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Abstract 

Data explosion in bioinformatics in recent years has led to new challenges for researchers to develop novel techniques to 
discover new knowledge from the avalanche of omics data (e.g., genomics, proteomics, transcriptomics). These data are 
embedded with a wealth of information including frequently repeated patterns (i.e., sequence motifs). In genomics, 
deoxyribonucleic acid (DNA) sequence motifs are short repeated contiguous frequent subsequences located in the prompter 
region. Due to the high volume and various degrees of veracity of these DNA datasets generated by the next-generation 
sequencing techniques, sequence motif mining from DNA sequences poised a major challenge in bioinformatics. In this article, 
we present a distributed sequential algorithm—which uses the MapReduce programming model on a cluster of homogeneous 
distributed-memory system running on an Apache Spark computing framework—for DNA sequence motif mining. Experimental 
results show the effectiveness of our algorithm in Spark-based data analytics of sequence motifs in large omics data. 
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1. Introduction 

Advances in technology has led to the recent data explosion in bioinformatics and many other application 
domains. (e.g., biomedicine, smart world, social media, social networks, sensor and stream systems [1-4]). In 
bioinformatics, petabytes of omics data (e.g., genomics, proteomics, transcriptomics) are currently available to 
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researchers in many public repositories such as US National Centre for Biotechnology Information (NCBI)†, 
European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI)‡, DNA Data Bank of 
Japan (DDBJ)§, and FlyBase**. In genomics, petabytes of DNA sequences are currently available with the advent of 
the next-generation sequencing (NGS) technologies [5]. Each DNA sequence is made of four chemical units called 
nucleotide bases [6], which are also known as genetic alphabets. These nucleotide bases are as follows: 
• adenine (A),  
• thymine (T),  
• guanine (G), and  
• cytosine (C).  

Bases on the complementary base pairing in DNA, (i) adenine (A) is the complementary base of thymine (T), and 
(ii) guanine (G) is the complementary base of cytosine (C). The order of these nucleotide bases determines the 
meaning of the information encoded in that part of the DNA molecule. Embedded in these large volumes of DNA 
sequences are frequently recurring patterns called sequence motifs [7], which are also known as transcription factor 
binding sites (TFBS) [8]. 

These high volumes of a wide variety of valuable data with various degrees of veracity accentuate the need for 
data-intensive algorithms capable of handling such big data that usually do not fit into the main memory of a single 
machine. In developing these forms of data-intensive algorithms, the MapReduce programming model [9-11] has 
attracted a lot of attention from many researchers. MapReduce processes high volumes of big data by using parallel 
and distributed computing on large clusters of grids, nodes, or in clouds [12], which consist of a master node and 
multiple worker nodes. MapReduce is based on the functional programming concept [13] that consists of the map, 
reduce and combine functions. The operational style of MapReduce is also conceptually similar to the scatter and 
reduce functions in the Message Passing Interface (MPI) paradigm [14]. 

Apache Hadoop†† and Apache Spark‡‡ are examples of parallel frameworks that provide platforms for the 
implementation of MapReduce programming model. As Hadoop MapReduce [15] runs on the disk, it is usually slow 
and expensive due to the high I/O operations. In contrast, as Spark MapReduce [16] implementation is performed in 
memory of computing nodes on the cluster, it provides a faster and more cost effective way of implementing 
scalable parallel and distributed algorithms for big data analytics. In this article, we present an efficient distributed 
Spark-based algorithm for mining sequence motifs from large DNA sequence repositories. To evaluate the 
effectiveness of our algorithm for big data analytics, we apply our algorithm to the human genome and bacteria 
datasets. Our key contribution of this article is our scalable distributed frequent sequence mining algorithm that 
mimics the MapReduce programming model on an Apache Spark framework to mine sequence motifs from big 
DNA sequences in a timely manner. 

The remainder of this article is organized as follows. The next section discusses related works, and Section 3 
provides background information (e.g., MapReduce programming model, Apache Spark framework, DNA sequence 
motifs). We then describe our Spark memory-based distributed algorithm in Section 4. Experimental results and 
conclusions are given in Sections 5 and 6, respectively. 

2. Related works 

Several sequential pattern mining algorithms [17-21] have been proposed over two decades. For example, as 
AprioriAll and AprioriSome [17], as well as the Generalized Sequential Pattern (GSP) mining algorithm [22], are all 
extensions of the Apriori [23] algorithm (which was designed for frequent itemset mining), they rely on the 
candidate generation-and-test approach. Among them, AproriAll returns all the frequent sequences from a database, 
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researchers in many public repositories such as US National Centre for Biotechnology Information (NCBI)†, 
European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI)‡, DNA Data Bank of 
Japan (DDBJ)§, and FlyBase**. In genomics, petabytes of DNA sequences are currently available with the advent of 
the next-generation sequencing (NGS) technologies [5]. Each DNA sequence is made of four chemical units called 
nucleotide bases [6], which are also known as genetic alphabets. These nucleotide bases are as follows: 
• adenine (A),  
• thymine (T),  
• guanine (G), and  
• cytosine (C).  

Bases on the complementary base pairing in DNA, (i) adenine (A) is the complementary base of thymine (T), and 
(ii) guanine (G) is the complementary base of cytosine (C). The order of these nucleotide bases determines the 
meaning of the information encoded in that part of the DNA molecule. Embedded in these large volumes of DNA 
sequences are frequently recurring patterns called sequence motifs [7], which are also known as transcription factor 
binding sites (TFBS) [8]. 

