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We study the space of interactions of a connected neural network with biased patterns, when the synaptic
interactions satisfy a symmetry constraint. We show that the solution to the problem requires the calculation of
a quantityNVm analogous to the thermodynamic potential of a multiply connected Ising model with site
dependent interactions, which maps the present problem into the spin-glass problem. By using a diagrammatic
expansion, we expressNVm formally as a functional of renormalized site dependent ‘‘propagators’’Gi j and
local ‘‘magnetizations’’mi , which are determined from a variational principle. CalculatingNVm in the single
site or Brout approximation we recover the theory of Thouless, Anderson, and Palmer~TAP!, while themi

satisfy TAP-like equations. In the impossibility of solving the equations, we analyze an approximate solution
that sums only tree diagrams and interpolates between the two known results of total asymmetry, finite bias,
and arbitrary symmetry with vanishing bias. The results show a small dependence on the asymmetry parameter.
@S1063-651X~96!11006-0#

PACS number~s!: 87.10.1e, 64.10.1h, 64.60.Cn, 05.50.1q

I. INTRODUCTION

In her classical seminal work@1#, Gardner proposed and
solved analytically the problem of calculating the fractional
volume of the space of interactions that allows a set of pat-
terns$j i

m% to be fixed points of the dynamical equations, for
a network of neuronsSi561 located at sitesi51 . . .N,

Si~ t11!5sgnF 1

AN(
j
8 Ji j Sj~ t !2Ti G , ~1!

where the primed sum indicates the restriction tojÞ i . In Eq.
~1! the asymmetric interactionsJi jÞJji satisfy the spherical
condition

1

N(
j
8 Jj

251 ~2!

andTi is an arbitrary threshold. The problem then consists of
calculating the volume of the space of interactionsJi j such
that the set ofN equations

j i
m5sgnF 1

AN(
j
8 Ji j j j

m2Ti G , i51 . . .N ~3!

are simultaneously satisfied for every pattern$j i
m%, where

j i
m561 andm51, . . . ,p. We call b5^j i

m& the pattern’s
bias.

The elegance and simplicity of Gardner’s method stems
from the fact that whenJi j andJji are independent variables
theN equations~3! also decouple and the volume in phase
space for each set of interactionsJi j starting with a given
value of i can be calculated exactly either for biased or un-
biased patterns@1#.

In a subsequent work@2# a more general problem was
treated, namely that the interactionsJi j andJji are no longer

independent but satisfy a symmetry constraint. This is a far
more complicated case because theN equations~3! no longer
decouple and in Ref.@2# the problem was solved only for
unbiased patterns in a strongly diluted lattice with connectiv-
ity C< ln(N), within a replica symmetric and site indepen-
dent theory.

In the present paper we study the space of interactions of
a connected network with arbitrary values ofC<N and with
biased patterns, when the interactionsJi j andJji are linked
by a symmetry constraint. We show that the solution to the
problem requires the calculation of a quantityNVm analo-
gous to the thermodynamic potential of a multiply connected
Ising model with site dependent interactions, which maps the
present problem into the long range spin-glass problem@3#
that was studied by means of diagrammatic methods by
Sommers@4#.

We follow the diagrammatic techniques of Ref.@4# to-
gether with the inclusion of Lagrange multipliers that insure
the conservation of the local identityj i

251, generalizing the
derivation of Thouless, Anderson, and Palmer~TAP! equa-
tions@5# by Southern and Young@6#. The linked cluster theo-
rem allows us to express formallyNVm as a functional of
renormalized site dependent ‘‘propagators’’Gi j and local
‘‘magnetizations’’mi , which are determined from a varia-
tional principle. We show that within a single site approxi-
mation NVm is given by TAP-like free energy while the
mi satisfy TAP-like equations@5#.

In the case ofunbiasedpatterns these equations accept the
trivial, explicitly site independent, solutionmi50 and our
results coincide with those obtained in Ref.@2#. Given the
impossibility of solving the equations for finite biasb.0, we
analyze an approximate solution that interpolates between
the two results in Refs.@1# and @2# whenh50,bÞ0 andh
Þ0,b50, respectively.

