
Hijacker: Efficient Static Software Instrumentation
with Applications in High Performance Computing

POSTER PAPER

Alessandro Pellegrini
Dipartimento di Ingegneria Informatica, Automatica, Gestionale

Sapienza, University of Rome
pellegrini@dis.uniroma1.it

Abstract—Static Binary Instrumentation is a technique that
allows compile-time program manipulation. In particular, by
relying on ad-hoc tools, the end user is able to alter the program’s
execution flow without affecting its overall semantic.

This technique has been effectively used, e.g., to support code
profiling, performance analysis, error detection, attack detection,
or behavior monitoring. Nevertheless, efficiently relying on static
instrumentation for producing executables which can be deployed
without affecting the overall performance of the application still
presents technical and methodological issues.

In this paper, we present Hijacker, an open-source customiz-
able static binary instrumentation tool which is able to alter a
program’s execution flow according to some user-specified rules,
limiting the execution overhead due to the code snippets inserted
in the original program, thus enabling for the exploitation in
high performance computing. The tool is highly modular and
works on an internal representation of the program which
allows to perform complex instrumentation tasks efficiently, and
can be additionally extended to support different instruction
sets and executable formats without any need to modify the
instrumentation engine.

We additionally present an experimental assessment of the
overhead induced by the injected code in real HPC applications.

I. INTRODUCTION

Binary Instrumentation is a technique which modifies a
binary program by inserting additional instructions or by
changing existing ones at compile time (static instrumentation)
or at runtime (dynamic instrumentation), in order to observe
or modify the execution’s flow, without altering the overall
program’s semantic. This technique has been successfully
exploited in several fields, such as behavior monitoring [1],
performance analysis [2], attack detection [3], or to alter
code for supporting transactional memories [4]. Intrumentation
tools like Pin [5], Dyninst [6], Valgrind [7], and DynamoRIO
[8] have been extensively used in order to analyze various
applications and observe their behavior.

In static instrumentation, the executable is analyzed at a
certain stage during its compiling process (i.e. before or after
the final linking stage), while in dynamic instrumentation some
logic is inserted into the application so that, when the process
is launched, the control is taken by a runtime module which
alters the code during the actual program’s execution. While
the latter could be regarded as a more powerful technique,
due to the fact that at runtime more information is available to
the runtime disassembling module (e.g. any conditional branch
can be successfully evaluated), the former technique allows for
the creation of more efficient executables, due to the fact that

only the strictly-necessary instrumentation code is inserted in
the application binary. Considering that we explicitly address
High Performance Computing scenarios, Hijacker necessarily
falls in the former category, although, as it will be discussed
later, few additional runtime tasks are performed.

Static binary instrumentation has nevertheless some dis-
advantages. In fact, the instrumentation process cannot target
third-party libraries, especially shared libraries. In fact, if a
static instrumentation tool were to target such libraries, the
resulting instrumented library would affect every executable
in the system which is relying on it. Considering that instru-
mentation could significantly affect the behavior of the code
(depending on the user needs), this approach would be non-
viable. On the other hand, Hijacker offers a set of tools to
redirect specific (third-party libraries) functions calls to user-
defined stubs, or to efficiently wrap specific ones, thus giving
the user the freedom to wisely use third-party code under
controlled execution flow.

The process of instrumenting an executable poses two
challenges: on the one hand, since instrumentation works on
machine-level code, this process is intrinsically instruction-set-
dependent. On the other hand, in order for the user to correctly
modify the application’s flow (without altering its semantic),
she has to manually provide the tool with the additional
code to be injected, which can be a non-trivial task, since
it may depend on the actual compiler, architecture and calling
conventions specified by the current ABI. In order to hide this
complexity away, we have specifically designed Hijacker in
order to provide three main features: i) the instrumentation
process is rule-driven, i.e. the operations performed by Hi-
jacker are specified via an xml file, which instructs the tool on
the specific tasks to be performed in the process; ii) the most
common tasks can be performed transparently, since Hijacker
comes bundled with a set of instumentation features (e.g.
target memory address reconstruction) which can be inserted
into the original binary; iii) the process of instrumenting
the code is instruction-set and executable independent, i.e.
Hijacker performs its tasks on an internal binary representation,
decoupling the specific details of the underlying architectures
and therefore allowing the tool to instrument the same original
high-level code compiled for different architectures.

