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ABSTRACT

The problem of inferring novel knowledge from implicit facts by logically connecting inde-

pendent fragments of literature is known as Literature Based Discovery(LBD). In LBD, to discover

hidden links, it is important to determine the relevancy between concepts using appropriate infor-

mation measures. In this study, to discover interesting and inherent links latent in large corpora,

nine distinct methods, comprising variants of statistical information measures and derived seman-

tic knowledge from domain ontology, are designed and compared. A series of experiments are

performed and analyzed for those proposed methods. Also, a new strategy of effective preprocess-

ing is proposed, which is capable of removing terms that have meager chances of constituting a

new discovery. Finally, an organized list of final concepts deemed worthy of scientific investigation

are provided to the user. Overall, our research presents a comprehensive analysis and perspec-

tive of how different statistical information measures and semantic knowledge affect the knowledge

discovery procedure.
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1. INTRODUCTION

Decades of experimentation and analysis has led to proliferation of scientific literature in

the domain of biomedicine. MEDLINE, a preeminent bibliographic database contains more than

23 million references to journal articles in life science with a major concentration in biomedicine.

Approximately 2,000-4,000 references are added everyday[17]. Figure 1.1 and 1.2 illustrates the ex-

ponential growth of scientific reporting and Unified Medical Language(biomedical knowledge base)

provided Metathesaurus concepts over the past decade respectively. This overloaded textual re-

source in life science, although readily available, has made it difficult even for domain experts

to subsume relevant knowledge in their field of interest. Sophisticated technologies and efficient

linguistic computational tools are needed to leverage this rich representation to gain deeper in-

sights. With the growth of this unparalleled publicly available scientific knowledge and availability

of higher throughput methods, there has been a surge of interest in biomedical researchers to

apply automated text analysis techniques and accelerate the discovery of new knowledge. This

methodology of generating hitherto unknown but meaningful knowledge is known as Literature

Based Discovery(LBD). In other words, LBD refers to the technique of harnessing already available

scientific knowledge to uncover “non-apparent but interesting relationships” by rationally connect-

ing complementary but non-interactive set of articles. LBD is considered a challenging aspect of

biomedical text mining as it involves not only identification and extraction of information from

text, but also logically connecting them to reveal hidden, complex and meaningful associations.

Initially, Swanson and Smalheiser pioneered this area of research by studying the role of dietary

fish oils in preventing Raynaud’s syndrome (i.e., a vasospastic disorder causing the narrowing of

blood vessels[27]). In subsequent years, to demonstrate the applicability of their ideas, they re-

ported 11 previous unknown linking connections between migraine and magnesium[28]. Broadly, in

their research, they found that implicit pieces of information could be discovered by studying the

linkage between unrelated literature already present in the corpora. The principal objective behind

this research arena was to identify plausible relations worthy of further scientific investigation or

experimentation. Swanson classified LBD into two types, namely, open and closed discovery. In

open discovery, a researcher specifies a topic of interest(viz., a disease or gene or pharmacological
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substance) and the system applies text mining techniques to find a set of terms that are directly

related to the starting topic of interest(A). These terms are called intermediate terms(B) or bridge

concepts. For each of these intermediate terms, the system reiterates the same mechanism to gen-

erate a set of terms that are directly correlated to each intermediate terms. Thus generated terms

are called terminal concepts or final terms(C). It should be noted that the kind of connection

between starting topic of interest and final terms are both indirect and novel. Generally, Open

discovery relates to hypothesis generation, where none existed before. It begins with one concept

from the research question and explores next levels(B and C) to identify relevant concepts which

are unknown yet seemingly elucidate interesting associations. On the contrary, in closed discovery,

the user specifies a pair of topics(A and C) and the objective is to find any unknown but mean-

ingful connection that exists between them. It is more often characterized as hypothesis testing or

generation of more granular hypotheses. A high level view of both open and closed discovery can

be seen in figure 1.3. In this work, we restrict our discussion to open discovery.

Figure 1.1. Number of indexed citations added to MEDLINE

Meanwhile, the initial works of Swanson and Smalheiser became prototypical example of

LBD, it also simulated researchers to contribute in practical areas of protein-protein interaction,

clinical medicine and health care. A few successful examples of LBD include, finding functional con-

nection between genes[4], drug-disease association[30], identification of viruses as bioweapons[29]
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Figure 1.2. Growth of UML Metathesaurus each year

and so forth. Over the years, to tackle this intriguing problem, several techniques utilizing fre-

quency of co-occurrences[9, 19, 26], association rules[14, 21] and graph-theoretic metrics[33, 3, 2]

were proposed. Although these aforementioned methods immensely aided in developing scalable so-

lutions and advanced the research area of LBD, there are possible areas of improvement. Prominent

information scientists working in this area of study stress the need to improve upon the following

issues a) investigating measures capable of generating related concepts(intermediate and terminal)

with higher confidence, i.e., terms which are not only statistically prominent but also semantically

associated b) development of prudent ways to navigate the large search space and prune uninfor-

mative, bogus terms in advance c) lessen the amount of manual intervention or domain knowledge

required during the discovery process. In this study, we intend to probe these problems by ex-

ploring the idea that interesting links or connection which help to elucidate implicit associations

are better explored by integrating statistical correlation measures and semantic knowledge in an

intelligent way. Obviously, to find interesting connections, an information measure is required to

determine the closeness between two terms. In this work, we study nine methods of mining hid-

den links from biomedical literature which are combinations of information measures and semantic

support. These nine methods are further classified into three groups. The first group consists of

three existing information measures: association rule, mutual information, and Chi-Square. The

second group includes null-invariant correlation measures: all confidence, Kulcynski, and cosine.

Finally, the last group is a combination of correlation measures and our proposed concept of se-

3



mantic relatedness. To the best of our knowledge, we are the first to study the application of these

popular null-invariant correlation measure in biomedical literature mining. Also, in addition to

a comparative study of information measures, we perform an extensive preprocessing to remove

terms which are highly frequent, common, and uninformative. Our experiments demonstrate as

to how it aids in reducing the generation of uninteresting rules, ultimately, improving the overall

performance. Finally, to reduce the need for any manual intervention or domain knowledge, we

incorporated available semantic knowledge as an integral component of our system. Unlike other

approaches[26, 21], we require our users to input only possible semantic relations between initial

topic of interest(A) and to be discovered target concept(C), rather than manually providing prob-

able semantic types for intermediate and target terms. With input semantic relations and initial

topic of interest, we automatically generate semantic types and use them as category restriction

for B and C terms.

Overall, our research work presents a meticulous analysis of how manifold statistical infor-

mation measures and semantic knowledge affect the knowledge discovery procedure. The reminder

of this thesis is structured as follows. Chapter 2 discusses related work. In chapter 3, we present

an overview of our methods in detail. In chapter 4, we present experiments and evaluation results.

And finally chapter 5 brings conclusion and gives directions for future work.

Figure 1.3. Open and Closed discovery approach
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2. RELATED WORK

The original conception of LBD was facilitated by “Raynaud’s disease-Fish oil” discovery

by Swanson in 1986[27]. They proposed a simple ABC model (See Figure 2.1), where AB and BC

refer to the direct relationships reported in literature explicitly wherein the goal was to find any

inferred relationship via intermediates B. This model was used to propose several novel hypotheses

by manually connecting missing links between disjoint journal articles in biomedical domain. For

instance, in his famous “Raynaud’s disease-Fish oil” discovery, he studied the literature related to

Raynaud’s disease and observed that patients with Raynaud’s syndrome have high platelet aggre-

gation, high blood viscosity and impaired vascular reactivity. On the other hand, the literature

related to Fish oils contained information that ingestion of fish oils lowered blood viscosity, platelet

aggregation, and caused vascular reactivity. Thus, by connecting these disjoint sets of literature,

he hypothesized that fish oils may be beneficial for patients with Raynaud’s syndrome. Likewise, in

another study, using the same approach he found 11 indirect connections between Magnesium and

Migraine Disorder, some of which are: serotonin, epilepsy, spreading cortical depression, calcium

channel blockers, prostagladins, inflammation, type A personality and brain hypoxia. These con-

nections was later verified experimentally by [22]. In subsequent efforts, together with Smalheiser,

he postulated several other discoveries including Estrogen-Alzheimers Disease [24], Indomethacin-

Alzheimers Disease [23] and Calcium Independent Phospholipase A2-Schizophrenia [25].

2.1. Arrowsmith

Although Swanson’s initial investigation was based on exhaustively reading title and ab-

stracts from MEDLINE, in years followed, he developed a software tool named Arrowsmith to

automate some of the steps. It supported both open and closed discovery. Given an initial topic

of interest(A and C), firstly, it queried the titles of MEDLINE articles belonging to both set of

citations in order to generate an initial set of intermediates. Next, using the initial set of inter-

mediates, MEDLINE was queried again to obtain more documents from which potentially useful

B terms were obtained. These intermediates found were then ranked on the basis of frequency of

co-occurrence. Later on, additional features like semantic filtering by Unified Medical Language1

1https://www.nlm.nih.gov/pubs/factsheets/umls.html
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semantic types and more sophisticated ranking of intermediate terms were incorporated. Even

though his work instituted seminal ideas in this area of study, it had a few setbacks. One of the

major setbacks was the need for manual inspection of literature and domain knowledge required

during several stages of discovery process. Consequently, subsequent works tried to alleviate this

bottleneck by automating the process.