The paper is organized as follows. We describe the model
in Sec. II, while we present in Sec. III a rigorous diagram-
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matic analysis to derive TAP-like equations. In Sec. IV we
present the results for the approximate interpolating local
field, and we leave Sec. V for discussions.

II. DESCRIPTION OF THE MODEL

The problem we want to solve is the calculation of the
volume in phase space occupied by interactionsJi j that sat-
isfy the dynamical equations:

j i
m(
jÞ i

Ci j Ji j j j
m.k ~4!

where the bond occupation variableCi j5Cji , with probabil-
ity distributions

P~Ci j !5
C

N
d~Ci j21!1S 12

C

ND d~Ci j !, ~5!

and without loss of generality@1# we setTi50.
The interactionsJi j in Eq. ~4! are not symmetric,Ji j

ÞJji , and are subject to the spherical constraint

(
jÞ i

Ci j Ji j
25

C

N(
jÞ i

Ji j
25C ~6!

and to the symmetry constraint

(
jÞ i

Ci j Ji j Jj i5
C

N(
jÞ i

Ji j Jj i5hC. ~7!

For h50, there is no correlation betweenJi j and Jji ,
while for h51 we recover the symmetric situation
Ji j5Jji .

The patterns$j i
m%,m51 . . .p in Eq. ~4! are independent

random variables with the probability distribution

P0~j j
m!5

etj j
m

2cosh~t!
@d~j j

m21!1d~j j
m11!#, ~8!

then (j j
m)251 and

^j j
m&05E dj j

mP0~j j
m!j j

m5tanh~t!5b, ~9!

whereb is the bias.
In the following we will omit, for simplicity, the bond

variableCi j , and it is understood that a sum over theJi j ’s
implies also a bond average, according to Eqs.~6! and ~7!.
The volumeV in the space of theJi j of solutions of Eq.~1!
subject to the constraints in Eqs.~6! and ~7! is @1#

V5)
i

H E )
jÞ i

dJi j)
m

uS j i
m(
jÞ i

Ji j

AC
j j

m2k D
3dS (

jÞ i
Ji j
22CD dS (

jÞ i
Ji j Jj i2hCD J . ~10!

To average over thej i
m we use the replica method and we

obtain@1#, by using the integral representation of the Heavi-
side function,

Vn5^Vn&5E
k

`

)
a,m, j

dlm j
a E

2`

`

)
a,m, j

dxm j
a expS i (

a,m, j
xm j

a lm j
a D E )

a
)
i j

dJi j
aexpS (

m
VmND

3)
i ,a

FdS (
j
8 Ji j

a22CD dS (
j
8 Ji j

aJji
a 2hCD G ~11!

where the replica indexa51 . . .n and

eVmN5K expH 2 i
1

2AC(
^ i , j &

t i j
mj i

mj j
mJ L

0

. ~12!

The sum in Eq.~12! is over all pairŝ i , j &,iÞ j , and

t i j
m5(

a
~xm i

a Ji j
a 1xm j

a Jji
a !. ~13!

The bracket in Eq.~12! indicates an average over the inde-
pendent variablesj i

m at each site that take values61 with
the probability distribution in Eq.~8!.

FIG. 1. Diagrammatic expansion ofNVm8 . A single line joining
sitesi and j stands forGi j

0 and a dot linkingr legs at sitej stands
for a generalized cumulant average in Eq.~A7!.
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III. FORMAL EXPRESSION FOR Vµ

From Eqs.~8! and ~12! we obtain

eNVm5expS 2(
i

n i D E )
j

@P0~j j !dj j #

3expS 2
1

2(i , j j ij jGi j
0 D , ~14!

with

Gi j
05

i

AC
ti j
m22n id i j , t i i

m50 ~15!

and where we introduced the identity( in i@j i
221#50 into

the exponential. Then i are Lagrange multipliers that will
insure that the identity is preserved on the average procedure
and will be chosen to minimizeNVm . This is a generaliza-
tion of the method used by Southern and Young@6# to derive
TAP equations. From now on the prefix ‘‘m ’’ is not written
explicitly unless it gives rise to confusion.