The remainder of this paper is structured as follows. In
Section II related work is presented. Section III describes
the basic design and implementation of Hijacker. Examples
of applications in HPC are provided in Section IV. Finally,
in Section V we present the experimental assessment of an
application instrumented using Hijacker.



II. RELATED WORK

There are several works in literature and several tools
which address the problem of instrumentation. The earliest
implementations of binary instrumentation toolkits are ATOM
[9] and EEL [10]. They both instrument code at compile
time, avoiding as mush as possible runtime overhead. ATOM
is targeted at alpha machines only, while EEL tries to hide
the complexities of the underlying instruction sets providing
abstract C++ interfaces for altering the code. On the contrary,
our tool drives the instrumentation process by relying on rules
provided in a xml file.

BIRD [11] is a binary rewriting platform for Windows/x86
only. This tool basically relies on the insertion of a 5-byte
branch instruction in order to give control to instrumentation
code, or relies on interrupts when 5 bytes are not available.
This technique is similar to the one presented by PEBIL [12],
although the latter tool is targeted at Linux boxes and uses
function relocation allowing the tool to rely on the 5-byte
branch at any instrumentation point. The main difference from
our proposal is that we completely rebuild the final executable,
and thus there are no limits in the amount of code which can be
inserted in-place (i.e. without relying on calls to other portions
of the executable)

Dyninst [6] is a tool for static and dynamic instrumentation.
It can either create a modified version of the binary at compile
time, or can operate at runtime. The most notable feature of
this tool is the ability to perform liveness analysis on registers’
values and on flag register’s bits.

Some tools like Pin [5] rely on just-in-time instrumentation.
In particular, Pin can be seen as a middleware which places it-
self under the original application, and at applications interrupt
points it instruments the upcoming parts of the original code.
Just-in-time instrumentation is used as well by other tools like
DynamoRIO [8] and Valgrind [7]. The latter tool offers a very
large set of functionalities, ranging from memory-management
errors detection to cache utilization analysis. Nevertheless,
while incredibly useful, techniques used by this tools produce
a heavyweight overhead, making it not suitable for deployed
HPC applications.

III. DESIGN AND IMPLEMENTATION

In the compiling process, Hijacker lays just before the
final linking stage. In fact, we have explicitly decided to
work on a relocatable representation of the executable because
we can rely on the additional linking metadata in order to
perform our application analysis and build our internal binary
representation.

Hijacker’s architecture is divided in a front-end module—
which provides several compatibility layers with different ex-
ecutable formats and assembly languages, and is able to parse
xml rule files—and a back-end module—which performs the
actual instrumentation operations on an intermediate (machine-
independent) representation of the executable. Hijacker is open
source1, and is available as one of the tools released by the
HPDCS research group2. The overall architecture is depicted
in Figure 1.

1http://www.dis.uniroma1.it/∼pellegrini/?p=hijacker
2http://www.dis.uniroma1.it/∼hpdcs

Hijacker

Front-End

Executable Formats

Interpreters

Instruction Sets

Disassemblers

F
i
l
e
 

L
o
a
d
e
r

Executable Formats

Generators

Instruction Sets

Assemblers

F
i
l
e
 

W
r
i
t
e
r

Back-End

Input

Relocatable

Executable

Output

Relocatable

Executable

XML

Con g

File

XML Parser

Internal Executable

Representation

Instrumentation Rule Manager

Instrumentation Engine

Fig. 1. General Hijacker’s Architecture

A. Rule Specification

As mentioned before, Hijacker is a rule-based instrumen-
tation tool. To support the instrumentation process and to
leverage the user from many technical details, we allow her to
instruct Hijacker via a simple xml file, an example of which is
provided in Figure 2. As it can be seen, the user can instruct
Hijacker to perform several actions on the executable on a
per-function basis or on a global-basis.