Figure 2.1. Swanson’s ABC Model

2.2. Dad

Weeber et al[31] developed a concept based LBD system named Dad using Metamap2.

Metamap is a tool developed by National Library of Medicine(NLM) to provide access to concepts

in the UMLS Metathesarus from biomedical text. This is a powerful tool used by bioinformat-

ics community to leverage the available domain knowledge. An example of concept extraction

by Metamap is shown in Figure 2.2. In the figure, terms within big brackets marked as red are

the corresponding semantic types. Weeber used these semantic types for concept filtering. The

use semantic types also provides a better understanding of context from the hierarchical and as-

sociative relations in the semantic networks. Using concept based approach with aid of available

domain knowledge, he successfully replicated some of Swanson’s discoveries and also found some

potentially new applications for thalidomide[32]. They suggested that thalidomide, through some

immunologic factors such as tumor necrosis factor and interleukin-12, might be useful for treating

acute pancreatitis, chronic hepatitis C, Helicobacter pylori-induced gastritis, and myasthenia gravis.

The aforementioned approaches were based on the traditional understanding that discoveries are

2https://metamap.nlm.nih.gov/
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likely to emerge from logical connection between initial topic of interest(A), intermediates(B) and

terminal concepts(C) which frequently or rarely co-occur with each other in the knowledge base.

Thus, building upon this idea, several distribution approaches[19, 26, 9] employed frequency based

metrics such as term-inverse document frequency(tf-idf ), record frequency and token frequency to

find intermediate and terminal concepts.

Figure 2.2. A sample biomedical title with concepts parsed by Metamap

2.3. Litlinker

While frequency based approaches were successful in propelling LBD one step ahead, there

were certain issues remaining to be addressed. One of them was the possible number of A → B,

B → C combinations. Obviously, because in MEDLINE, one concept may be connected to many

other concepts. Hence, it was necessary to explore solutions which can navigate such large search

space in an efficient manner. To deal with this combinatorial problem, Pratt and Yetisgen-Yildiz[21]

in their work ‘Litlinker’ used Unified Medical Language(UML) provided domain knowledge to

limit their search space. They implemented open discovery building upon the initial framework

established by Swanson. In addition to using knowledge base as an integral component, they

grouped together synonym terms by merging any terms that had same concept id, and then assigned

a preferred name to that group. Overall, the system included knowledge based methodologies,

natural language processing techniques, and a data mining algorithm to mine biomedical literature

for potentially casual links between biomedical terms. To identify correlated concepts, they used

Associations rules(Apriori algorithm) and level of support to rank AB and BC term pairs. The
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threshold for support was empirically set to 0.002 which in their system meant, an association was

likely to be spurious unless the concept occurred in at least five titles. In their later work[36],

they reported the use of UML concepts is computationally expensive for practical use and decided

to use MeSH3 terms to represent documents. To reduce search space, they decided to prune non

interesting intermediate or target terms. In their study to judge the significance of terms they

report three class of problems on the basis of which they eliminate terms a) terms that were too

broad (e.g. adults, disease, and medicine) to be target terms b) terms which were closely related to

start term (e.g. headache for starting term migraine) c) terms that didn’t make sense for plausible

connections. For the first class of problem, they utilized MeSH hierarchy. In MeSH hierarchy,

terms are ordered from generic to specific, any target term which were more generic than one or

more linking terms were eliminated. Next, for the second class of problem, they again made use

of MeSH hierarchy. Any term which were immediate family(e.g. parents, grandparents, siblings,

children) of start terms were removed. Lastly, for the third class of problem they required user to

select semantic types for intermediate linking and target terms. Any term which did not belong

to the selected semantic types were considered non-interesting. To identify correlated concepts,

they used a statistical approach based on background distribution and term probabilities. Using

this approach, they were able to recover intermediates for Migraine disorder-Magnesium and also

suggest new insights into associations between 1) Alzheimer’s Disease and Endocannabinoids, 2)

Migraine and AMPA receptors, and 3) Schizophrenia and Secretin. In our present work, to manage

the exponential combinations of A → B and B → C, we perform an extensive preprocessing to

remove frequent terms that are too general to be meaningful.

2.4. Iridescent

Following the notion of distributional approaches, Wren et al[34] in IRIDESCENT, at-

tempted to extend the calculation of mutual information to indirect associations by using Mutual

Information measure of the shared associations. Given their maximum likelihood estimates, the

strength of associations between AB and BC pairs were then computed and normalized, based

on degree centrality between terms. This aided to remove non-informative terms that were fre-

quently co-occurring and highly connected in the corpus. Applying their approach, the authors

demonstrated the discovery of new knowledge on Chlorpromazine and Cardiac Hypertrophy.

3https://www.nlm.nih.gov/mesh/
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2.5. Manjal

Padmini[26] in 2004 presented another LBD system named ‘Manjal’ based on concept pro-

files consisting of weighted MeSH terms. Her system supported both open and closed discovery.

She viewed Swanson’s discovery method as having two dimensions. First dimension referred to a

set of interesting related concepts for a particular topic of interest. Second dimension explored

the nature of relationships that existed between identified associations(AB or BC). In her work,

her proposed algorithms focused on the first dimension and the second dimension was performed

through manual analysis of literature. The idea was to build MeSH based profiles from MEDLINE

for given topic of interest. Here a profile is refereed to as a set of MeSH terms that together repre-

sent a corresponding topic. For instance, consider a topic such as Diabetes Mellitus, the profile for

this topic would include terms representing proteins, genes, drugs, treatments, other disease and

symptoms associated with it. The fact that each MeSH terms belongs to one or more semantic

types is exploited. To elaborate, topic profiles are built within context of semantic types. Thus,

when required, the profiles may be focused or narrow down to specific semantic types. A normalized

weighting scheme of TF × IDF (term frequency × inverse document frequency) is used to weight

MeSH descriptors. Open and closed discovery algorithm employing MeSH based profiles were pro-

posed to generate novel hypotheses. The methodology was used to replicated 5 out of 6 discoveries

made by Swanson. Later on, it was also used to gain new insights into the novel therapeutic roles

of turmeric.

2.6. Rajolink

Unlike other approaches which heavily relied upon the idea of frequent terms, Petric devel-

oped a LBD system called Rajolink based on rare terms. They implemented Swanson’s ABC model

in a different way. The main distinguishing feature was the combination of open and closed process

together for knowledge discovery. It also differed from existing approaches in the way it identified

candidate sets for to-be discovered concepts. In their approach, the choice of to-be-discoverd con-

cept(A) was based on rare terms identified in the literature of initial topic under investigation(C).

The motivation behind was - if a piece of information appears rarely in a set of articles then they

they assume it has been explored relatively lesser by researchers. Thus, building upon this assump-

tion, the authors argue that investigating these terms might prove as innovative pathways. It is

9



known that rare connections might prove as golden luggage in large datasets. The key components

in Rajolink included: Rare terms, Joint terms, and linking terms. The authors applied their method

on autism literature and suggested relations between calcineurin and autism. Although no direct

evidence of calcineurin role in the autism was found, the authors claim to have identified significant

links between them by analyzing the articles from two domains. Another plausible hypothesis given

by them was the relation between autism and NF-kappaB.

2.7. Bitola

Hristovski applied associate rule mining to find correlated MeSH terms using Swanson’s

open discovery approach and developed a system called Bitola[14, 13]. Bitola supported both open

and closed discovery. The entire MEDLINE database was preprocessed and transformed into a local

knowledge-base consisting of concepts and associations. This knowledge base was further used as a

foundation for entire approach. As the search and analysis of results were performed on this locally

stored knowledge base, the overall performance of system was fast. To find correlated concepts,

they used Association rules, together with support and confidence. Bitola made extensive use of

domain knowledge provided by UMLS. Consequently, it has several filtering options available when

searching for related concepts: by semantic type, semantic group and by relationship strength.

Furthermore, some methodological and technical developments were added later on to make it

better for the genetic application. In addition to MeSH terms, gene symbols were extracted from

the titles and abstracts from MEDLINE. For genes, chromosomal locations were loaded, as well

as the chromosomal locations for numerous genetic disease. Also, it incorporated supplementary

concept records - mostly drugs and chemicals. Lastly, the final target terms could be filtered by

chromosomal location and expression location.