Introducing Eq. ~8! into Eq. ~14!, we recognize that
NVm corresponds to the free energy of a multiply connected
Ising model with site dependent interactionsbJi j
52( i /AC)t i j

m in the presence of a ‘‘magnetic field’’t, and
this problem has been analyzed diagrammatically by Som-
mers @4# in the study of the Sherrington-Kirkpatrick@3#
model for a spin glass. We follow here a related procedure
more appropriate to our problem that we describe in some
detail for unfamiliar readers. We start by shifting variables in
Eq. ~14!,

j i5h i1mi , ~16!

where themi will be determined self-consistently below and
we obtain

NVm52(
i

n i2
1

2(i , j Gi j
0mimj2(

j
~t j2t!mj

1(
j
log

cosh~t j !

cosh~t!
1NVm8 , ~17!

where

eNVm8 5E )
j

@P~h j !dh j #expS 2
1

2(i , j Gi j
0h ih j D , ~18!

t j5t2(
i
miGi j

0 , ~19!

P~h j !5
et jh j

@e2t jmj2cosh~t j !#
$d„h j2~12mj !…

1d„h j1~11mj !…%. ~20!

Themj ’s are determined self-consistently from the condition

^h j&5E dh j P~h j !h j50, ~21!

which gives from Eq.~20!

mj5tanh~t j !. ~22!

The next task is the calculation ofNVm8 in Eq. ~18!. We
can use the cumulant expansion@7#, to write

NVm8 5 (
k51

`
~21!k

k! K F (
~ i , j !

Gi j
0h ih j G kL

c

~23!

where^ & indicates an average over the probability distribu-
tion in Eq. ~20!.

^ &5E )
j

@P~h j !dh j #~ !, ~24!

while ^ &c means a cumulant average and( ( i , j ) a sum over
bonds. The detailed analysis of the cumulant expansion in
Eq. ~23! is left for the Appendix, while we discuss here the
main results.

NVm8 is given by the series of diagrams in Fig. 1, where a
dot linking r legs at sitej stands for a ‘‘generalized cumu-
lant’’ average shown in Eq.~A7! for r.1, while a single line
joining sitesi and j stands for (21)Gi j

0 . NowGii
0 is allowed

from Eq. ~15!. The condition^h j&50 insures that the tree
diagrams in Fig. 2 with renormalized vertices automatically
vanish.

Following standard methods in many body theory@8# we
may write a renormalized expansion by defining a full propa-
gatorGi j shown in Fig. 3~a! that satisfies Dyson’s equation

Gi j5Gi j
01(

k,l
Gik
0 SklGl j ~25!

FIG. 2. Tree diagrams that vanish automatically whenb50.

53 6363SPACE OF INTERACTIONS WITH DEFINITE SYMMETRY IN . . .



where the self-energyS i j is given by the diagrams that can-
not be separated into two parts by cutting an internal line
shown in Fig. 3~b!.

Now NVm8 can be expressed as a function@8# of the ma-
trix propagatorG with elementsGi j

NVm8 52 1
2 Tr log@G0

21G#1
1

2
Tr@GG0

21#2 1
2 NF~$G%!

~26!

andNF($G%) is the sum of skeleton diagrams shown in Fig.
4, where a double line stands for the full propagatorGi j in
Eq. ~25!. The self-energyS i j is given by

S i j5
dNF~$G%!

dGi j
~27!

andNVm8 satisfies the stationarity condition

dNVm8

dGi j
50 ~28!

whenGi j andS i j are given by Eqs.~25! and ~27!, respec-
tively. These equations are formally exact. Meaningful ap-
proximations that respect the stationarity principle are ob-
tained by approximatingNF in Fig. 4. We discuss here the
results in the single site or Brout approximation@9#, when
NF is approximated by the family of single site ‘‘star’’ dia-
grams shown in Fig. 5, which we callNFss.

The detailed calculation in the Appendix gives from Eq.
~A11!

NFss5(
k

H ~11mk
2!Gkk1 logFcosh~tk22mkGkk!

cosh~tk!
G J .

~29!