These high volumes of a wide variety of valuable data with various degrees of veracity accentuate the need for 
data-intensive algorithms capable of handling such big data that usually do not fit into the main memory of a single 
machine. In developing these forms of data-intensive algorithms, the MapReduce programming model [9-11] has 
attracted a lot of attention from many researchers. MapReduce processes high volumes of big data by using parallel 
and distributed computing on large clusters of grids, nodes, or in clouds [12], which consist of a master node and 
multiple worker nodes. MapReduce is based on the functional programming concept [13] that consists of the map, 
reduce and combine functions. The operational style of MapReduce is also conceptually similar to the scatter and 
reduce functions in the Message Passing Interface (MPI) paradigm [14]. 

Apache Hadoop†† and Apache Spark‡‡ are examples of parallel frameworks that provide platforms for the 
implementation of MapReduce programming model. As Hadoop MapReduce [15] runs on the disk, it is usually slow 
and expensive due to the high I/O operations. In contrast, as Spark MapReduce [16] implementation is performed in 
memory of computing nodes on the cluster, it provides a faster and more cost effective way of implementing 
scalable parallel and distributed algorithms for big data analytics. In this article, we present an efficient distributed 
Spark-based algorithm for mining sequence motifs from large DNA sequence repositories. To evaluate the 
effectiveness of our algorithm for big data analytics, we apply our algorithm to the human genome and bacteria 
datasets. Our key contribution of this article is our scalable distributed frequent sequence mining algorithm that 
mimics the MapReduce programming model on an Apache Spark framework to mine sequence motifs from big 
DNA sequences in a timely manner. 

The remainder of this article is organized as follows. The next section discusses related works, and Section 3 
provides background information (e.g., MapReduce programming model, Apache Spark framework, DNA sequence 
motifs). We then describe our Spark memory-based distributed algorithm in Section 4. Experimental results and 
conclusions are given in Sections 5 and 6, respectively. 

2. Related works 

Several sequential pattern mining algorithms [17-21] have been proposed over two decades. For example, as 
AprioriAll and AprioriSome [17], as well as the Generalized Sequential Pattern (GSP) mining algorithm [22], are all 
extensions of the Apriori [23] algorithm (which was designed for frequent itemset mining), they rely on the 
candidate generation-and-test approach. Among them, AproriAll returns all the frequent sequences from a database, 
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whereas AprioriSome returns only maximal frequent sequences. GSP [22] incorporates taxonomy in sequential 
pattern mining. These three algorithms find frequent sequences horizontally. On the other hand, both the Sequential 
PAttern Discovery using Equivalence classes (SPADE) algorithm [24] and the Sequential PAttern Mining (SPAM) 
algorithm [25] find frequent sequences vertically. Between them, SPADE uses a breadth-first search methodology 
by utilizing some combinatorial properties to decompose the original problem into smaller sub-problems that can be 
independently solved in main-memory. In contrast, SPAM [25] uses a depth-first transversal approach with bitmaps 
to scan the search space with effective pruning mechanism. Observing that Apriori-based algorithms usually incur a 
huge set of candidate generation and multiple scan of database, tree-based algorithms mine frequent sequences from 
database without candidate generation by using trees to capture the content of the transaction databases. For 
example, FreeSpan [26] applies Frequent Pattern growth (FP-growth) algorithm [27] (which was designed for 
frequent itemset mining) to mine sequential patterns from sequential databases. It used of a projected sequence 
database to confine the search and growth of subsequence fragments. PrefixSpan [28] further reduces the size of the 
projected database generation and improves the performance of FreeSpan. 

To speed up the mining process for frequent sequential patterns, parallel and distributed sequential pattern mining 
algorithms [29, 30] have also been proposed. Examples include the Hash Partitioned Sequential Pattern Mining 
(HPSPM) algorithm [31], which partitions the candidate sequences among the nodes on a shared-nothing parallel 
architecture using a hash function. To avoid processor idling and selective sampling, the Parallel CloSpan with 
Sampling (Par-CSP) algorithm [32] uses dynamic scheduling to address the load imbalance problem of the parallel 
framework. The Parallel SPADE (pSPADE) algorithm [33] discovers frequent sequences from large databases in 
parallel by decomposing the original search space into smaller suffix-based classes. Other parallel and distributed 
sequential pattern mining algorithms include the Parallel PrefixSpan with Sampling (Par-ASP) algorithm [34]. 

In this era of big data, researchers have proposed algorithms for mining sequential patterns from large genomic 
sequence databases. For instance, PSmile [35] extracts binding-site consensus from genomic sequences using a 
heuristic partitioning approach, but it suffers from highly imbalanced workload and parallel overhead. A 
Combinatorial Method for Extracting motifs (ACME) [36] uses a parallel combinatorial approach to extracts motifs 
from a single very long sequence, but it suffers huge communication cost due to message passing, data sharing and 
I/O operations. The Distributed GSP (DGSP) algorithm [37] was introduced as extension of GSP [22] for a 
MapReduce distributed environment. However, DGSP does not perform well due to repeated scans of the input data. 
The Multiple Expectation maximum for Motif Elicitation (MEME) algorithm [38] was proposed as a deterministic 
optimization algorithm for the discovery of motifs in DNA or protein sequences by using Gibbs sampling and 
expectation maximization (EM) techniques. A gap-constraint algorithm with MapReduce called MG-FSM [39] 
minds the gap with large-scale frequent sequence mining. MG-FSM partitions the input database in a way that each 
partition is allowed to be mined independently by using any existing frequent sequence mining algorithm. The 
Sequential PAttern Mining algorithm based on MapReduce model on the Cloud (SPAMC) [40] was proposed as a 
MapReduce extension of SPAM [25]. The IMRSPM algorithm [41] was proposed as an iterative MapReduce-based 
framework for uncertain sequential pattern mining. All the aforementioned MapReduce-based algorithms were 
implemented on Apache Hadoop framework. However, Apache Hadoop disk-based MapReduce algorithms may 
suffer from high disk I/Os. Hence, we propose in this article an Apache Spark in-memory-based algorithm for 
mining sequential patterns (i.e., sequence motifs) from DNA sequences. 