In particular, the configuration file gives the freedom to
insert manually-written portions of code (by relying on the
<Inject> tag). The code should be written in the target ma-
chine’s assembly language, or in a higher language for which
a compiler is available on the machine, and is automatically
compiled by Hijacker. Instructions to be altered are speci-
fied using the <Instruction> tag, which supports several
attributes: instruction, specifies either a single (target-
architecture) assembly instruction, or a (machine-independent)
family of instructions, as it will be clearly discussed in Sec-
tion III-B; injectBefore, injectAfter, and replace
specify either an assembly code file or a specific instruction
to be placed (respectively) before, after or in place of the
related instruction. The <AddCall> tag allows the user to
insert specific calls to original or injected functions in the code.
Several attributes are allowed: where determines whether the
call is placed before or after the target instruction; function
specifies which function must be called; arguments specifies
which arguments should be passed to the callee (as it will be
explained in Section III-D); convention determines if the
arguments are passed either by stack or by registers (respecting
the target architecture’s calling convention). The user can
specify which operations should be performed on a specific
function by enclosing the relevant tags in the <Function>
tag, where the function name is specified in the name attribute.
We note that if <AddCall> is used within a <Function>
tag, the meaning of the where attribute specifies whether
the function call is performed after the function specified
in <Function> is called (i.e., the call is injected in the
function’s code) or before any call to it in the executable.

When Hijacker is launched, the front-end’s XML parser
module loads the configuration file and instructs the back-end’s
instrumentation rules manager about the operations which will
be performed during the instrumentation process.



<HijackerRules>
<Inject file="memorycopy.c"/>
<Function name="foo">
<Instruction instruction="I_MEMWR|I_MEMRD" injectBefore="memcount.S">
<AddCall where="before" function="monitor" arguments="target" convention="stack"/>
</Instruction>

</Function>
<Instruction instruction="I_JUMP|I_CONDITIONAL" injectAfter="jumpcount.S">
<AddCall where="before" function="monitor" arguments="register" convention="stdcall"/>

</Instruction>
<Instruction instruction="movs" replace="nop">
<AddCall where="after" function="memorycopy" arguments="target" convention="registers"/>

</Instruction>
</HijackerRules>

Fig. 2. Example configuration file

B. Application Analysis and Internal Binary Representation

In order to perform the instrumentation tasks, the original
(relocatable) executable must be processed first. The front-
end’s file loader module performs a sequence of tests on the
executable in order to determine which executable format is
used to represent the program, and triggers the corresponding
executable format interpreter (among the ones registered at
Hijacker’s compile time) in order to start loading the program.
The first step undertaken by the executable interpreter is to
check which assembly language is used to represent instruc-
tions in the executable, and this information is reported back
to the file loader manager, which searches among the available
disassembler engines for one able to interpret the code. If a
suitable disassembler is found, this information is reported to
the executable interpreter.

This modular approach allows any combination of assem-
bly languages and executable formats for the representation
of a program, and allows for high extendibility of the tool,
decoupling the process of adding supports for new/additional
formats and languages from the instrumentation process itself.
At the time of this writing, Hijacker is bundled with an
ELF format interpreter, an x86 disassembler and an x86 64
disassembler, while a PE interpreter and an ARM disassembler
are under development.

The executable interpreter then starts analyzing the pro-
gram and builds an intermediate representation of it which
we refer to as program map. This program map is structured
in sections, whose type can be code, data, or raw. The latter
section describes any type of section which is not involved in
the instrumentation process, and is therefore straight recreated
in the altered program. The data section keeps track of global
data used by the program, in terms of name of the variables
(if any), their size in byte (if available), and their initial value.

The code section actually contains an intermediate repre-
sentation of the instructions. In particular, the executable inter-
preter gives control to the suitable disassembler in order to start
a linear scan of the assembly code. Each assembly instruction
gets stored into a data structure that keeps the original bytes
of the instruction, along with several attributes describing the
instruction itself. Each data structure keeps a set of pointers
to target adjacent instructions in the function, data (if any),
and/or other instructions (if any, in case of branches or function
calls). Depending on the actual assembly language used by the
program (and on the compiler which generated the code), this
process can present more or less difficulties. As an example,
some compilers emit data within the code in order to support
efficient execution of, e.g., indirect banches deriving from the

Executable

Functions

Instructions

Data
cal

l

mov

jmp

Fig. 3. Hijackers Internal Representation of Executables

compilation of switch cases. The disassembler module is able
to communicate with the executable interpreter if, during the
instrumentation process, some data segments are discovered
within the instructions3. In this case, the executable interpreter
adds to the data section the additional data structures, enforcing
the logical separation between data and code used to build
the program map. Of course, this action slightly changes the
“shape” of the altered program which will be produced as
output of the instrumentation process, but does not change its
operational flow.