By introducing Eqs.~26! and ~29! into Eq. ~17! we obtain

NVm
ss5(

j
$2n j1tmj2

1
2 @~11mj !ln~11mj !1~12mj !ln~12mj !1~11mj

2!Gj j1 log cosh~t j22mjGj j !

2 log cosh~t j !#%2 1
2(
i , j

Gi j
0mimj1

1
2 Tr@G0

21G#2 1
2 Tr log@G0

21G#2N log cosh~t!. ~30!

The stationarity condition in Eq.~27! gives S i j5d i jS j ,
where

S j5
dNFss

dGj j
5~11mj

2!22mj tanh@t j22mjGj j #. ~31!

We also requireNVm(ss) to be stationary with respect to
variations inmj ,

dNVm
ss

dmj
5~n j2Gj j !@mj2tanh~t j22mjGj j !#50 ~32!

and with respect to variations@6# in n j

dNVm
ss

dn j
5211mj

21S j j $@12G0S#21% j j

1mj@ tanh~t j !2tanh~t j22mjGj j !#

50. ~33!

From Eq.~32!, mj in Eq. ~22! is a stationary point if

Gj j5$@12G0S#21G0% j j50 ~34!

which gives from Eq.~31!

S j5~12mj
2!, ~35!

and introducing Eq.~35! into Eq.~33! we obtain the equation
for n j ,

$@12G0S#21% j j51. ~36!

A more convenient form is derived from Eq.~34! with the
help of Eqs.~15! and ~36!:

2n j5
i

AC(
k

@12G0S# jk
21tk j

m . ~37!FIG. 3. ~a! Diagrams for the full propagatorGi j . ~b! Diagrams
for the self-energySkl .
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If we expand Eq.~37! to second order in (1/AC)t i j
m we obtain

2n j'(
k

i

AC
t jk
m ~12mk

2!
i

AC
tk j
m ~38!

which gives from Eq.~19! and Eq.~22!;

mj5tanhF t2
i

AC(
k
mktk j

m 2mj(
k

i

AC
t jk
m ~12mk

2!
i

AC
tk j
m G .
~39!

What we obtain in Eq.~39! are TAP equations@5# for a
spin glass with long range site dependent interactions
b J̃ jk52( i /AC)t jk

m .
By introducing Eqs.~34!–~36! into Eq. ~30! and expand-

ing log(G21G0) to second order intk j
m as in Eq. ~38! we

obtain at the saddle point

NVm
ss] SP5(

j
@tmj2

1
2 ~11mj !ln~11mj !

2 1
2 ~12mj !ln~12mj !#2

i

2AC(
k, j

tk j
m mkmj

2
1

4C(
k, j

tk j
m ~12mj

2!t jk
m ~12mk

2!2N log cosh~t!,

~40!

which we recognize also as TAP free energy@5#, which has
an extremum when themj ’s are given by Eq.~39!.

We went through a detailed and lengthy calculation of
Vm in order to exhibit the complexity and unsolubility of the
problem. If we recall that from Eq.~13! the ‘‘interactions’’
t i j
m depend on the variablesxm i

a andJi j
a that must be integrated

in turn, we realize that it is hopeless to try to solve Eq.~39!
exactly for nonvanishing values of the biasb.

A particularly simple result is obtained forunbiasedpat-
terns. By settingb5t50 in Eq. ~39! we see that it accepts
the trivial, site independent solutionmi50 which gives in
Eq. ~40!

NVm
ss~b50!] SP52

1

4C(
k, j

tk j
m t jk

m , ~41!

and introducing Eq.~41! into Eq. ~11! we recover the result
of Ref. @2#. This indicates that, within the range of validity of
Eq. ~39!, the result in Ref.@2# is not restricted to extremely
diluted systems. This conclusion deserves a more extended
analysis of the contributing diagrams that we reserve for the
last section.

The problem for biased patterns reaches another level of
complexity. FortÞ0, Eq. ~39! does not accept a site inde-
pendent solution; then the fundamental assumption of site
independence made in Ref.@2# breaks down. Given the im-
possibility of obtaining a rigorous result, we present in the
next section a simple approximation forNVm

ss in Eq. ~40!,
where we consider only tree diagrams with single unrenor-
malized bonds and sites as in Fig. 2 and the single unrenor-
malized bubble in Fig. 1~c!. This approximation reproduces
the results of Ref.@2# for b50,hÞ0 and those of Ref.@1# for
h5h50,b!1. The singular behavior of physical quantities
whenb approaches unity differs from the results in Ref.@1#
because the problems are not exactly the same, even when
h50.