3. Background 

In this section, we provide some background information on (1) MapReduce programming model, (2) Apache 
Spark framework, and (3) DNA sequence motifs. 

3.1. MapReduce programming model 

Over the past decade, researchers have used a high-level programming model called MapReduce to process high 
volumes of big data by using parallel and distributed computing on large clusters or grids of nodes (i.e., commodity 
machines) or clouds, which consist of a master node and multiple worker nodes. The MapReduce programming 
model usually uses two key functions:  
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1. the map function, and  
2. the reduce function.  

With these functions, the input data are read and divided into several partitions (sub-problems), which are then 
assigned to different processors. Each processor executes the map function on each partition (i.e., each processor 
executes its sub-problem). The map function takes a pair of ⟨key1, value1⟩ and returns a list of ⟨key2, value2⟩ pairs as 
an intermediate result: 

map: ⟨key1, value1⟩	® ⟨key2, value2⟩	
where (i) key1 and key2 are keys in the same or different domains and (ii) value1 and value2 are the corresponding 
values in some domains. Afterwards, these pairs are shuffled and sorted. Each processor then executes the reduce 
function on both (i) a single key2 from this intermediate result and (ii) the list of all values associated with key2 in 
the intermediate result. In other words, each processor executes the reduce function on ⟨key2, list of values2⟩ to 
“reduce”—by combining, aggregating, summarizing, filtering, or transforming—the list of values associated with a 
given key2 (for all keys). As a result, a single (aggregated or summarized) value3 is returned: 

reduce: ⟨key2, list of value2⟩	® value3 
where (i) key2 is a key in some domains and (ii) value2 and value3 are the corresponding values in some domains. 

An advantage of using the MapReduce model is that users only need to focus on specifying these map and reduce 
functions—without worrying about implementation details for (i) partitioning the input data, (ii) scheduling and 
executing the program across multiple machines, (iii) handling machine failures, (iv) straggler mitigation, or 
(v) managing inter-machine communication. 

3.2. Apache Spark framework 

Apache Spark recently becomes a popular parallel framework for processing high volumes of big data on a 
distributed system. In Spark, data-parallel programming is executed on a cluster of commodity computers that 
automatically provide locality-aware scheduling, fault tolerance, and load balancing. As the main abstraction in 
Spark, resilient distributed dataset (RDD) represents a read-only collection of objects partitioned across a set of 
machines that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across machines and 
reuse it in multiple parallel operations. RDD achieves fault tolerance through a notion of lineage, i.e., if a partition of 
an RDD is lost, the RDD has sufficient information to rebuild the lost partition from other RDDs. In Spark, all jobs 
are expressed as either (i) creating a new RDD, (ii) transforming existing ones, or (iii) calling action operations on 
RDD to compute the result. 

Spark applications run as independent sets of processes on a cluster, coordinated by the SparkContext object in 
the driver program on the master node. The driver program connects to one or more worker nodes through the 
cluster manager. The driver program defines various transformations and invokes consequence actions on worker 
nodes. The action either returns a value to the driver program or writes data to the external storage. After 
transforming the input data to RDD and assigning them to different memory partitions on the worker nodes, Spark 
then performs lazy evaluation on all the transformations applied to the dataset and evaluates them in each partition 
on the worker nodes when an action is invoked. Spark actions are executed through a set of stages, separated by 
distributed operations. These are made possible by the use of broadcast variables that allows programmers to keep a 
read-only variable cached on each machine rather than shipping a copy of it with tasks. 

3.3. DNA sequence motifs 

A DNA sequence motif [7, 42] is specifically a short distinctive sequence pattern shared by a number of related 
sequences. They are usually found in upstream of transcription sites of genes. The distinctiveness of a motif is 
mainly reflected in the over-representation of the motif pattern at certain locations in the related sequences. DNA 
motifs are also referred to as transcribing factor binding sites (TFBS), which are specific sites on a DNA sequence 
that are conserved by their short repeated frequent subsequences of about 6 to 20 nucleotides in length located in the 
promoter region of the sequence [43]. They are conjectured to be useful for drug design, genes expression control, 
understanding of genes functions, and classification of genes. 
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whereas AprioriSome returns only maximal frequent sequences. GSP [22] incorporates taxonomy in sequential 
pattern mining. These three algorithms find frequent sequences horizontally. On the other hand, both the Sequential 
PAttern Discovery using Equivalence classes (SPADE) algorithm [24] and the Sequential PAttern Mining (SPAM) 
algorithm [25] find frequent sequences vertically. Between them, SPADE uses a breadth-first search methodology 
by utilizing some combinatorial properties to decompose the original problem into smaller sub-problems that can be 
independently solved in main-memory. In contrast, SPAM [25] uses a depth-first transversal approach with bitmaps 
to scan the search space with effective pruning mechanism. Observing that Apriori-based algorithms usually incur a 
huge set of candidate generation and multiple scan of database, tree-based algorithms mine frequent sequences from 
database without candidate generation by using trees to capture the content of the transaction databases. For 
example, FreeSpan [26] applies Frequent Pattern growth (FP-growth) algorithm [27] (which was designed for 
frequent itemset mining) to mine sequential patterns from sequential databases. It used of a projected sequence 
database to confine the search and growth of subsequence fragments. PrefixSpan [28] further reduces the size of the 
projected database generation and improves the performance of FreeSpan. 