Although co-occurrence based methods advanced the research area of LBD, it was not fool-

proof. The use of co-occurrence has several drawbacks a) all co-occurrence in MEDLINE were not

necessarily interesting. b) systems tend to produce a large number false positives (semantically

unrelated associations) c) users have to review article manually to understand the nature of asso-

ciations. Thus, to alleviate these shortcomings, researchers introduced the idea of relation based

approach for LBD. A relation based approach utilizes semantic relations or predicates between

concepts to capture the meaning of associations. Hristovski[12] used this approach based on predi-

cations extracted from two Natural language processing components, SEMREP and BiOMEDLEE.
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To exploit semantic predications in LBD, they introduced a notion of discovery pattern. The pat-

terns were classified into two forms on the basis of manner they generated candidates. The first form

was named as Maybe Treats1 which was satisfied when there was a change in body substance(B)

associated with starting disease(C) and there was an opposite change in concept B associated with

concept A. An example of this pattern is Swanson’s Raynaud’s disease-Fish oils case. Patients

with Raynaud’s syndrome(C) suffered from increased level of blood viscosity(B) and the ingestion

of fish oils(A) reduced its level. Thus, fish oil may treat Raynaud’s disease. Another form of dis-

covery pattern introduced was Maybe treats2, where in order to find potentially new treatment for

a starting disease(A), another disease(A2) with similar characteristics was found and then a new

treatment(C2) for disease(A) was proposed. An example for this pattern was demonstrated using

example of Huntington disease. In patients with Huntington disease, the level of insulin is often

decreased which is also the case for patients with Diabetes Mellitus. With the help of clinicians, the

authors reported potentially new treatment for huntington disease - insulin. Also, the authors state

an interesting fact to support their assertion - Huntington patients develop diabetes mellitus about

seven times more often than matched healthy controlled individuals. Similar to the Maybe Treats

discovery pattern used by Hristovski, [1] introduced another pattern based on semantic predications

named May Disrupt. The pattern is of the form Substance X <inhibits> Substance Y, Substance

Y <causes> Pathology Z, Substance X <may disrupt> Pathology Z. It focuses on understanding

relationships among drugs, genes, and disease. The objective was to use discovery pattern to un-

derstand the mechanism underlying drug therapies that are currently used but poorly understood.

The methodology was used to investigate antipsychotic agents used in treatment of cancer. In their

results they suggest five biomolecules: brain-derived neurotrophic factor, CYP2D6, glucocorticoid

receptor, PRL, and TNF which may provide casual links between anti-psychotic agents and cancer.

2.8. Graph Based Approaches

On contrary to above approaches, [3] implemented relation based technique for closed dis-

covery using graph based approach. The main idea was to generate a ranked set of subgraphs

which captured multifaceted complex associations, given a pair of initial concepts. The subgraphs

generated on distinct thematic dimensions enabled broader understanding of the nature of complex

associations between concepts. To create subgraphs they relied upon three datasets. First was

MEDLINE, a bibliographic database of more than 23 millions citations maintained by National
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Library of Medicine. The Second was SemMedDB, a database of more than 65 million semantic

predications extracted from MEDLINE by SEMREP. The third was Biomedical Knowledge Repos-

itory(BKR), a knowledge base consisting of statements from the UML Metathesarus together with

semantic predications. The overall approach was divided into five steps: 1) Query specification 2)

Candidate graph generation 3) Path context representation 4) Path Clustering and 5) Subgraph

ranking. The query specification step required two initial concept of interest (A,C), path length(K)

and a date(D). The initial concepts were manually augmented with other closely related concepts.

Next, in candidate graph generation step, the system retrieved the set of MEDLINE documents

relevant to input query and created a graph. Depth first search (DFS) algorithm was used to

perform traversal and generate all paths of specified length(K). In third step (i.e. Path context

representation), MeSH terms are used to define context of a path. The related paths were clustered

into subgraphs. Dice similarity was used to compute the semantic similarity of MeSH descriptions

representing paths. The paths above certain threshold were grouped together using Hierarchical

agglomerative clustering (HAC) algorithm. Finally, in the last step, the generated subgraphs were

ranked using intra-cluster similarity. This approach facilitated the re-discovery of 8 out of 9 ex-

isting discoveries. In addition to re-discovery, a statistical evaluation was done to measure the

interestingness of a subgraph in MEDLINE. Interestingness was measured using rarity.

Figure 2.3. System architecture of Cameron et al.

In [10] , Gramatica explored computational linguistics and graph theory to find new treat-

ments for existing drugs. Leveraging upon publically available biomedical knowledge, they created
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a graph representation of knowledge to discover hidden relations between any drug and disease.

The nodes in graph were referred to the UML concepts and links were defined by the co-occurrence

of concepts at sentence-level. Analyzing the graph using stochastic process provided an effective

instrument to understand different mechanisms of action of peptides and drugs. To shed light on

the applicability of their technique, two examples were provided: a) the granulomatous disease

Sarcoidosis and its pulmonary pathology, and b) Imatinib, a targeted-therapy agent against cancer

cells, well known for its apoptosis action. Similarly, Goodwin et al[7] developed a hybrid approach

using spreading activation, degree centrality, and relative frequencies for LBD. The approach gen-

erated a single subgraph by capturing the strength of associations between concepts. The strengths

were calculated based on concept and predications based degree centrality. The spreading activa-

tion algorithm was then used to select relevant concepts. Finally, the system generated a list of

intermediates instead of a graph. Overall, the method was used to successfully rediscover the con-

nection in the Testosterone–Sleep discovery, and also elucidated the Norepinephrine, Depression,

and Sleep scenario.

2.9. Bio-Sars

Again taking advantage of semantic relations, [15] proposed a biomedical semantic based

association rule system(Bio-Sars) to generate highly likely novel and biomedically relevant con-

nections among the biomedical concepts. The main distinctive characteristic was the augmen-

tation of traditional association rule mining with semantic support to reduce associations which

were spurious, useless or biomedically irrelevant. The relation based approach utilized semantic

types, semantic relations and semantic hierarchy on the bridge and target concepts to filter out

meaningless association rules. They also introduced a concept of mutual qualification. In mutual

qualification, if semantic types of A and B for a rule (A→ B) are not related, the rule is dropped.

In their work, the authors demonstrate the significance of mutual qualification in association rule

to generate more semantically meaningful relations. The experiments replicated two of famous

Swanson discoveries: Raynaud’s disease-Fish Oils and Magnesium-Migraine Disorder. Moreover,

they reimplemented Latent semantic indexing algorithm to compare their results. Although these

were made significant strides they still required a certain amount of domain knowledge in order to

specify appropriate semantic types for generating intermediate and terminal concepts. In this work,

we automate this step by automatically generating semantic types for intermediate and terminal
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concepts by utilizing user provided “initial topic of interest(A)” and “initial semantic relations” for

to-be-discovered concept. Closely related to our work is [15, 16, 18], where we generate the semantic

types in a similar way but are distinct in a sense that we do not limit the use of semantic types to

merely remove uninteresting relations. Instead, we go one step ahead by calculating the semantic

relatedness between semantic types over MEDLINE corpus and use that information to promote

relations with higher semantic meanings. Undoubtedly, these aforementioned works have furthered

Swanson’s method significantly but none of them were comprehensive enough in evaluating various

information measures and consider specific semantic relationships. Also, a limitation of measures

such as Chi-Square and MI is that they suffer from a critical property of null-invariance (i.e., mea-

sures which are influenced by total number of null transactions). Null transaction in the context of

biomedical dataset refers to articles not containing the concepts(A,B or B,C) of interest being ex-

amined. And as studied in[11], a good information measure should not be affected by transactions

that do not contain the itemsets of interest, as it might generate unstable results. Motivated with

this narrative, we were interested in studying the application of null-invariant correlation measures

such as all confidence, Kulcynski and cosine in the biomedical dataset and see how they affect the

experiments results in comparison to existing methods. We believe, we are among the first to study

the application of null-invariant measures in biomedical literature and present a comprehensive

comparative study of how different information measures combined with semantic knowledge affect

knowledge discovery process.

Although the basic foundation of LBD paradigm has been ABC model (initially proposed by

Swanson), it still might miss some interesting A-C connections. Wilkowski et al. [33] extended this

model using a graph based approach. Wilkowski suggested that the ABC model can be decomposed

to a more granular level in order to elucidate complex associations between concepts. The extension

proposed is known as AnC model, where,

n= (B1, B2, ..., Bm).

The main goal was to incorporate semantic predications and graph based techniques to elucidate

understanding of poorly understood associations by providing novel viewpoints, observed upon

expanding B element of ABC model. Similar to previous methods, semantic predications were

extracted from MEDLINE citations using SEMREP. Also, it is worth nothing that while majority
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of studies in LBD focused on biomedical domain, there were few which explored other domains.

Gordon et al. (2002)[8] applied Swanson’s ABC model to discover novel applications for existing

problem solutions on the World Wide Web. For instance, they used “genetic algorithms” as their

A term and discovered many potential fields of application such as “virtual reality”, “computer

graphics”, and “fluid dynamics”. Cory (1997) applied LBD on humanities databases to discover

hidden analogies.
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3. METHODS

In this section, we present nine methods(categorized into three groups) to mine implicit

associations from biomedical literature. The first group includes traditionally used information

measures such as: Associate rule mining(ARM), Mutual Information, and Chi-square. The second

group consists of popular null-invariant correlation measures such as: all confidence, Kulcynski, and

cosine. Finally, the third group includes combination of null-invariant measures and our proposed

concept of semantic relatedness. A high level view of our methods is shown in figure 3.1. Also, a

detailed algorithm for each method is presented.