During the linear scan of the assembly code, Hijacker’s dis-
assemblers cross-check the information retrieved from symbol
and relocation tables from the original relocatable program. In
this way, the disassembler is able to decode instructions and
organize their internal represenation in functions, preserving
the connection among instructions and the data, in order to
produce an intermediate representation of code as depicted in
Figure 3. We note that the connections between instruction-
instruction (due to branches in the code), instruction-function
(due to function calls), and instruction-data (due to data
movement) are realized in the intermediate representation as
memory pointers, rather than offsets as most assembly lan-
guages do. Considering that functions are represented as linked
lists of instructions (the elements’ order in such lists is their
appearance in the code, which does not necessarily correspond
to the program’s execution flow), inserting or removing any
instruction at any point of code does not alter the linking
between objects in the intermediate representation.

Whenever an instruction is interpreted by the disassembler,

3The methodologies used by disassembler modules for discovering such
portions of data are different, depending on the architecture and its ABI,
and discussing them is out of the scope of this paper. Nevertheless, to give
the reader an idea, they mostly rely on decompilation error-retry algorithms,
coupled with address/register-value evaluation.



it gets marked using special flag values which describe the
actual family of the instruction. The available flags and their
meanings are:

I_MEMRD: The instruction reads from memory
I_MEMWR: The instruction writes to memory
I_CTRL: The instruction performs checks on data
I_JUMP: The instruction alters the execution flow
I_CALL: The instruction calls a different function
I_RET: The instruction returns from a callee
I_CONDITIONAL: The instruction is executed only if a

condition is met
I_STRING: The instruction operates on large amount of data
I_ALU: The instruction does some logical/arithmetic opera-

tion
I_FPU: The instruction does some floating-point operation
I_STACK: The instruction works on stack
I_INDIRECT: The instruction behavior might depend on

some runtime value

or any or’ed combination of them. For example, an
instruction marked as I_MEMWR|I_MEMRD reads from
and writes to memory, while an instruction marked as
I_JUMP|I_CONDITIONAL is an indirect branch. These
combinations of flags can be used in the instruction
attribute described in Section III-A to specify instrumentation
rules for groups (families) of instructions which perform a
certain action.

C. Code and Data Instrumentation

Once the program map is completely built, the execution
control is given to Hijacker’s back-end, in particular to the
instrumentation rules manager. This module starts applying the
rules parsed from the xml configuration file, by triggering (for
each rule) the corresponding operation in the instrumentation
engine.

The instrumentation engine operates on the internal inter-
mediate representation of the executable. Whenever some rule
requires a modification in a particular function, the correspond-
ing entry is found in the functions array and the instructions’s
data structures are linearly scanned in order to identify the
ones which must be instrumented. If the rule involves adding
some instructions before or after the target one, some new
nodes are simply inserted in the list of instructions. For the
generation of machine-level code, the instrumentation engine
asks the instruction-set assembler to produce the machine-level
representation of the instruction. If the insertion of code entails
the compilation of some assembly file, the default compiler
installed on the host machine (cc) is invoked automatically.
When Hijacker is launched, a custom compiler can be speci-
fied, which will override this setting.

As hinted before, whenever some rule is applied, the con-
nections between instructions, functions and data are preserved
since they are realized as memory pointers between structures.
This is true even in the most complex cases: if instructions
are referred from the data section (e.g. in the aforementioned
branch table case) then the approach described in Section
III-B had notified executable interpreter about the presence
of data segments within the code. If the disassembler module
was able, at runtime, to discover the presence of references
to instructions, then they are replaced with memory pointers
targeting the destination instructions. This approach has been
shown to cover most of the code generated by standard
compilers. Nevertheless, there are some cases which involve

the generation of instruction addresses completely at runtime.
If such a case is found, then Hijacker is not currently able to
correctly instrument the executable, although we are working
on making the technique discussed in [13] more efficient and
suitable for HPC.

D. Bundled Instrumentation Features

During the instrumentation process, disassemblers populate
the data structures used for representing instructions in the
intermediate representation with all the information which
can be gathered from their binary representation during the
process. This information can be stored in the executable and
therefore used at runtime by, e.g., user-injected functions. This
is exactly the goal of the arguments attribute described
in Section III-A, and the one of the bundled instrumentation
features: provide the end user with some cached disassembly
information in order to allow some sort of dynamic monitoring
without having to rely on any kind of dynamic instrumentation.