To speed up the mining process for frequent sequential patterns, parallel and distributed sequential pattern mining 
algorithms [29, 30] have also been proposed. Examples include the Hash Partitioned Sequential Pattern Mining 
(HPSPM) algorithm [31], which partitions the candidate sequences among the nodes on a shared-nothing parallel 
architecture using a hash function. To avoid processor idling and selective sampling, the Parallel CloSpan with 
Sampling (Par-CSP) algorithm [32] uses dynamic scheduling to address the load imbalance problem of the parallel 
framework. The Parallel SPADE (pSPADE) algorithm [33] discovers frequent sequences from large databases in 
parallel by decomposing the original search space into smaller suffix-based classes. Other parallel and distributed 
sequential pattern mining algorithms include the Parallel PrefixSpan with Sampling (Par-ASP) algorithm [34]. 

In this era of big data, researchers have proposed algorithms for mining sequential patterns from large genomic 
sequence databases. For instance, PSmile [35] extracts binding-site consensus from genomic sequences using a 
heuristic partitioning approach, but it suffers from highly imbalanced workload and parallel overhead. A 
Combinatorial Method for Extracting motifs (ACME) [36] uses a parallel combinatorial approach to extracts motifs 
from a single very long sequence, but it suffers huge communication cost due to message passing, data sharing and 
I/O operations. The Distributed GSP (DGSP) algorithm [37] was introduced as extension of GSP [22] for a 
MapReduce distributed environment. However, DGSP does not perform well due to repeated scans of the input data. 
The Multiple Expectation maximum for Motif Elicitation (MEME) algorithm [38] was proposed as a deterministic 
optimization algorithm for the discovery of motifs in DNA or protein sequences by using Gibbs sampling and 
expectation maximization (EM) techniques. A gap-constraint algorithm with MapReduce called MG-FSM [39] 
minds the gap with large-scale frequent sequence mining. MG-FSM partitions the input database in a way that each 
partition is allowed to be mined independently by using any existing frequent sequence mining algorithm. The 
Sequential PAttern Mining algorithm based on MapReduce model on the Cloud (SPAMC) [40] was proposed as a 
MapReduce extension of SPAM [25]. The IMRSPM algorithm [41] was proposed as an iterative MapReduce-based 
framework for uncertain sequential pattern mining. All the aforementioned MapReduce-based algorithms were 
implemented on Apache Hadoop framework. However, Apache Hadoop disk-based MapReduce algorithms may 
suffer from high disk I/Os. Hence, we propose in this article an Apache Spark in-memory-based algorithm for 
mining sequential patterns (i.e., sequence motifs) from DNA sequences. 

3. Background 

In this section, we provide some background information on (1) MapReduce programming model, (2) Apache 
Spark framework, and (3) DNA sequence motifs. 

3.1. MapReduce programming model 

Over the past decade, researchers have used a high-level programming model called MapReduce to process high 
volumes of big data by using parallel and distributed computing on large clusters or grids of nodes (i.e., commodity 
machines) or clouds, which consist of a master node and multiple worker nodes. The MapReduce programming 
model usually uses two key functions:  
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1. the map function, and  
2. the reduce function.  

With these functions, the input data are read and divided into several partitions (sub-problems), which are then 
assigned to different processors. Each processor executes the map function on each partition (i.e., each processor 
executes its sub-problem). The map function takes a pair of ⟨key1, value1⟩ and returns a list of ⟨key2, value2⟩ pairs as 
an intermediate result: 

map: ⟨key1, value1⟩	® ⟨key2, value2⟩	
where (i) key1 and key2 are keys in the same or different domains and (ii) value1 and value2 are the corresponding 
values in some domains. Afterwards, these pairs are shuffled and sorted. Each processor then executes the reduce 
function on both (i) a single key2 from this intermediate result and (ii) the list of all values associated with key2 in 
the intermediate result. In other words, each processor executes the reduce function on ⟨key2, list of values2⟩ to 
“reduce”—by combining, aggregating, summarizing, filtering, or transforming—the list of values associated with a 
given key2 (for all keys). As a result, a single (aggregated or summarized) value3 is returned: 

reduce: ⟨key2, list of value2⟩	® value3 
where (i) key2 is a key in some domains and (ii) value2 and value3 are the corresponding values in some domains. 

An advantage of using the MapReduce model is that users only need to focus on specifying these map and reduce 
functions—without worrying about implementation details for (i) partitioning the input data, (ii) scheduling and 
executing the program across multiple machines, (iii) handling machine failures, (iv) straggler mitigation, or 
(v) managing inter-machine communication. 

3.2. Apache Spark framework 

Apache Spark recently becomes a popular parallel framework for processing high volumes of big data on a 
distributed system. In Spark, data-parallel programming is executed on a cluster of commodity computers that 
automatically provide locality-aware scheduling, fault tolerance, and load balancing. As the main abstraction in 
Spark, resilient distributed dataset (RDD) represents a read-only collection of objects partitioned across a set of 
machines that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across machines and 
reuse it in multiple parallel operations. RDD achieves fault tolerance through a notion of lineage, i.e., if a partition of 
an RDD is lost, the RDD has sufficient information to rebuild the lost partition from other RDDs. In Spark, all jobs 
are expressed as either (i) creating a new RDD, (ii) transforming existing ones, or (iii) calling action operations on 
RDD to compute the result. 

Spark applications run as independent sets of processes on a cluster, coordinated by the SparkContext object in 
the driver program on the master node. The driver program connects to one or more worker nodes through the 
cluster manager. The driver program defines various transformations and invokes consequence actions on worker 
nodes. The action either returns a value to the driver program or writes data to the external storage. After 
transforming the input data to RDD and assigning them to different memory partitions on the worker nodes, Spark 
then performs lazy evaluation on all the transformations applied to the dataset and evaluates them in each partition 
on the worker nodes when an action is invoked. Spark actions are executed through a set of stages, separated by 
distributed operations. These are made possible by the use of broadcast variables that allows programmers to keep a 
read-only variable cached on each machine rather than shipping a copy of it with tasks. 