Figure 3.1. Basic architecture of the proposed methods

3.1. Group 1: Information Measures

3.1.1. Associate Rule Mining

Associate Rule Mining(ARM) is widely used in data mining applications. Given a document

collection, specific level of support and confidence, the goal is to generate frequent itemsets above

these thresholds. An association rule of the form A → B, let sup = support(A ∩ B) and conf =

support(A ∩ B)/support(A). If concept A is taken as input, then all A → B rules are found from

one itemset. Then from another distinct itemset B → C rules are found. Finally, a transitive law is

applied to get a transitive link A→ C. It should be noted that we can not find A→ C directly, as

both A and C occur in independent itemsets. In our experiments, we use F-measure(F) to calculate

the strength of relation.
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F =
2Sup ∗ ×Conf
Sup+ Conf

3.1.2. Mutual Information

Mutual Information(MI) is used to measure the dependency between variables or terms.

The degree of closeness is used to rank terms. For a given term pair(A,B), mutual information is

computed as

MI(A,B) = log(PAB/PA.PB)

where PA,PB denote the probability of term A and B respectively. PAB denote the probability

that terms A and B co-occur. In our experiments, to avoid negative weighting, we remove the log

function. Also, it is worth nothing that this metric might rank rare associations higher[34].

3.1.3. Chi-Square

Given two variables, Chi-Square(χ2) can measure how strongly one variable implies the

other, based on the available data. For example: Suppose a pair (a,b), χ2 takes into the account

co-occurrence frequency of a,b and also co-occurrence of a and b with other terms. For a term

co-occurrence matrix, let O be the observed frequency and E be the expected frequency, then the

χ2 value is computed as

χ̃2 =
1

d

n∑
k=1

(Ok − Ek)2

Ek

For, a 2× 2 contingency table(shown in table 3.1, the degree of freedom is (2-1)(2-1) = 1.

For 1 degree of freedom, the χ2 value needed to reject null hypothesis at the 1% significance level

is 6.63. In other words, if the Chi-Square value between two terms is greater than the critical value

of 6.63, that means it rejects the null hypothesis that two terms are independent.

3.2. Group 2: Null Invariant Correlation Measures

3.2.1. All confidence

Given a pair of terms, A and B, the all confidence(all conf) measure of A and B is defined

as:

all conf(A,B) = support(A ∪B)/max{support(A), support(B)}

Where max{support(A),support(B)} is the maximum support of itemsets A and B.
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Table 3.1. 2× 2 contingency table

V=v V 6= v

U=u E11=(R1 × C1)/N E12=(R1 × C2)/N

U 6= u E21=(R2 × C1)/N E22=(R2 × C2)/N

3.2.2. Kulczynski

For a pair of terms, A and B, the Kulczynski(Kulc) measure of A and B is defined as:

Kulc(A,B) = 1/2(P (A|B) + P (B|A)).

Kulc is a measure of average of two conditional probabilities: the probability of itemset B

given A, and the probability of itemset A given B.

3.2.3. Cosine

For a pair of terms, A and B, the Cosine measure of A and B is defined as:

Cosine(A,B) =
support(A ∪B)√
sup(A) ∗ sup(B)

The reason all of these above three measures are called null-invariant is that their values

are only influenced by A,B and (A ∩B) and not by total number of transactions not containing A

or B.

In our experiments, similar to [36, 26], we also use MeSH terms to represent articles. MeSH

terms are National Library of Medicine(NLM) controlled vocabulary which human experts use

to manually index citations. Thus, it is assertive to assume that if an article is important to

a particular MeSH term, it will be indexed with that. Basically, MeSH terms are classified into

three types: main headings (also known as descriptors), sub-headings(qualifiers) and supplementary

concept records. Descriptors indicate the main contents of the citation. For illustration, if an article

discusses about the role of fish oil in treating patients with Raynauds disease, then the article may

be indexed with descriptors “fish oil”,“raynaud disease”,“blood vessels”. At this point of writing,

there are 27,883 descriptors. Moreover, if a descriptor alone is the central topic of article, it is

assigned an attribute called “major topic”. Another classification of MeSH term is Qualifer. But,

qualifiers are important only when in conjunction with descriptor(i.e., they describe a special aspect
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of descriptor). Lastly, Supplementary concept records are used to index chemicals, drugs, and other

concepts related to citation. In this work, we restrict our analysis to descriptors. Next, we present

algorithms using methods contained in groups 1 and 2.

Algorithm

Input: Initial topic of investigation A as MeSH term, Date, K (top B concepts), M (top C

concepts), Semantic relation for B and Semantic relation for C.

Output: Final concept list (C terms)

Procedure

• Step 1. Search the local MEDLINE database[Detailed in section 3.3.1] to find documents

indexed with the input query MeSH term before the specified cut-off date.

• Step 2. Extract all the MeSH descriptors which co-occur with input MeSH term from relevant

documents. We call these terms all B Terms.

• Step 3. Remove all terms from all B terms which belong to common MeSH terms set created

in section 3.3.2. Also, remove terms which do not belong to generated semantic types for

B(section 3.3.3). The remaining terms are pruned all B Terms.

• Step 4. From the local database, find the co-occurrence frequency between A and each of

candidate B terms.

• Step 5. Use statistical information measure(e.g. χ2, MI or Kulc) to determine the closeness

between terms.

• Step 6. Rank all the candidate B terms based on the degree of closeness. Select top K B

terms.

• Step 7. For each B i (i=1,2,3...K) do

1. Search local MEDLINE database to find documents which are indexed with B but not

A with the same cut-off date as Step 1.

2. Repeat from Step 2 to Step 6 to generate candidate C terms.

3. Remove all C terms co-occurring with A term. Select top M C terms.
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• Step 8. List all C terms (Final terms)

Next, we explain each step in detail with an example. The input parameters are: Initial

topic of investigation A (Raynaud’s disease), Date (1985), K (10), M (1), Semantic relation for B

(‘Causes’) and Semantic relation for C (‘Treats’).

• Step 1. Given the initial topic of interest, which at this point of time should be a MeSH

descriptor, the local MEDLINE database[section 3.3.1] is searched to find all documents

indexed with that term. Only those documents are retrieved whose publication is before

cut-off date (e.g. 1985). We find 2646 documents.

• Step 2. All the MeSH descriptors which co-occur with Rayanud’s disease(RD) are extracted

from the retrieved documents. These terms are called all B Terms. The total terms B terms

found were 2533.

• Step 3. To prune general terms, we remove all terms from all B terms which belonged to

common MeSH terms set created in section 3.3.2. After that we find the semantic types of

RD from UML semantic network. The semantic type for RD is “Disease or syndrome”. Next,

again leveraging semantic network, we find all semantic types which have relation ’causes’

with Disease or Syndrome. The semantic types found are used as category restriction for B

terms. Also, we find all semantic types which have relation ’treats’ with Disease or Syndrome.

These are used as category restriction for A terms. Table 3.3 shows the semantic type for A

and B terms. All terms from all B terms whose semantic type does not belong to the semantic

types generated for B terms are removed. The remaining terms are pruned all B Terms. The

total terms left after preprocessing were 957.

• Step 4. From the local database, we find the frequency of A, B and AB. For an example

of association Raynaud’s disease → Blood viscosity, we find frequency of Raynaud’s disease

(A):2646, Blood viscosity(B): 3911, and “Raynaud’s disease-Blood viscosity(AB)”: 30.

• Step 5. The frequencies found in step 4 are plugged into statistical information measure(e.g.

χ2, MI or Kulc) to determine the closeness between terms.

• Step 6. The B terms are ranked in descending order of their frequency. Top 10 B terms are

selected to find terms for next level.
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• Step 7. Each B terms is search in local MEDLINE database to find relevant documents.

Similar to search in step 1, we retrieve all documents published before specified cut-off data

(1985) but differ in a way that documents are indexed with B and NOT C term. This

constraint of search will guarantee B and C does not co-occur each other in the same document

and thus reduce the possibility that the candidate A terms extracted co-occur with C term.

The terms hence extracted will be candidate A terms.

• Step 8. The terms in candidate A term set which belong to common MeSH terms set created

in step 3 are removed. Likewise, any term whose semantic type doesn’t belong to semantic

types of A term generated in step 3 are removed.

• Step 9. Similar to step 4, we find the co-occurrence frequency of B→A associations. For an

example term pair Blood Viscosity → Fish Oils, the frequency of Blood Viscosity(B) is 3911,

the frequency of fish oils(A) is 860 and frequency of “Blood Viscosity-Fish oils” is 7. Next,

plug in these values into statistical measures and calculate the score. This score represents

the degree of closeness between B and A.

• Step 10. The final A terms for each top 10 B terms are ranked in descending order of frequency

and top 1 term is selected. Altogether, final top 10 A terms are shown to the user.