At the time of this writing, Hijacker provides the end
user with two bundled instrumentation features, namely target
address reconstruction and indirect register detection. The
former is a feature which allows, whenever an I_MEMRD or
I_MEMWR instruction is being instrumented, to insert some
additional code which evaluates by software the destination
address of such instruction, and the size of the access. This
information can be passed as argument of any (user-injected
or not) function in the binary.

The branch register instrumentation feature is similar in
spirit to target address reconstruction. This feature allows any
function in the code to be called passing two arguments: an
integer code representing the register which is used to execute
an indirect memory acccess (either for reading/writing or for
altering the control flow with an indirect branch), and its
actual runtime value. This can be particularly useful to trace at
runtime the actual execution patterns of an application, when
this information cannot be detected at compile time.

E. Binary Multiversioning

Hijacker can make multiple (differently-instrumented) ver-
sions of the same executable coexist in the same image, in
case more <Executable> tags in the xml configuration file
are found. This facility has been successfully exploited in [13]
to create differently-instrumented versions of the same original
application-level program which coexist and the execution flow
is passed from one version to the other.

In order to support such a scenario, Hijacker allows to
specify a new entry point for the program. This facility can be
used to insert, e.g., some logic in the instrumented application
which dinamycally selects one of the two versions of the ap-
plication binary depending on the current execution dynamics.
This approach can be regarded as a means for efficiently cre-
ating executables which, according to the autonomic paradigm
[14], are able to efficiently react to changes in the execution
dynamics by, e.g., selecting a different operating mode. The
different operating modes could be realized as differently-
instrumented versions of the same executable, leveraging the
programmer from implementing slightly different versions of
the same program, a process which is inherently long and error-
prone.

From a technological point of view, whenever two or more
versions of the executable must be created, the rule manager



asks the instrumentation engine to create multiple copies of
the program map as the first action. Each copy will have its
internal symbols renamed adding a progressive number, so that
if the user wants to inject code which calls either instrumented
version, she will be able to do so consistently. The data section
is not duplicated, so to allow a consistent sharing of data
among the versions. Each program map version will be then
instrumented applying the related rules.

F. Binary Recreation

The last step in the instrumentation process is the recreation
of a (relocatable) executable which can be later passed to
the linker to complete the compiling process. When the rules
manager has finished applying modifications to the program
map(s), the control is returned to Hijacker’s front-end.

The proper executable formats generator is thus triggered in
order to recreate a new executable on disk. This process entails
repeatedly accessing the program map(s) in order to build all
the data structures which are required by the format itself. As
it can be clearly seen, this process is highly format-dependent,
and the description of the operations involved would be in the
scope of specifically-targeted papers. Nevertheless, to give the
reader an idea, they are similar in what actual compilers do
whenever they are generating a program from a set of source
files.

G. Third-party libraries

The possibility to rely on third-party libraries depends on
the actual behavior of used functions. In fact, as an example,
if the user is instrumenting the executable to track memory
updates and then relies, e.g., on standard memset library
function, then memory updates performed by memset would
not be tracked.

As mentioned before, there are several solutions to this
problem, each one having different drawbacks. In order to
provide efficient solutions to this issue, we have explicitly
avoided to rely on costly runtime analysis approaches, while
on the contrary we have given the user the possibility to wrap
third-party library calls, by relying on a specific <Library>
tag. In this way, the user can specify which are the external
library calls which she wants to wrap, and therefore any call
in the executable to them will be actually redirected to user-
specified functions, in a way similar to what standard linkers
allow to do during the compilation process.

IV. APPLICATIONS IN HPC

In this Section, we briefly highlight some application fields
which can benefit by tools like Hijacker. Code instrumentation
can be efficiently used in order to support memory access
tracing procedures, and therefore collect information which
can be used to create incremental snapshots of programs
memory maps for, e.g., efficiently enforce failure recovery,
or to support speculative execution. This is the case, e.g.,
of [15], where memory writes are instrumented for creating
incremental snapshots of application’s memory map in the
context of optimistic simulation.

Another relevant field is that of autonomic computing [16],
[14], [17], i.e. computing systems which are able to actively
react to changes in the execution dynamics due to internal or
external solicitations. This is the case, e.g., of [13] or [18],
where the coexistence of differently instrumented versions

of the same executable is exploited in order to dinamically
reselect the best suited execution mode depending on the actual
execution dynamics.

Of course, this tool can be used as well in the context
of code profiling, in order to detect which portions of an
applications are the actual bottlenecks of the execution. In fact,
the user can just maintain one single version of the sources,
and write rules to inject efficient profiling routines to track the
execution performance of single functions, class of functions
or even single code snippets.