3.3. DNA sequence motifs 

A DNA sequence motif [7, 42] is specifically a short distinctive sequence pattern shared by a number of related 
sequences. They are usually found in upstream of transcription sites of genes. The distinctiveness of a motif is 
mainly reflected in the over-representation of the motif pattern at certain locations in the related sequences. DNA 
motifs are also referred to as transcribing factor binding sites (TFBS), which are specific sites on a DNA sequence 
that are conserved by their short repeated frequent subsequences of about 6 to 20 nucleotides in length located in the 
promoter region of the sequence [43]. They are conjectured to be useful for drug design, genes expression control, 
understanding of genes functions, and classification of genes. 
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Given a set of DNA sequences, the motif finding problem seeks to identify the frequent contiguous sequences 
that are good candidates for being transcription factor binding sites. It is assumed that co-expression of genes 
frequently arises from transcriptional co-regulation. As co-regulated genes [43] are known to share some similarities 
in their regulatory mechanism (possibly at transcriptional level), their promoter regions might also contain some 
common motifs that are binding sites for transcriptional regulators. 

4. Our Spark memory-based distributed algorithm 

In this section, we present our Spark memory-based distributed algorithm for analytics of sequence motifs from 
large DNA sequence dataset. Given that ∑ = {A, C, G, T} is a set of finite DNA alphabets, a DNA sequence 
(denoted by S) over an alphabet is an ordered and finite list of alphabets from ∑. A sequence motif (denoted by M) 
is a contiguous subsequence of sequence S that satisfies the following user-specified parameters:  

1. a subsequence length [Lmin, Lmax];  
2. an uncertainty factor D, which is a measure of Hamming distance among the subsequences; and   
3. a minimum support threshold d. 

4.1. Overview of our algorithm 

Our algorithm first applies a map function to the input DNA sequence on the master node to (i) flatten the 
sequence, (ii) convert it to RDD, and (iii) split it into memory partitions across all the worker nodes on the cluster. 
The algorithm uses the subsequence length [Lmin, Lmax] and the uncertainty factor D to generate support counts for 
subsequences. 

Then, our algorithm applies a reduce function to all the worker nodes in the cluster. Subsequences that have its 
associated support count greater than the user defined minimum support (d) are retained on each worker nodes. 

Afterwards, our algorithm applies a combine function to collect all the subsequences from each of the worker 
nodes and outputs them as a single motif on the driver node (i.e., master node). 

4.2. The map function for our algorithm 

To start the data analytic process of mining sequence motifs from DNA sequence, our algorithm first applies a 
map function to the input DNA sequence S on the master node to (i) flatten the sequence, (ii) convert it to RDD, and 
(iii) split it into memory partitions across all the worker nodes on the cluster: 

map: ⟨DNA sequence S⟩ → ⟨subsequence, support count⟩ 
The algorithm uses the subsequence length L and the uncertainty factor D to generate support counts for 
subsequences. A pseudocode for this map function is given in Algorithm 1. 

Algorithm 1. Map function 
Input: DNA sequence S, Lmin, Lmax, D  
Output: Set of subsequence RDDs, support count 
1: set ST ¬ Ø 
2: for each subsequence α do 
3: compute count(α, S) as its support count   
4: if (Lmin ≤ |α| ≤ Lmax) and (HammingDistance(s1, s2) ≤ D) then 
5:   add ⟨α, count(α, S)⟩ to ST 

Let us consider illustrative example in mining sequence motif from the DNA sequence as shown in Fig.2. Given 
the following input parameters:  

1. a subsequence length Lmin = Lmax = 4,  
2. an uncertainty distance D ≤ 2, and  
3. a minimum support threshold d =3. 
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Fig. 1. Our data analytic process with the (a) map, (b) reduce, and (c) combine functions. 

GGAAGAAGTCAGGTAGTGAC TGTGTGTGTCCAGTCGTGCG GTGAGGAAGGAATTTCGGGC 

Fig. 2. A sample DNA input sequence. 

Our algorithm applies the map function to the input DNA sequence S shown in Fig. 2 on the master node to 
(i) flatten the sequence, (ii) convert it to RDD, and (iii) it into memory partitions across all Np = 3 worker nodes on 
the cluster. We make use of one master node and Np = 3 worker nodes to illustrate this example as shown in Fig. 1. 
In real-life applications, the DNA sequence is usually longer, and the number Np of workers is usually higher. In this 
example, Worker Node 1 obtains the partition GGAAGAAGTCAGGTAGTGAC, Worker Node 2 obtains 
TGTGTGTGTCCAGTCGTGCG, and Worker Node 3 obtains GTGAGGAAGGAATTTCGGGC. By applying the 
input parameters a subsequence length Lmin = Lmax = 4 and an uncertainty distance D = 2, Worker Node 1 then 
computes five subsequences GGAA, GAAG, TCAG, GTAG and TGAC, each of length Lmin = Lmax = 4. Among 
them, the worker selects four subsequences GGAA, GAAG, TCAG and GTAG, each satisfying a Hamming distance 
D ≤ 2. Moreover, the worker also computes support counts for subsequences. Consequently, Worker Node 1 returns 
four subsequences GGAA:1, GAAG:1, TCAG:1 and GTAG:1. Worker Node 2 applies a similar procedure to 
generate two (identical) subsequences TGTG:1 and TGTG:1; Worker Node 3 applies a similar procedure to generate 
three subsequences GTGA:1, GGAA:1 and GGAA:1. 

4.3. The reduce function for our algorithm 

Once the subsequences are generated and their support counts are computed by each worker node, our algorithm 
then applies a reduce function to all the worker nodes in the cluster: 

reduce: ⟨subsequence, support count⟩ ® list of ⟨frequent subsequence, support count⟩ 
Subsequences that have its associated support count greater than the user defined minimum support d are retained as 
shown in Fig. 1. Pseudocode for this reduce function is given in Algorithm 2. 