3.3. Group 3: Combination of Null-invariant Measures and Semantic Support

In this section, we present our new method to discover novel knowledge from biomedical

literature. The fundamental idea is to augment the method described in section 3.2 with semantic

support. Basically, in this method, a user is required to specify an topic of investigation(A), initial

semantic relation(ISR) and a date. For instance, if a user is interested in finding novel therapeutic

preventions for Raynaud’s disease, then the input parameters could be following, initial topic of

investigation(A) “Raynaud’s disease”, date “1985”, and ISRs “causes” and “prevents”.

After the user specifies input parameters, our system performs a search on local database to

collect relevant literature. Next, we perform an extensive preprocessing to eliminate terms which are

highly frequent. To determine highly frequent terms, firstly, we calculate frequency of MeSH terms

over entire MEDLINE corpus and draw a box plot[20] to find outliers. We assume that the outliers

generated are highly common terms(refer section 3.3.2). Also, we take advantage of MeSH hierarchy
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to prune terms which are generic. Followed by preprocessing, our system automatically generates

the semantic types using semantic network4 for intermediate and final concepts. The semantic

types are generated from user provided initial topic of interest and initial semantic relation. We

used these generated semantic types as category restriction for intermediate(B) and terminal(C)

concepts. A detail of explanation of this step is presented in section 3.3.3.

In addition to taking advantage of available semantic and category knowledge, we introduce

a concept of semantic co-occurrence. To elaborate, similar to co-occurrence matrix at term level,

we project MeSH terms to their semantic space and generate a co-occurrence matrix of semantic

types (viz., the weighted matrix provides the count of a semantic type co-occurring with all other

semantic types over the MEDLINE corpus). For instance, for a term pair (Raynaud’s disease →

Platelet Adhesiveness), we first obtain their respective semantic types (Disease or Syndrome→ Cell

function). Next, from the weighted semantic co-occurrence matrix, we find the frequency of co-

occurrence between them. We use this value as a measure for our semantic relatedness. We assume

that if semantic co-occurrence of two semantic types is high, then terms belonging to them are

more related. It should be noted that each MeSH term certainly belongs to one or more semantic

types. Altogether, combination of null-invariant measures and semantic co-occurrence value is used

to measure the degree of closeness between terms(A→B, B→C). In essence, the idea is to promote

relations which are both statistically significant and semantically associated. A detailed algorithm

of this method is presented in section 3.3.3.

3.3.1. Searching the Literature

For searching the literature, we created our own local MEDLINE database. This database

consists of entire dump of MEDLINE citation records(year 2015). The available raw data is in

XML format. A sample medline citation in XML format is shown in figure 3.2. The raw data

processed and stored across several tables. For each MEDLINE record, we store PMID(a sin-

gle element to uniquely identify articles), ArticleT itle(the title of each article),Abstract(abstract

text of each article),PubDate (it contains the full date on which the article was published) and

MeshHeadingList(it contains the MeSH terms assigned for each article). In our experiments,

we use PubDate to divide MEDLINE into two sets(before publication date and after publication

date) for evaluation purposes. We also store MeSH tree codes for each MeSH term. The database

4https://semanticnetwork.nlm.nih.gov/
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Figure 3.2. Xml structure of sample MEDLINE file

design takes into account the peculiarities of MeSH Terms, the fact that there can be more than

one MeSH tree code for one MeSH term. For instance, a MeSH term Eye has MeSH tree codes

A01.456.505.420, A09.371 respectively. Also, it should be noted that we use this database to find the

co-occurrence frequency between two terms. This value is used in calculation of several statistical

information measures.

To summarize, in our system, a researcher is required to specify an initial topic of interest

which should be a MeSH descriptor(e.g. “Migraine Disorders”) and a cut-off date(e.g. 1988) to

collect relevant literature on a particular subject of interest.

3.3.2. Preprocessing

As discussed in section 2.1, one of the major challenges for LBD researchers has been to

enhance performance of their system by negotiating the exponential search space in an intuitive way.

The general convention has been to remove terms which are highly “common”. [21] initially removed

terms or concepts which appeared more than 10,000 times in MEDLINE documents. Later, they

used MeSH hierarchy(Tree codes) to remove terms which were too “broad”. Similarly, [15] created

their own custom stop word list to remove terms which they deemed unsuitable for discovery. This
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Figure 3.3. An example showing MeSH term hierarchy

Figure 3.4. A normal Quantile-Quantile Plot

list included 325 frequently used MeSH terms. However, it is not clear, what parameters they use to

deem a MeSH term as common. In our work, after studying the existing techniques and taking into

account the statistical and semantic properties of MeSH terms, we decided to prune common terms

based on following two parameters: a) frequency of MeSH terms over entire MEDLINE records b)

tree codes of MeSH terms.

Firstly, after obtaining the frequency of MeSH terms over the entire MEDLINE corpus,

we plot its distribution. To understand the nature of distribution, we drew a Normal Q-Q plot5.

Generally, in the Normal Q-Q plot, for normally distributed data, the data points approximately fit

a straight line. However, as it is evident from figure 3.4, the distribution in our case is not normal.

Alternatively, it is highly skewed. And in statistics, for a dataset which does not follow gaussian or

5http://data.library.virginia.edu/understanding-q-q-plots/
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Table 3.2. Top 10 common MeSH terms

MeSH term Frequency Major Count

Humans 12944044 1

Male 6326498 1

Female 6306642 0

Animals 5130327 10

Adult 3792522 441

Middle Aged 3171765 633

Time Factors 966947 1085

Child, Preschool 725299 547

United States 711204 0

Molecular Sequence
Data

593668 39

normal distribution, Median is a preferred measure for central tendency[20]. Thus, to find outlier

data, we draw a boxplot and obtain its outer fences.

UpperOuterFence : QU + 3(InterQuartileRange)

Measurements which lie beyond these outer fences are considered as outliers[20]. The upper outer

fence value calculated was 24,404. Thus, any MeSH term with frequency greater than this value was

considered as highly frequent a.k.a “common”. In addition to outlier detection, we also take ad-

vantage of MeSH term hierarchy. MeSH terms are arranged in hierarchy according to their level of

specificity, the term in the top are generic whereas terms in lower levels are more specific. To elim-

inate generic terms, we remove MeSH terms whose level is 1,2,3(e.g. A01, A01.456, A01.456.313).

An example of MeSH hierarchy is shown in Figure 3.3. In total, using this technique we gathered

454 terms. We name this set as common MeSH terms. Table 3.2 shows top 10 common terms. It

is interesting to note that the outlier terms obtained have very low support as major topics. For

instance, terms like “humans”,“male” were assigned as major topic only once. This is encouraging

because a term is assigned as “major topic” only when it is the central focus of article. And the

outlier terms in our set having low support as major topic signifies their hollowness to produce a

novel discovery. To summarize, as our goal in this research is to evaluate methods on the basis of

their novelty in generating knowledge, we prune terms which have meager statistical or semantic

significance.
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3.3.3. Generating Semantic Types for Intermediate and Terminal Concepts

Given an initial topic of interest(A) and initial semantic relations(ISR), we use available

domain ontology provided by UMLS to find semantic types for intermediate and terminal concepts.

UML is a biomedical knowledge base and is used as an integral component throughout our knowl-

edge discovery procedure. Primarily, it has three components a) Metathesaurus: It is a multi-

purpose vocabulary database that is organized by concept, or meaning. It links alternative names

and views of the same concept from different source vocabularies and identifies useful relationships

between different concepts. b) Semantic network: All concepts in the UML metathesaurus are

categorized into one or broader subject categories called semantic types. Ex:- Fish oil belongs to

semantic types [“biologically active substance”, “lipid”, “pharmacologic substance”] and Raynaud’s

disease belongs to semantic type [“Disease or syndrome”]. There are altogether 135 semantic types

and there exists a set of useful relationships between them which are called “semantic relations”.

At present, there are 54 semantic relations (See figure 3.5) between semantic types. Examples

of relations includes “treats”, “diagnoses”, “prevents”, and so forth. In our methods, the user is

required to input one of these semantic relations as an input parameter. c) Specialist lexicon:-

The SPECIALIST Lexicon provides the word usage information needed for the SPECIALIST Nat-

ural Language Processing (NLP) System. The Lexicon entry for each word or term contains the

syntactic, morphological, and orthographic information needed by the SPECIALIST NLP System.

For an input topic of interest(A) as “Raynaud’ disease” and ISRs (“causes”, “treats”),

where ”causes” AND ”treats” refer to the constraints set for intermediate B and final C terms

respectively, we first find semantic types for input A. For Raynaud’s disease, the semantic type is

“Disease or Syndrome”. Next, we use the semantic network to find all the semantic types which

have relations ‘causes’ or ‘treats’ with “Disease or syndrome”. Table 3.3 shows the semantic types

generated for intermediate and final concepts.

