 

performed on conformational ensembles of crystallographic structures [64]. Structure-based approaches 

combining rigid receptor docking with protein structure modeling have also successfully overcome 

receptor flexibility issues [68] and have been applied to rationalize the selectivity of multi-target ligands. 

In particular, in a recent study of Selvam B. and coworkers, an application of MD simulations with 

Desmond [69] and probe mapping with the “multifragment” search module of the MOE2011.10 program 

[70] was used to address ligand selectivity [45]. In this study, the authors generated the conformational 

space of a set of similar bioaminergic G-protein-coupled receptors through MD, allowing the 

identification of common and distinct interaction “hot-spots” that were used to investigate selectivity 

and side effects. These features could be useful to guide the design of molecules able to circumvent 

metabolic side effects and pulmonary hypertension, which are commonly associated with antipsychotic 

drugs targeting bioaminergic receptors. Then, they performed retrospective docking screenings (with 

Glide) on a set of conformations of the different proteins that allowed to discriminate known ligands 

from decoys [28,45]. Despite its utility in single target drug design [67], MD has not been thoroughly 

explored for selecting protein conformations for polypharmacology studies. We envision that a 

combination of MD simulations (to generate an ensemble of protein conformations) and binding site 

comparisons (to assess binding site similarity of the generated conformations) could significantly 

increase the possibility of identifying overlapping conformations between two or more targets (Figure 

2).  

The combination of structure refinement, MD, binding energy predictions, and docking has also been 

proposed to account for protein flexibility and improve the docking accuracy [71–73]. In fact, it is well 

known that currently available docking algorithms might provide inaccurate binding energy estimations 
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[74] as they might not properly account for entropic and solvation terms [75]. Therefore, the use of more 

accurate scoring methods has been explored. In this context Greenidge P.A. et al. demonstrated that 

advanced workflows, including combinations of MM-GBSA binding free energy rescoring and docking, 

improved pose prediction and binding affinity estimations in a VS [76]. However, it should be noted that 

such methods might present intrinsic limitations, one of them being the computational cost. More 

recently, scoring functions (SC) based on machine-learning approaches have also been developed. For 

example, Wójcikowski M. et al. have recently reported a scoring function (RF-Score-VS) based on the 

machine-learning random forest approach [77]. They also demonstrated that machine-learning based SC 

could exceed classical SC in correctly scoring training set compounds across different biological targets 

[77]. Similar results were also achieved by Kinnings S.L. et al. in  the drug repurposing field, where they 

successfully applied a classification support vector machine approach to improve SC performance in 

docking [78]. In particular, the authors were able to identify Phosphodiesterase (PDE) inhibitors with 

potential activity on InhA, a recognized target for treating Mycobacterium Tuberculosis infections. 

Moreover, the authors were also able to prioritize a set of compounds known to bind to estrogen-like 

receptors, further confirming the ability of machine-learning based SC in predicting binding affinity [78]. 

Despite the potentialities of machine-learning approaches in drug discovery, applications in protein 

conformation selection have not yet been reported. 

Molecular docking can be considered as well a useful tool for the selection of the most suitable protein 

conformations for structure-based VSs. In this regard, a recent study of Wang et al. reported how 

integration of molecular docking and statistical analysis could help in identifying the most suitable 

protein conformations for structure-based drug design [25]. In particular, the authors investigated 249 

protein structures of 14 autophagy-related targets by using Surflex-dock [79]. Then, they prioritized 

protein conformations on the basis of their ability to distinguish active ligands from inactive ones 

evaluated in terms of docking score distributions. However, as also stated by the authors, the applicability 

of this methodology strongly depends on the availability of active and inactive ligands for the target 

under study [25]. Therefore, the applicability of docking-based protein conformation selection in 

polypharmacology design requires an adequate number of known inhibitors for all the targets under 

study. More recently, Jaiteh M. et al. have reported the identification of novel dual-target ligands of 

A2AAR and MAO-B by means of docking screenings [80]. In particular, the authors performed first 

parallel validations of a series of A2AAR and MAO-B docking protocols, without focusing on structures 

of already reported dual inhibitors to avoid potential biases in the prospective screening. This allowed 

the identification of structurally distant protein conformations of the two targets, providing the best 

logAUC on a training set of ligands. Then, they carried out structure-based VS, prioritizing screening 

compounds on the basis of a consensus rank on the two targets. Thanks to this approach, Jaiteh M. et al. 

identified two nanomolar dual inhibitors of A2AAR and MAO-B. However, subsequent structure-activity 

relationship studies did not provide improvements of the dual activity profiles, as even slight 

modifications of the identified scaffolds negatively affected the activity toward one target or the other. 