Algorithm 2. Reduce function 
1: Input:  Subsequences and the support count, minsup d 
2: Output: All subsequences ≥ d on each worker node 
3: for each subsequence Î ⟨subsequence list⟩ emitted by map do 
4: set counter[subsequence] ¬ 0; set list[subsequence] ¬ Ø 
5: for each subsequence Î ⟨subsequence, 1⟩ emitted by map do 
6: counter[subsequence] ¬ counter[subsequence] + 1; list[subsequence] ¬ list[subsequence] È {subsequence} 
7: if counter[subsequence] ≥ user-specified minsup d then 
8:  emit ⟨subsequence, counter [subsequence]⟩ 

map reduce combine
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frequently arises from transcriptional co-regulation. As co-regulated genes [43] are known to share some similarities 
in their regulatory mechanism (possibly at transcriptional level), their promoter regions might also contain some 
common motifs that are binding sites for transcriptional regulators. 
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(denoted by S) over an alphabet is an ordered and finite list of alphabets from ∑. A sequence motif (denoted by M) 
is a contiguous subsequence of sequence S that satisfies the following user-specified parameters:  
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2. an uncertainty factor D, which is a measure of Hamming distance among the subsequences; and   
3. a minimum support threshold d. 
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sequence, (ii) convert it to RDD, and (iii) split it into memory partitions across all the worker nodes on the cluster. 
The algorithm uses the subsequence length [Lmin, Lmax] and the uncertainty factor D to generate support counts for 
subsequences. 
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Afterwards, our algorithm applies a combine function to collect all the subsequences from each of the worker 
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subsequences. A pseudocode for this map function is given in Algorithm 1. 

Algorithm 1. Map function 
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Output: Set of subsequence RDDs, support count 
1: set ST ¬ Ø 
2: for each subsequence α do 
3: compute count(α, S) as its support count   
4: if (Lmin ≤ |α| ≤ Lmax) and (HammingDistance(s1, s2) ≤ D) then 
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Let us consider illustrative example in mining sequence motif from the DNA sequence as shown in Fig.2. Given 
the following input parameters:  
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2. an uncertainty distance D ≤ 2, and  
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Fig. 1. Our data analytic process with the (a) map, (b) reduce, and (c) combine functions. 

GGAAGAAGTCAGGTAGTGAC TGTGTGTGTCCAGTCGTGCG GTGAGGAAGGAATTTCGGGC 

Fig. 2. A sample DNA input sequence. 

Our algorithm applies the map function to the input DNA sequence S shown in Fig. 2 on the master node to 
(i) flatten the sequence, (ii) convert it to RDD, and (iii) it into memory partitions across all Np = 3 worker nodes on 
the cluster. We make use of one master node and Np = 3 worker nodes to illustrate this example as shown in Fig. 1. 
In real-life applications, the DNA sequence is usually longer, and the number Np of workers is usually higher. In this 
example, Worker Node 1 obtains the partition GGAAGAAGTCAGGTAGTGAC, Worker Node 2 obtains 
TGTGTGTGTCCAGTCGTGCG, and Worker Node 3 obtains GTGAGGAAGGAATTTCGGGC. By applying the 
input parameters a subsequence length Lmin = Lmax = 4 and an uncertainty distance D = 2, Worker Node 1 then 
computes five subsequences GGAA, GAAG, TCAG, GTAG and TGAC, each of length Lmin = Lmax = 4. Among 
them, the worker selects four subsequences GGAA, GAAG, TCAG and GTAG, each satisfying a Hamming distance 
D ≤ 2. Moreover, the worker also computes support counts for subsequences. Consequently, Worker Node 1 returns 
four subsequences GGAA:1, GAAG:1, TCAG:1 and GTAG:1. Worker Node 2 applies a similar procedure to 
generate two (identical) subsequences TGTG:1 and TGTG:1; Worker Node 3 applies a similar procedure to generate 
three subsequences GTGA:1, GGAA:1 and GGAA:1. 

4.3. The reduce function for our algorithm 

Once the subsequences are generated and their support counts are computed by each worker node, our algorithm 
then applies a reduce function to all the worker nodes in the cluster: 

reduce: ⟨subsequence, support count⟩ ® list of ⟨frequent subsequence, support count⟩ 
Subsequences that have its associated support count greater than the user defined minimum support d are retained as 
shown in Fig. 1. Pseudocode for this reduce function is given in Algorithm 2. 

Algorithm 2. Reduce function 
1: Input:  Subsequences and the support count, minsup d 
2: Output: All subsequences ≥ d on each worker node 
3: for each subsequence Î ⟨subsequence list⟩ emitted by map do 
4: set counter[subsequence] ¬ 0; set list[subsequence] ¬ Ø 
5: for each subsequence Î ⟨subsequence, 1⟩ emitted by map do 
6: counter[subsequence] ¬ counter[subsequence] + 1; list[subsequence] ¬ list[subsequence] È {subsequence} 
7: if counter[subsequence] ≥ user-specified minsup d then 
8:  emit ⟨subsequence, counter [subsequence]⟩ 

map reduce combine
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Let us continue with our illustrative example in mining sequence motif from the DNA sequence as shown in 
Fig.2. Recall that, with the map function, Worker Node 1 returns the following four subsequences (of length Lmin = 
Lmax = 4 each and satisfying Hamming distance D ≤ 2) with their local support counts: GGAA:1, GAAG:1, TCAG:1 
and GTAG:1. Similarly, Worker Node 2 returns TGTG:1 and TGTG:1; Worker Node 3 returns three subsequences 
GTGA:1, GGAA:1 and GGAA:1. These subsequences are then shuffled and sorted (e.g., {GAAG:1, GGAA:1, 
GGAA:1, GGAA:1, GTAG:1, GTGA:1, TCAG:1, TGTG:1, TGTG:1}). Afterwards, the reduce function groups 
similar subsequences and redistributes to Np = 3worker nodes who compute the global support counts of similar 
subsequences by summing their local support counts. For instance, from {GAAG:1, GGAA:1, GGAA:1, GGAA:1}, 
Worker Node 1 computes frequent subsequence GGAA:4. Similarly, from {TCAG:1, TGTG:1, TGTG:1}), Worker 
Node 3 computes frequent subsequence TGTG:3. In contrast, from {GTAG:1, GTGA:1}), Worker Node 2 cannot 
find any frequent subsequence. 