Unlike other approaches[26, 32, 19], we automatically generate the semantic types for B

and C terms instead of requiring users to manually set them. It should be noted that the semantic

types manually set by [26] are automatically generated by our system. Also, we use a distinct set

of semantic types for B and C terms rather than using the same for both. The semantic types for B

and C are shown in table 3.3. Next, we present the algorithm for methods using group 3 measures.
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Table 3.3. Semantic types for intermediate and final concepts for “Raynaud’s disease”

Semantic type for B Semantic type for C

Physiologic Function Therapeutic or Preventive Procedure

Organism Function Chemical Viewed Functionally

Pathologic Function Neuroreactive Substance or Biogenic Amine

Molecular Function Biologically Active Substance

Organ or Tissue Function Pharmacologic Substance

Genetic Function Antibiotic

Pharmacologic Substance Indicator, Reagent, or Diagnostic Aid

Biologically Active Substance Immunologic Factor

Chemical Viewed Structurally Hazardous or Poisonous Substance

Neoplastic Process Indicator, Reagent, or Diagnostic Aid

Cell Function Enzyme

Disease or Syndrome

Cell or Molecular Dysfunction

Element, Ion, or Isotope

Amino Acid, Peptide, or Protein

Antibiotic

Cell or Molecular Dysfunction

Nucleic Acid, Nucleoside, or Nucleotide

Congenital Abnormality

Acquired Abnormality

Mental or Behavioral Dysfunction

Mental Process
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Figure 3.5. Semantic relations available from semantic network

Algorithm

Input: Initial topic of investigation A as MeSH term, Date, K (top B concepts), M (top C

concepts), Semantic relation for B and Semantic relation for C.

Output: Final concept list (C terms)

Procedure

• Step 1. Search local MEDLINE database to find documents indexed with the input query

MeSH term before specified cut-off date.

• Step 2. Extract all the MeSH descriptors which co-occur with input MeSH term from relevant

documents. We call these terms all B Terms.

• Step 3. Remove terms from all B terms which are present in common MeSH terms set created

in section 3.3.2. The remaining terms are pruned all B Terms.

• Step 4. Find the semantic type of term A from UMLS (Sem A) and generate semantic types

for intermediate term as explained section 3.3.3. These are referred to as Sem B and are used

as category restriction for B terms.
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• Step 5. Remove all terms from pruned all B Terms whose semantic types do not belong to

Sem B. We call these terms candidate B terms.

• Step 6. Use null-invariant measures to calculate the statistical value(stat value) between A

and each of candidate B terms. To obtain semantic co-occurrence value, we use semantic co-

occurrence matrix(sem coccur). Find cumulative value for each B term (i.e., Score (A→B1)

= stat value(A→B1) * sem coccur (A→B1).

• Step 7. Rank all B terms in descending order of the overall score. Select top k B terms.

• Step 8. Similar to Step 6, find all related semantic types for C terms. These are called Sem C

and are used as category restriction for C terms.

• Step 9. For each B i (i=1,2,3...k) do

1. Search local MEDLINE database to find documents which are indexed with B but not

A with the same date as Step 1.

2. Repeat step 2 to step 6 to find C terms.

3. Remove all C terms co-occurring with A term. Rank them in descending order of the

overall score. Select top M C terms.

• Step 10. List all C terms (Final terms)

Next, we explain each step in detail with an example. The input parameters are: Initial

topic of investigation A (Migraine disorder), Date (1988), K (10), M (1), Semantic relation for B

(Causes) and Semantic relation for C (Treats).

• Step 1. Given the initial topic of interest, which at this point of time is restricted to MeSH

descriptor, the local MEDLINE database[section 3.3.1] is searched to find all documents

indexed with that term. Only those documents are retrieved whose publication is before

cut-off date (e.g. 1988). We find 6116 documents.

• Step 2. All the MeSH descriptors which co-occur with Migraine disorder(MD) are extracted

from the retrieved documents. These terms are called all B Terms. The total B terms found

are 3643.
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• Step 3. To prune general terms, we remove all terms from all B terms which belonged to

common MeSH terms set created in section 3.3.2. After that we find the semantic types of

MD from UML semantic network. The semantic type for MD is “Disease or syndrome”. Next,

again leveraging semantic network, we find all semantic types which have relation ’causes’

with Disease or Syndrome. The semantic types found are used as category restriction for B

terms. Also, we find all semantic types which have relation ’treats’ with Disease or Syndrome.

These are used as category restriction for A terms. Table 3.3 shows the semantic type for A

and B terms. All terms from all B terms whose semantic type doesn’t belong to the semantic

types generated for B terms are removed. The remaining terms are pruned all B Terms. The

total terms left after preprocessing were 3424.

• Step 4. From the local database, we find the frequency of A, B and AB. For an example of

association Migraine disorder → epilepsy, we find frequency of Migraine disorder (A):2646,

epilepsy(B): 46884, and “Migraine disorder-epilepsy(AB)”: 374.

• Step 5. The frequencies found in step 4 are plugged into statistical information measure(e.g.

χ2, MI or Kulc) to determine the closeness between terms.

• Step 6. The B terms are ranked in descending order of their frequency. Top 10 B terms are

selected to find terms for next level.

• Step 7. Each B terms is search in local MEDLINE database to find relevant documents.

Similar to search in step 1, we retrieve all documents published before specified cut-off data

(1988) but differ in a way that documents are indexed with B and NOT C term. This

constraint of search will guarantee B and C does not co-occur each other in the same document

and thus reduce the possibility that the candidate A terms extracted co-occur with C term.

The terms hence extracted will be candidate A terms.

• Step 8. The terms in candidate A term set which belong to common MeSH terms set created

in step 3 are removed. Likewise, any term whose semantic type doesn’t belong to semantic

types of A term generated in step 3 are removed.

• Step 9. Similar to step 4, we find the co-occurrence frequency of B→A associations. For an

example term pair epilepsy→Magnesium, the frequency of epilepsy(B) is 3911, the frequency
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of Magnesium(A) is 36914 and frequency of “epilepsy-Magnesium” is 212. Next, plug in these

values into statistical measures and calculate the score. This score represents the degree of

closeness between B and A.

• Step 10. The final A terms for each top 10 B terms are ranked in descending order of frequency

and top 1 term is selected. Altogether, final top 10 A terms are shown to the user.

In our experiments, we empirically set the value of K as 10 and M as 1.
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4. EXPERIMENTS

Evaluating LBD systems is an essentially challenging issue and remains an open problem[37].

Although LBD systems are designed to produce novel scientific knowledge, replicating Swanson’s

discovery has been seen as an effective evaluation approach by most LBD researchers. Swanson and

Smalheiser applied their famous ABC model and published several discoveries in medical domain.

Since then, their discoveries have become gold standard for evaluation. To compare and contrast

our manifold methods, we choose two of Swanson’s famous discoveries

1. Raynaud’s Disease - Fish oil (RD-FO)

2. Migraine disorder - Magnesium (MD-MG)

In our experiments, we intend to explore the following questions:

1. How does the use of existing information measures such as “Associate rule mining, Mutual

information, Chi-Square” compare with popular null-invariant measures in their application

to biomedical dataset?

2. How does our proposed approach of augmenting null invariant correlation measures with

semantic support affect experimental results ?

3. Does the preprocessing performed to remove general, uninformative links aid to improve the

overall performance ?

4. Finally, Are the final C terms generated by different methods worthy of further scientific

research or experimentation ?

4.1. Result of Raynaud’s Disease - Fish Oils example

In 1986, Swanson explored the research question of “role of dietary fish oils in treating

patients with Raynaud’s syndrome”. After analyzing disjoint sets of literature belonging to Fish

oils and Raynaud’s disease respectively, he found that Raynaud’s disease is aggravated by high

blood viscosity(B), high platelet aggregation(B), Vasoconstriction(B), and the ingestion of Fish oils
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Table 4.1. Top 5 B terms for RD-FO before preprocessing

existing information measures null-invariant correlation measures

ARM MI χ2 all conf kulc cosine

humans humans female scleroderma,
systemic

humans scleroderma,
systemic

female female male age factors female fingers

male male scleroderma,
systemic

sympa
thectomy

male age factors

adult adult animals fingers adult sympa
thectomy

middle
aged

middle
aged

fingers telan giec-
tasis

middle
aged

vibration

Table 4.2. Ranking of top 5 B terms for RD-FO after preprocessing

Existing information measures Null-invariant Correlation measures

ARM MI χ2 all conf kulc cosine

thromboangiitis

obliterans

blood pressure thromboangiitis

obliterans

thromboangiitis

obliterans

cervical rib thromboangiitis

obliterans

regional blood

flow

pregnancy arteriosclerosis

obliterans

arteriosclerosis

obliterans

acro-osteolysis arteriosclerosis

obliterans

arteriosclerosis arthritis,

rheumatoid

cryoglobulins cryoglobulins thromboangiitis

obliterans

cryoglobulins

arteriosclerosis

obliterans

arteriosclerosis erythromelalgia fingers erythromelalgia erythromelalgia

arthritis,

rheumatoid

chronic disease arteritis intermittent

claudication

chilblains arteritis

Table 4.3. Ranking of important B terms in Raynaud’s disease - Fish Oils before preprocessing

B term Group 1 Group 2

m1 m2 m3 m4 m5 m6

Blood viscosity 61/2533 191/2533 51/1100 31/2533 80/2533 46/2533

Vasoconstriction 73/2533 262/2533 62/1100 30/2533 93/2533 53/2533

epoprostenol 140/2533 394/2533 190/1100 73/2533 176/2533 119/2533

thrombosis 90/2533 390/2533 154/1100 67/2533 190/2533 91/957

Platelet aggrega-
tion

238/2533 272/2533 500/1100 383/2533 413/2533 356/2533

arteriosclerosis 321/2533 154/2533 140/1100 134/2533 31/2533 95/2533
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Table 4.4. Ranking of important B terms in Raynaud’s disease-Fish Oils after preprocessing

B term Group 1 Group 2 Group 3

m1 m2 m3 m4 m5 m6 m7 m8 m9

Blood viscosity 14/957 42/957 16/626 12/957 30/957 15/957 10/957 25/957 12/957

Vasoconstriction 18/957 62/957 25/626 16/957 36/957 11/957 11/957 35/957 10/957

epoprostenol 41/957 107/957 28/626 18/957 39/957 50/957 13/957 35/957 19/957

thrombosis 27/957 44/957 71/626 21/957 10/957 48/957 17/957 39/957 43/957

Platelet aggrega-

tion

73/957 65/957 140/626 349/957 173/957 148/957 193/957 214/957 208/957

arteriosclerosis 23/957 40/957 26/626 11/957 28/957 41/957 3/957 17/957 17/957

reduced these phenomena. Thus, he hypothesized that Fish oil(C) may be beneficial to people with

Raynad’s disease(A). Later on, it was clinically verified by Digiacomo in 1989[5].