The problem of finding bugs in an HPC program is non-
trivial, especially when in complex systems it is not possibile
to reproduce the problem in the development/testing phase.
On the contrary, if the production version of the software is
lightweightly instrumented, it is possible to trace execution
and store light metadata which allow, by analyzing a core
dump, to step back between instructions (restoring previous
snapshots of the memory map) and find where the actual bug
is. This technique, referred to as Post-Mortem Debugging [19],
can be supported by instrumentation tools like the one hereby
described.

V. EXPERIMENTAL RESULTS

In order to evaluate the instrumentation overhead induced
by the proposed architecture, we have conducted experiments
on a family of configurations of Personal Communications
Service (PCS), parallely run on top of ROOT-Sim [20], an
optimistic parallel discrete event simulator. PCS is a GSM
wireless communication systems simulation model, where
channels are modeled in high fidelity via explicit simulation of
power regulation/usage and interference/fading phenomena on
the basis of the current state of the corresponding cell. Also,
the power regulation model has been implemented according
to the results in [21]. Accurate descriptions of this model can
be found in [22]. However, for the reader’s convenience we
report below some details related to the measures which we
have taken.

Upon the start of a call destined to a mobile device
currently hosted by a given wireless cell, a call setup record
is instantiated via dynamically-allocated data structures, which
gets linked to a list of already active records within that same
cell. Each record gets released when the corresponding call
ends or is handed-off towards an adjacent cell. In the latter
case, a similar call-setup procedure is executed at the desti-
nation cell. Upon call-setup, power regulation is performed,
which involves scanning the aforementioned list of records
for computing the minimum transmission power allowing the
current call-setup to achieve the threshold-level SIR value.
Data structures keeping track of fading coefficients are also
updated while scanning the list, according to a meteorological
model defining climatic conditions (and related variations).
The climatic model accounts for variations of the climatic
conditions (e.g. the current wind speed) with a minimum time
granularity of ten seconds.

We have performed a set of experiments where each cell
sustains the same workload of incoming calls, whose inter-
arrival time is exponentially distributed, and whose average
duration is set to 2 minutes. The call interarrival frequency
to each cell has been varied in the interval between 1 and
6.25 calls per simulation time unit, thus providing increasing
values of the channel utilization factor (in between 12% and
75%), and hence increasing values of the expected length



 0

 20

 40

 60

 80

 100

1 2 3 4 5 7

E
v
e
n
t 

E
x
e
c
u
ti

o
n
 C

o
s
t 

(µ
s
)

Non-Instrumented Instrumented

Fig. 4. Overheads associated with different workloads

of the aforementioned list of in-use records. The residence
time of an active device within a cell has a mean value of
5 min and follows the exponential distribution. This has the
effect of performing an increasing number of memory updates
whenever the climatic model starts scanning the allocated
channels for recomputing the optimal power allocation values.
For the above scenario, we have run experiments with 1024
wireless cells, modeled as hexagons covering a square region,
each one managing 1000 wireless channels. These have been
evenly distributed across 32 kernel instances running on a 64-
bit NUMA machine, namely an HP ProLiant server, equipped
with four 2GHz AMD Opteron 6128 processors and 64GB of
RAM. Each processor has 8 cores (for a total of 32 cores) that
share a 12MB L3 cache (6 MB per each 4-cores set), and each
core has a 512KB private L2 cache.

In Figure 4 we present the results for the various PCS
configurations (i.e. interarrival frequencies) in two cases: the
first represents the execution of PCS instrumented using
Hijacker, where every memory-write access (i.e. I_MEMWR
instructions) have been instrumented by placing before each
of them a call to a hand-written module which relies on the
target address reconstruction bundled instrumentation feature
for creating a memory access map; the second represents an
execution of the original benchmark, with no instrumentation.
The instrumented scenario is non trivial, since it additionally
requires the execution of a runtime module to compute the
actual memory addresses. Figure 4 shows average execution
time of PCS events in both cases. As it can be clearly seen, the
overhead added by the modifications of the code by Hijacker
are negligible, while by relying on the instrumented code
the user is able to reduce actual management costs by using
incremental logging facilities like the ones described in [15].