4.4. The combine function for our algorithm 

Once the frequent subsequences are generated and their support counts are computed by each worker node, our 
algorithm then applies a combine function to (i) collect all these frequent subsequences from each of the worker 
nodes and (ii) output them as a single motif on the driver node (i.e., master node) as shown in Fig 2. Pseudocode for 
this combine function is given in Algorithm 3. 

Algorithm 3. Combine function 
1: Input: the set of emerging subsequences  
2: Output: the set of motifs 
3: set RS ¬ Ø 
4: collect(⟨subsequence, support count⟩) 
5: for each worker node on the cluster CL do 
6:  K ¬ align subsequence from CLi 
7:  add subsequences in K to RS 
8: emit RS 

Let us continue with our illustrative example in mining sequence motif from the DNA sequence as shown in 
Fig.2. Recall that, with the reduce function, Worker Node 1 returns the following frequent subsequence (of length 
Lmin = Lmax = 4 each and satisfying Hamming distance D ≤ 2) with its support counts: GGAA:4. Similarly, Worker 
Node 3 returns frequent subsequence TGTG:3. Our algorithm then applies a combine function to (i) collect all these 
two frequent subsequences from the worker nodes and (ii) return GGAA:4 TGTG:3 as sequence motifs to the user 
by the driver node (i.e., master node). 

5. Experimental results 

To evaluate our algorithm in mining sequence motifs from large DNA sequences, we used various datasets 
including the following: 

1. bacteria DNA sequence datasets from the NCBI data repository (www.ncbi.org), which is of size 16 KB; and 
2. human genome datasets (Homo Sapiens GRCh38.p7 DNA Chromosome 1, which is of size 240.8 MB; and   

All the experiments were run using a cluster distributed-memory system. The cluster was configured using the 
standalone architecture of Apache Spark version 1.6.1 and made up of five homogeneous distributed-memory 
systems running Ubuntu-15.0 and 64-bit Linux operating system connected through a low-latency infini-band and 
gigabit Ethernet network. Each computer has Opteron core processor of 2.6 GHz, 8 dual core processor with Hyper-
Threading, and 32 gigabytes of DDR3 memory. We implemented our algorithm in Scala programming language. 

The results shown in Tables 1 and 2 are based on the standard performance metrics for distributed algorithms. 
These metrics include runtime, speedup, efficiency and cost. The distributed run time is the time that elapses from 
the moment that a distributed computation starts to the moment that the last processor finishes execution. The 
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speedup is the ratio of the serial runtime of the algorithm for solving a problem to the time taken by the distributed 
algorithm to solve the same problem on Np processors as given in Equation (1): 

 S = Ts / Tp (1) 

where Ts and Tp are algorithm serial and distributed runtimes respectively. 
The efficiency of a distributed algorithm is the ratio of speedup to the number of processors on the cluster as 

given in Equation (2). Efficiency measures the fraction of time for which a processor is usefully utilized: 

 Efficiency = (S / Np) = (Ts / NpTp) (2) 

where Np is the number of processors in the cluster. 
The cost (C) of solving a problem on a distributed system is given as the product of (i) the runtime (Tp) and (ii) 

the number of processors (Np) on the cluster as given in Equation (3): 
 C = Tp x Np (3) 

Table 1. Speedup, efficiency and cost our algorithm using the bacteria DNA sequence dataset. 

Motif length (L) Runtime on Single Node (Ts) Runtime on Spark Cluster (Tp) Speedup (S) Efficiency Cost (C) 

2 222.0s 32.0s 6.936 1.387 160.0 

3 306.0s 35.2s 8.693 1.739 176.0 

4 340.7s 40.1s 8.496 1.699 200.5 

5 432.0s 44.3s 9.751 1.950 221.5 

6 510.0s 48.1s 10.625 2.125 240.5 

Table 2. Speedup, efficiency and cost our algorithm using the human genome DNA dataset. 

Motif length (L) Runtime on Single Node (Ts) Runtime on Spark Cluster (Tp) Speedup (S) Efficiency Cost (C) 

2 22,900.0s 4,500.1s 5.089 1.017 22,500.5 

3 31,504.1s 6,300.8s 5.000 1.000 31,504.0 

4 37,001.5 7,200.3s 5.139 1.027 36,001.5 

5 49,700.2s 99,00.5s 5.019 1.004 49,502.5 

6 55,100.2s 10,800.2s 5.101 1.020 54,001.0 

Results from Table 1 shows that the execution time on single machine increases significantly with a growing 
trend with the increase of the difficulty of the problem. Thus, the execution time increases significantly as the size of 
the dataset increases. However, for the cluster, small size of dataset does not have significant change on the 
execution time. Tables 2 shows that, for a large input dataset, the speedup on the cluster is approximately five times 
the speed on the single node with varying motif lengths, thus we can significantly reduce the time required by our 
algorithm to extract motifs from the datasets by increasing the nodes on the cluster. 

Furthermore, Fig. 3 shows the asymptotic worst case scenario time complexities analysis of our algorithm when 
it runs on a single node and on three nodes. It shows that the growth rate on a single node is O(n2) which follows 
quadratic growth rate function, while the growth rate on NP = 3 three nodes is O(log3 n) which follows a logarithmic 
order of computation. Hence, the time requirement for our algorithm increases slowly as the dataset size increases. 