To evaluate the performance of several methods, we conduct a series of experiments on

MEDLINE data for this test case. In accordance with methodology, the experiments are also

divided into three groups. The grouping of methods facilitates in providing a global picture on

performance of diverse information measures on ranking implicit connections. Our readers should

note that in tables 4.3, 4.4, 4.5 and 4.6, m1, m2, m3 in group 1 refer to Associate rule mining,

Mutual information, and Chi-Square. Likewise, m4, m5, m6 in group 2 denote All conf, Kulc, and

Cosine. And m7, m8, m9 represent null-invariant measures supplemented with semantic support.

Lastly, the fraction in cells of tables 4.3, 4.4, 4.5, and 4.6 is in the form of p1/p2, where p1 denotes

the rank of B terms and p2 denotes the total number of A→B rules.

Before studying the comparison of different methods, we first discuss the role of preprocess-

ing in eliminating common terms. To test our technique, we generated the intermediate concepts

(B) for “Raynaud’s disease” for first two groups(Group1, Group2) before and after preprocessing.

Table 4.1 shows the top 5 ranked B terms without any preprocessing and Table 4.2 shows the top

5 after after preprocessing. It is evident to observe that the “common” MeSH terms (“humans”,

“male”, “adult”) which have meager chances of conceiving a novel discovery were ranked at high

positions. It is encouraging to notice that these terms are present in our common MeSH terms set

created in section 3.1.3.2. Also, it should be noted that the total number of rules generated without

any preprocessing is 2533 (Table 4.3) ,whereas, after preprocessing it is reduced to 957 (Table 4.4).

Overall, the ranks of important intermediate terms (Table 4.4) are boosted after preprocessing.

The B terms in table 4.3 and 4.4 are the ones which lead to “fish oil” as final concept(C). Like-
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wise, the connections mentioned by Swanson’s paper are italicised. It is obvious to see that the

frequent MeSH terms captured by our proposed common MeSH terms set dramatically reduce the

rules generated and greatly boost significant B terms to higher ranks, which also demonstrates the

importance of preprocessing step in improving knowledge discovery procedure.

Now, we discuss the results for different methods. For information measures in group 1, we

found that mutual information preferred rare terms more but it could not rank important B terms

better in comparison to the other two measures (Table 4.4). Interestingly, association rule provides

relatively better ranking than Chi-square and Mutual Information. However, it generated more

rules than Chi-Square. Obviously, as in Chi-square, if we remove any relationships with correla-

tion value less than the critical value of 6.63, it would generate fewer rules. A careful observation

elucidates that Chi-square was helpful in eliminating statistically insignificant terms. Next, for

measures in group 2 (null-invariant measures), as illustrated in table 4.4, all three measures ranked

most of the B terms better than information measures in group 1. We believe the better ranking

for measures in this group is due to their null-invariant property(viz., they are not influenced by

transactions which do not contain itemsets of interest). Also, recent studies tend to support this

premise by suggesting that null-invariance is indeed a critical property for associations in large

datasets[35]. Thus, a good information measure should not be influenced by null-transactions. Fi-

nally, for the third group, where we augment null-invariant measures with semantic relatedness,

we notice that ranks for B terms are boosted. For instance, the ranks for blood viscosity, vaso-

constriction, epoprostenol are improved. The improvement in ranks points out that the concept of

semantic relatedness helps to promote terms which are more semantically meaningful.

4.2. Result of Migraine - Magnesium example

Swanson in 1988, proposed 11 previously unknown connections between Migraine disorder

and Magnesium[28]. Some of them are epilepsy, serotonin, prostaglandins, substance p among

others. It was later corroborated by Gallai[6]. Similar to FO-RD experiment, we examine our

methods for this test case. Before we discuss results, we intend to aware our readers that for this

particular test case, in MEDLINE, there were already a few articles before 1988 where Migraine

disorder and Magnesium co-occurred(PMIDS : 3908832, 4922695, 7031826, 7031826). Therefore,

in our experiment we exclude these articles from baseline dataset to prevent them from influencing

our end results.
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Table 4.5. Ranking of important B terms in the Migraine disorder - Magnesium query before
preprocessing

B term Group 1 Group 2

m1 m2 m3 m4 m5 m6

ergotamine 11/3645 147/3645 4/1533 3/3645 16/3645 4/3645

epilepsy 15/3645 30/3645 28/1533 13/3645 51/3645 24/3645

serotonin 17/3645 29/3645 31/1533 34/3645 49/3645 18/3645

caffeine 59/3645 137/3645 61/1533 19/3645 113/3645 57/3645

substance p 974/3645 1404/3645 - 746/3645 1277/3645 1004/3645

depression 57/3645 59/3645 292/1533 37/3645 56/3645 53/3645

nifedipine 895/3645 1266/3645 - 654/3645 1134/3645 870/3645

Table 4.6 shows the ranks of important intermediate terms (B) connecting Migraine and

Magnesium. Much alike as in our previous case, we find significant improvement in ranks of B

terms and reduction in the number of rules generated after preprocessing. Among information

measures in group 1, as expected, mutual information again ranked rare terms better. However,

in this scenario, we witnessed an important insight for Chi-Square. While Chi-Square undeniably

generates lesser rules as compared to other information measures, it risks missing some important

connections. For instance, in table 4.6, for terms substance p, nifedipine, Chi-square did not have

any ranks because their scores were below the critical value(χ2 less than 6.63). Thus, for terms

which are important but have relatively low support in literature, χ2 might risk missing them.

On the other hand, null-invariant measures in group 2 again provides better ranking for most B

terms including the ones missed by χ2. The improved ranks by measures in group 2 manifest

the significane for null-invariant property in information measures for large datasets. Lastly, for

measures in group 3, we see reasonable improvement in ranks for important B terms(Table 4.6).

Also, it is worthwhile to note that terms like substance p, nifedipine which have less support in

literature were ranked better. Again, we believe the semantic support aided in boosting the ranks

for terms which are more semantically related. Similar to previous test case, we calculate the overall

score for each method.

4.3. Result Analysis and Discussion

To examine the precision of generated C terms for several methods, we divide the MEDLINE

data into two sets: 1) a baseline set which includes citations before a selected cut-off date(i.e. input

date from the user.) 2) a test set which includes publications after this specified cut-off date. We
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Table 4.6. Ranking of important B terms in the Migraine disorder - Magnesium query after pre-
processing

B term Group 1 Group 2 Group 3

m1 m2 m3 m4 m5 m6 m7 m8 m9

ergotamine 6/3424 113/3424 4/1368 3/3424 12/3424 4/3424 2/3424 6/3424 2/3424

epilepsy 11/3424 19/3424 26/1368 9/3424 46/3424 21/3424 15/3424 22/3424 38/3424

serotonin 12/3424 18/3424 29/1368 11/3424 47/3424 25/3424 5/3424 89/3424 22/3424

caffeine 45/3424 105/3424 58/1368 19/3424 103/3424 50/3424 8/3424 58/3424 21/3424

substance p 866/3424 1223/3424 - 672/3424 1194/3424 1017/3424 785/3424 1029/3424 922/3424

depression 43/3424 39/3424 267/1368 36/3424 23/3424 47/3424 14/3424 23/3424 12/3424

nifedipine 792/3424 1097/3424 - 586/3424 1059/3424 799/3424 314/3424 583/3424 429/3424

implemented our methods on baseline set and checked the generated connections in the test set.