VI. CONCLUSION AND FUTURE WORK

In this work we have presented Hijacker, a rule-based
static binary instrumentation tool, which is able to modify
at compile time the execution flow of an executable without
altering its overall semantics. We have shown implications by
the usage of this tool in the context of HPC applications, and
we have provided an assessment of the overhead induced by
the injection of code in a deployed executable.

Future work entails augmenting the set of bundled in-
strumentation features in order to increase the level of trans-
parency provided to the user, the development of more front-
end disassemblers and format interpreters, and an overall

assessment of the produced instrumented binaries in more
complex/differentiated scenarios.

REFERENCES

[1] W. Drewry and T. Ormandy, “Flayer: exposing application internals,” in
Proceedings of the first USENIX workshop on Offensive Technologies,
ser. WOOT. USENIX Association, 2007, pp. 1:1–1:9.

[2] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
International Journal on High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, May 2006.

[3] J. Newsome, D. Brumley, and D. Song, “Vulnerability-specific ex-
ecution filtering for exploit prevention on commodity software,” in
Proceedings of the 13th Symposium on Network and Distributed System
Security, ser. NDSS, 2005.

[4] M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A dynamic
binary-rewriting approach to software transactional memory,” in Pro-
ceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, ser. PACT. IEEE Computer Society,
2007, pp. 365–375.

[5] Pin, http://www.pintool.org/.
[6] DynInst, http://www.dyninst.org/.
[7] Valgrind, http://valgrind.org/.
[8] DynamoRIO, http://www.dynamorio.org/.
[9] A. Srivastava and A. Eustace, “Atom: A system for building customized

program analysis tools,” in Proceedings of the 1994 ACM SIGPLAN
Conference on Programming Languages and Design Implementation.
ACM, 1994, pp. 196–205.

[10] EEL, http://pages.cs.wisc.edu/∼larus/eel.html.
[11] S. Nanda, W. Li, L.-C. Lam, and T.-C. Chiueh, “Bird: Binary interpre-

tation using runtime disassembly,” in International Symposium on Code
Generation and Optimization, ser. CGO, Mar. 2006.

[12] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely, “Pebil:
Efficient static binary instrumentation for linux,” in IEEE International
Symposium on Performance Analysis of Systems Software, ser. ISPASS,
Mar. 2010, pp. 175–183.

[13] R. Vitali, A. Pellegrini, and F. Quaglia, “Autonomic log/restore for ad-
vanced optimistic simulation systems,” in Proceedings of the Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, ser. MASCOTS. IEEE Computer Society, 2010, pp.
319–327.

[14] P. Horn, “Autonomic computing: IBMs perspective on the state of
information technology,” vol. 15, pp. 1–39, 2001.

[15] A. Pellegrini, R. Vitali, and F. Quaglia, “Di-DyMeLoR: Logging only
dirty chunks for efficient management of dynamic memory based opti-
mistic simulation objects,” in Proceedings of the 2009 ACM/IEEE/SCS
23rd Workshop on Principles of Advanced and Distributed Simulation,
ser. PADS. IEEE Computer Society, 2009, pp. 45–53.

[16] S. Hassan, D. Al-Jumeily, and A. J. Hussain, “Autonomic computing
paradigm to support system’s development,” in Proceedings of the 2nd
International Conference on Developments in eSystems Engineering,
ser. DESE. IEEE Computer Society, Dec. 2009, pp. 273–278.

[17] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41 – 50, Jan. 2003.

[18] A. Pellegrini, R. Vitali, and F. Quaglia, “An evolutionary algorithm to
optimize log/restore operations within optimistic simulation platforms,”
in Proceedings of the 4th International ICST Conference on Simulation
Tools and Techniques, ser. SIMUTools. SIGSIM, 2011.

[19] D. Pacheco, “Postmortem debugging in dynamic environments,” Com-
munications of the ACM, vol. 54, no. 12, pp. 44–51, Dec. 2011.

[20] HPDCS Research Group, “ROOT-Sim: The ROme OpTimistic Simula-
tor - v 1.0,” http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/, Oct. 2012.

[21] S. Kandukuri and S. Boyd, “Optimal power control in interference-
limited fading wireless channels with outage-probability specifications,”
IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 46–
55, 2002.

[22] R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmetric multi-
threaded optimistic simulation kernels,” in Proceedings of the 26th
International Workshop on Principles of Advanced and Distributed
Simulation, ser. PADS. IEEE Computer Society, Aug. 2012, pp. 211–
220.