6. Conclusions 

In the current epoch of big data, high volumes of a wide variety of valuable data can be easily collected and 
generated from a broad range of data sources of different veracities at a high velocity. In bioinformatics, terabytes of 
deoxyribonucleic acid (DNA) sequences can now be generated within a few hours with the use of next generation 
sequencing (NGS) technologies. These high volumes of data are beyond the ability traditionally used algorithms to 
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Let us continue with our illustrative example in mining sequence motif from the DNA sequence as shown in 
Fig.2. Recall that, with the map function, Worker Node 1 returns the following four subsequences (of length Lmin = 
Lmax = 4 each and satisfying Hamming distance D ≤ 2) with their local support counts: GGAA:1, GAAG:1, TCAG:1 
and GTAG:1. Similarly, Worker Node 2 returns TGTG:1 and TGTG:1; Worker Node 3 returns three subsequences 
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Node 3 computes frequent subsequence TGTG:3. In contrast, from {GTAG:1, GTGA:1}), Worker Node 2 cannot 
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4.4. The combine function for our algorithm 

Once the frequent subsequences are generated and their support counts are computed by each worker node, our 
algorithm then applies a combine function to (i) collect all these frequent subsequences from each of the worker 
nodes and (ii) output them as a single motif on the driver node (i.e., master node) as shown in Fig 2. Pseudocode for 
this combine function is given in Algorithm 3. 

Algorithm 3. Combine function 
1: Input: the set of emerging subsequences  
2: Output: the set of motifs 
3: set RS ¬ Ø 
4: collect(⟨subsequence, support count⟩) 
5: for each worker node on the cluster CL do 
6:  K ¬ align subsequence from CLi 
7:  add subsequences in K to RS 
8: emit RS 
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Fig.2. Recall that, with the reduce function, Worker Node 1 returns the following frequent subsequence (of length 
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two frequent subsequences from the worker nodes and (ii) return GGAA:4 TGTG:3 as sequence motifs to the user 
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To evaluate our algorithm in mining sequence motifs from large DNA sequences, we used various datasets 
including the following: 

1. bacteria DNA sequence datasets from the NCBI data repository (www.ncbi.org), which is of size 16 KB; and 
2. human genome datasets (Homo Sapiens GRCh38.p7 DNA Chromosome 1, which is of size 240.8 MB; and   

All the experiments were run using a cluster distributed-memory system. The cluster was configured using the 
standalone architecture of Apache Spark version 1.6.1 and made up of five homogeneous distributed-memory 
systems running Ubuntu-15.0 and 64-bit Linux operating system connected through a low-latency infini-band and 
gigabit Ethernet network. Each computer has Opteron core processor of 2.6 GHz, 8 dual core processor with Hyper-
Threading, and 32 gigabytes of DDR3 memory. We implemented our algorithm in Scala programming language. 

The results shown in Tables 1 and 2 are based on the standard performance metrics for distributed algorithms. 
These metrics include runtime, speedup, efficiency and cost. The distributed run time is the time that elapses from 
the moment that a distributed computation starts to the moment that the last processor finishes execution. The 
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speedup is the ratio of the serial runtime of the algorithm for solving a problem to the time taken by the distributed 
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 S = Ts / Tp (1) 

where Ts and Tp are algorithm serial and distributed runtimes respectively. 
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Motif length (L) Runtime on Single Node (Ts) Runtime on Spark Cluster (Tp) Speedup (S) Efficiency Cost (C) 

2 22,900.0s 4,500.1s 5.089 1.017 22,500.5 

3 31,504.1s 6,300.8s 5.000 1.000 31,504.0 

4 37,001.5 7,200.3s 5.139 1.027 36,001.5 

5 49,700.2s 99,00.5s 5.019 1.004 49,502.5 

6 55,100.2s 10,800.2s 5.101 1.020 54,001.0 

Results from Table 1 shows that the execution time on single machine increases significantly with a growing 
trend with the increase of the difficulty of the problem. Thus, the execution time increases significantly as the size of 
the dataset increases. However, for the cluster, small size of dataset does not have significant change on the 
execution time. Tables 2 shows that, for a large input dataset, the speedup on the cluster is approximately five times 
the speed on the single node with varying motif lengths, thus we can significantly reduce the time required by our 
algorithm to extract motifs from the datasets by increasing the nodes on the cluster. 

Furthermore, Fig. 3 shows the asymptotic worst case scenario time complexities analysis of our algorithm when 
it runs on a single node and on three nodes. It shows that the growth rate on a single node is O(n2) which follows 
quadratic growth rate function, while the growth rate on NP = 3 three nodes is O(log3 n) which follows a logarithmic 
order of computation. Hence, the time requirement for our algorithm increases slowly as the dataset size increases. 

6. Conclusions 

In the current epoch of big data, high volumes of a wide variety of valuable data can be easily collected and 
generated from a broad range of data sources of different veracities at a high velocity. In bioinformatics, terabytes of 
deoxyribonucleic acid (DNA) sequences can now be generated within a few hours with the use of next generation 
sequencing (NGS) technologies. These high volumes of data are beyond the ability traditionally used algorithms to 
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manage, query, and process within a tolerable elapsed time. In this article, we presented a big data analytics model 
for mining motifs from large volumes of DNA sequences. Specifically, we developed an Apache Spark-based 
algorithm for data analytics of sequence motifs (i.e., frequent sequences) in large omics data. This distributed 
algorithm mimics the MapReduce programing model in an Apache Spark parallel computing framework. Evaluation 
results show the speedup, efficiency and cost of our algorithm in mining motifs from large volumes of DNA datasets 
within a short time frame. 

As ongoing and future work, we are exploring ways to further enhance our algorithm. Moreover, we are 
conducting more extensive evaluation. 
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