Therefore, these results provided some insights into the use of docking methods for selecting the suitable 

protein conformations for multi-target drug design.  
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Concluding Remarks and Future Perspectives 

Structure-based methods represent essential tools for designing multi-target ligands. Despite a variety of 

methods and algorithms are currently available to estimate the complementarity of ligands with the 

binding site of the targets under study, the selection of the proper protein conformations is still of 

paramount concern. In fact, it is well known that structure-based VS results are strongly dependent on 

the used protein conformation and that structural details or peculiarities in the selected binding sites may 

allow potential biases toward the identification of certain chemical scaffolds instead of others [13,14]. 

These issues become even more relevant in polypharmacology applications, even if they have received 

very little attention so far. However, the information provided by available protein-ligand complexes, 

which allows encoding key receptor-ligand interactions and anchoring points of a protein binding site, 

should be always taken into account when performing polypharmacology structure-based drug design. 

Several approaches have been proposed to partially overcome potential pitfalls related to the use of a 

single receptor conformation in standard VS. In particular, methods based on the use of an ensemble of 

protein conformations and docking algorithms incorporating receptor flexibility in the calculations have 

demonstrated to provide higher hit rates with respect to the use of a single protein conformation 

[65,66,81–84]. In multi-target drug design, considering an ensemble of protein conformations may 

increase the chances of retrieving compounds with dual activity, as a consequence of the higher 

probability of identifying conformations of the two targets sharing common anchor points. Moreover, 

the selection of appropriate protein conformations becomes even more relevant when the two targets 

display low similarities because of the presence of water molecules in the binding site. In such cases, the 

importance of specific water molecules for ligand binding should be carefully assessed a priori in order 

to: (i) avoid including in the binding site thermodynamically unfavorable waters (potentially replaceable 

by the inhibitors) and; (ii) retain those involved in highly conserved H-bond networks. In this regard, the 

reported protein-ligand complexes may allow the identification of conserved water-mediated protein-

ligand interactions that cannot be neglected in the ligand design process [85]. However, even though 

several drug design applications have been reported [86,87], this issue has not yet been thoroughly 

considered in multi-target drug design.  

In general, binding site conformations of the different targets should be selected by trying to: (i) limit 

biases on compound selection derived by the use of peculiar protein conformations, which may represent 

low populated protein states; and (ii) identify, either by ligand similarity or binding site comparison 

techniques, protein conformations able to accommodate compounds with similar scaffolds. Therefore, 

selecting multiple conformations across different targets to enable structure-based drug design represents 

a challenging task. However, a number of ligand- and structure-based approaches are available to analyze 

the wealth of information provided by publicly available databases of either protein-ligand complexes or 

apo structures [9]. Moreover, the combination of different computational approaches could allow to 

thoroughly exploit information derived by the structural details of both co-crystallized ligands and 

residues lining the binding site. In particular, when an adequate number of structures of protein-ligand 

complexes are available, structure- and ligand-based analyses can be performed in parallel to guide the 

selection of protein conformations. Such approaches may allow the identification of several pairs of 

protein conformations with sufficient similarity to be used in docking. For example, ligand-based 

similarity approaches on the co-crystallized ligands could help in identifying pairs of protein 

conformations able to accommodate similar compounds, whereas structure-centered approaches might 

allow the identification of common anchoring points or similar structural features shared by different 
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protein cavities. These latter approaches are especially useful when dealing with apo structures. In the 

same line, molecular dynamics techniques combined with binding site comparison tools, machine-

learning approaches, analyses of molecular descriptors, etc. may also allow to sample the conformational 

landscape of proteins, thus enabling the use of alternative protein conformations for multi-target ligand 

design [67]. Overall, even if it received very little attention in polypharmacology so far, the selection of 

protein conformations operated upon these considerations will likely provide structure-based models 

with improved forecasting performances, thus creating novel opportunities for future multi-target drug 

design. 
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Figure Legends 

Figure 1. Ligand-based methods can be used to select the most suitable protein conformations to be used 

in structure-based multi-target drug design. Panel a) shows that ligands extracted from the complexes in 

their crystallographic conformations can be used to identify pairs of ligands (and, therefore, pairs of 

protein conformations) for the subsequent VS. Different approaches can be used for the assessment of 

the ligand similarity. Moreover, the identified ligand cross-similarities could also be used, in principle, 

to prescreen a database of ligands in a VS campaign - Panel b). 
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Figure 2. Structure-based approaches can be used to compare the binding site of different protein 

conformations or validate screening protocols, when an appropriate number of crystal structures 

conformation is available for the targets under study. These analyses could allow the identification of 

protein conformations across different targets that are able to accommodate the same ligands. Moreover, 

molecular dynamics simulations can be used to further sample the protein conformational space. The 

identified pairs of protein conformations can then be used in a parallel structure-based VS workflow to 
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increase the chances of identifying multi-target inhibitors, either as a single conformation per target or 

as ensembles. 

 

 

 