To judge precision, we checked in our test set, whether the generated C terms appear with the

start term(A) in the same citation. We assume that if A and C are mentioned in the same citation,

they are related. In addition, as we restrict our C terms to Sem C (i.e. semantic types for C terms

which treat disease or syndrome), we assume that the terms in this set are possible treatments

for a input disease. However, a drawback of this approach is that it cannot include relations that

may appear in the future (viz., some of the target terms identified by our methods may become

legitimate discoveries in the future but are considered incorrect target terms now as they do not

appear together with the start term). In table 4.7 and 4,8, we show top 10 ranked C terms for

methods in group 2 and group 3 respectively. In the brackets are the relevant PMIDs. To measure

the precision of C terms, we consider terms which co-occur which with the start term in the same

citation as true positives, and terms which are too general or do not co-occur with the start term as

false positives. Overall, a unique score is calculated for terminal concepts belonging to each method.

The score is calculated as sum of reciprocal ranks of relevant final terms(C) in the returned top 10

terms for each method. Mathematically, it is can be represented as below:

Score(mt) =

10∑
i=1

1

Rank(Ci)

Where, mt = {m1,m2,...,m9} and Ci refers to the relevant concepts. It is a reasonable

measure of ranking method performance as it favours relevant terms that are ranked at higher

positions while also giving appropriate weights to the lower ranked terms. Figure 4.1 illustrates the

overall score of terminal concepts by methods. It should be noted that points in x-axis {1,2,...,9}
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denote methods {m1,m2,...,m9} respectively. The curves for two queries indicate that the overall

score for methods in group 3 is greater than methods in group 2 which in turn greater than methods

in group 1. We intend to highlight that some of the top ranked terms found for RD-FO test case

in group 3 such as ‘lipoproteins,vldl’, ‘niceritrol’, ‘platelet activating factor’ were also suggested by

[26, 16, 15] in their top results. This provides an additional support to our proposed approach of

augmenting null-invariant measures with semantic relatedness.

Figure 4.1. Average score for final concepts

Similarly, for MD-MG test case, figure 4.1 shows the overall score for all nine methods. The

methods in group 3 had greater overall score in comparison to methods in group 1 and group 2.

Also, in group 3, we find some important C terms, such as ‘diet,sodium-restricted’,‘phospholipases’,

‘amygdala’, ‘receptors, prostaglandin’ and so forth. Table 4.7, 4.8 shows the top 10 final concepts

for methods in group 2 and group 3 respectively. We believe this catalogued list of final concepts(C)

will help biomedical scientists to develop a cognitive perspective and analyze terms worthy of further

scientific exploration.
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Table 4.7. Final C terms for RD-FO and MD-MG in group 2

Raynaud’s disease - Fish Oil Migraine Disorder - Magnesium

all conf*SR kulc*SR cosine*SR all conf*SR kulc*SR cosine*SR

ligases

(10959150)

tetrathionic

acid (Not

found)

microscopic

angioscopy

(25394956)

mandibular

nerve

(20618819)

chromans

(11603382)

heparin, low-

molecular-

weight

(19287274)

pityriasis

(21807877)

pyroglobulins

(16111177)

receptors,

epoprostenol

(1848945)

pargyline

(8906292)

heparin, low-

molecular-

weight

(19287274)

primidone (Not

found)

pyroglobulins

(16111177)

retinal artery

(19171245)

hypohidrosis

(10918257)

quipazine

(Not found)

dibenzyl

chlorethamine

(Not found)

labor, induced

(22280825)

ophthalmic

artery (Not

found)

receptors,

epoprostenol

(1848945)

pyroglobulins

(16111177)

postpartum

hemorrhage

(12694520)

cinanserin

(17351723)

pyrogallol (Not

found)

receptors,

thromboxane

(1412196)

platelet

activating

factor[26]

hla-dr7 anti-

gen (Not

found)

mannitol

(18953486)

phospho

lipases

(23826990)

cinanserin

(17351723)

phospho

diesterase

inhibitors

(25189168)

chlormezanone

(Not found)

benz bro-

marone (Not

found)

labor, in-

duced

(generic)

hypohidrosis

(22492215)

tryptophan

hydroxylase

(24458851)

methacholine

chloride

(10959150)

niceritrol [16] liver cir-

culation

(16724674)

desipramine

(8712630)

patch tests

(Not found)

ritanserin

(9507121)

platelet factor

3 (Not found)

cystinosis

(Not found)

amino acids,

neutral

(False)

tympanic

membrane

(12880669)

adenylyl

cyclase in-

hibitors

(1646776)

maxillary nerve

(11797480)

pulmonary in-

farction (Not

found)

ascorbic acid

(12690904)

platelet

activating

factor[26]

amobarbital

(10331688)

receptors,

prostaglandin

(24703233)

pergolide

(19683643)

yersinia en-

terocolitica

(Not found)

swine (Not

found)

substantia

gelatinosa

(Not found)

mandibular

nerve

(20618819)

stereois

omerism

(26650258)

5,7-dihydroxy

tryptamine

(Not found)
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Table 4.8. Final C terms for RD-FO and MD-MG in group 3

Raynaud’s disease - Fish Oil Migraine Disorder - Magnesium

all conf*SR kulc*SR cosine*SR all conf*SR kulc*SR cosine*SR

anesthesia,

inhalation

(7839003)

lymphokines

(18571695)

cyclofenil

(10796397)

diet,sodium-

restricted

(20713242)

tetrodotoxin

(24292897)

doxepin

(10436945)

lymphopenia

(24294139)

receptors,

epoprostenol

(1848945)

phenazo

pyridine

(19300288)

dna replication

(24266335)

betahistine

(24166742)

maprotiline

(14598505)

norethindrone

(7875423)

receptors,

epoprostenol

(1848945)

lymphokines

(18571695)

injections,

intraventricular

(25053746)

phospholipases

(23826990)

isradipine

(9812220)

dextro am-

phetamine

(18431096)

fibrinogens,

abnormal

(12846071)

lipoprotein-x

(Mentioned in

[26])

amobarbital

(10331688)

receptors,

prostaglandin

(24703233)

pergolide

(19683643)

lipoproteins,

vldl (Men-

tioned in[26])

niceritrol

(Mentioned in

[16])

pyroglobulins

(16111177)

labor, induced

(22280825)

audiometry,

evoked

response

(15108495)

hypopituitarism

(10524659)

tonometry, oc-

ular (11879133)

ipoproteins,

hdl3 (Men-

tioned in[26])

hrombasthenia

(2244702)

cardiac output

(25873813)

labetalol

(12482217)

choroiditis

(19220303)

phenyl thia-

zolylthiourea

(Not found)

hyperalgesia

(14569920)

rhinitis, va-

somotor (Not

found)

desipramine

(8712630)

cinanserin

(17351723)

quipazine (Not

found)

amino acids,

neutral (False)

antigens, hu-

man platelet

(Not found)

lymphatic

metastasis

(2372019)

students, nurs-

ing (False)

methiothepin

(10524657)

hypo pituitarism

(10524659)

sradipine

(9812220)

fibrinogens,

abnormal

(12846071)

cholesterol, di-

etary (False)

pargyline

(8906292)

suicide (False) isradipine

(9812220)

lymphokines

(18571695)

Antilipemic

Agents

(23347192)

sulindac (Not

found)

njections, in-

traven tricular

(25053746)

stomach

neoplasms

(20391683)

betahistine

(24166742)
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5. CONCLUSION

In this work, we compared nine different methods to generate novel knowledge from publicly

available biomedical knowledge base. The methods were combinations of different statistical infor-

mation measures and semantic support. Broadly, we classified them into three groups for better

understanding of results. In addition to points raised in the study, we make the following particular

contributions:

1. We performed a comparative study of several methods (combinations of statistical information

measure and semantic support) and put forth a rationale behind how each of them affects

results.

2. A notion of semantic relatedness was introduced and demonstrated as to how it assists in

promoting semantically meaningful relations.

3. A new approach for extensive preprocessing was proposed to handle common MeSH terms.

We perform statistical outlier detection and take advantage of MeSH hierarchy in this step.

The experiments validate its utility.

4. We reduced the need for domain knowledge or manual interventation by automating the

semantic types needed for intermediate and final concepts.

5. Finally, we generated an organized list of final C terms and provided references to PMIDs to

assist medical researchers with further exploration.

To summarize our findings, an in-depth examination of diverse statistical information mea-

sures and semantic support reveals that different strategies favour certain types of concepts. In

addition, as knowledge discovery is an open ended process, certain terms which are considered

false positives at present may be realized as legitimate discoveries in the future. Thus, although

evaluation of methods on Swanson’s proposed discoveries brings into light some keen insights, it

does not precisely illustrate what target terms should we emphasize most. Altogether, our exper-

iments demonstrate that the best way to find meaningful final terms(C) is to rank them based
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on a combination of statistical information measures and semantic support drawn from domain

ontology.

In future research, in addition to specific points raised in the study, we intend to add

more semantic expressiveness to our generated hypotheses. We are looking at more specialized

biomedical ontologies such as SEMREP[https://semrep.nlm.nih.gov/] for this purpose. Next, we

intend to explore alternative measures such as Normalized goggle distance to calculate the degree

of closeness between terms in our knowledge graph. Also, it would be interesting to see how

random walk integrated with information measures affect the knowledge discovery process. Lastly,

to strength our evaluation, we intend to investigate more robust evaluation techniques which not

evaluate top ranked terms but the entire set of target terms.
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