IV. APPROXIMATION

In Eq. ~39! we obtained a set of coupled nonlinear equa-
tions for the site dependent ‘‘magnetizations’’ or effective
biasmj . In order to decouple these equations we approxi-
mate the right-hand side of Eq.~39! by

mj5tanhF t2b
i

AC(
k
tk j
m G . ~42!

In this way we break correlations by replacing the self-
consistent fieldt j at every site by an effective field produced

FIG. 4. Series of skeleton diagrams forNF. Double lines indi-
cate a full propagatorGi j as in Fig. 3~a!.

FIG. 5. Series of diagrams forNFss in the single site approxi-
mation.
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by neurons with ‘‘unperturbed’’ biasb, hence we expect this
to be a sensible approximation for small values ofb.

Introducing Eq. ~42! into Eq. ~40! and approximating
mk'b we obtain

NVm
eff'(

j
ln coshF t2

i

AC
b(

k
tk j
m G

2~12b2!2
1

4C(
k, j

~ tk j
m !22N ln cosh~t!. ~43!

As we discuss more extensively in the last section, this ap-
proximation amounts to sum tree diagrams with single un-
renormalized bonds and vertices as those shown in Fig. 2,
and to consider only the two sites unrenormalized bubble in
Fig. 1~c!.

The calculation ofVn in Eq. ~11! follows according to
standard procedures@1,2#. As in Ref.@1# we define the order
parameter

M5
1

AC(
k
Jik

a ~44!

denominated ‘‘ferromagnetic bias’’ and as in Ref.@2# the
order parameters foraÞb:

q5
1

C(
k
Jik

a Jik
b ,

~45!

h5
1

C(
k
Jik

a Jki
b .

The order parameters in Eqs.~44! and ~45! are explicitly
replica symmetric and site independent. We show in the Ap-
pendix the detailed calculations and mention here only the
results. By introducing into Eq.~11! the order parameters in
Eqs.~44! and ~45! by means of ad-function representation,
together with Eq.~43!, we obtain for logV in the limit
n50

logV5
NC

2 H 12hx

~12q!~12x2!
1 1

2 ln@~12q!2~12x2!#J
1aF2

r 2

~12q!x
1 (

s561

~11sb!

2 E Dz lnH~xs!G ,
~46!

where

x5
h2h

12q
, ~47!

xs5
1

A12q
H 1

~12b2!
@k2sMb~11sb!#2r1zAqJ ,

~48!

r5x@B11B2#, ~49!

where we introduced the notation fors561

Bs5
11sb

2 E Dz
e2~1/2!xs

2

A2pH~xs!
A12q, ~50!

Dz5
dz

A2p
e2~1/2!z2, ~51!

H~x!5E
x

`

Dz. ~52!

The expression for logV in Eq. ~46! reproduces the result
of Ref. @1# whenh5r5x50, except for the expression for
xs that coincides with Gardner’s only forb!1. It reproduces
the result of Ref.@2# for arbitrary symmetry parameterh
whenb50, hence we consider it to be a sensible mean field
approximation for the volume of the space of interactions
with arbitrary symmetry that have biased patterns as fixed
points of the dynamic equations.

The saddle point equations forq, x, andM are obtained
by extremizing logV in Eq. ~46!, and they are

q22hx1qx2

@12x2#2
5a (

s561

~11sb!

2 E DzF e2~1/2!xs
2

A2pH~xs!
A12qG 2,

~53!

h22x1hx2

@12x2#2
5a

r 2

x2
, ~54!

while we get forM

B15B2 . ~55!

Due to the particular scaling in Eq.~44! for the ferromag-
netic bias, we obtained also as in Ref.@1# that the volume
depends onM only throughxs in Eq. ~48!, and Eq.~55! is
trivially satisfied whenb50. In this limit Eqs.~53! and~54!
reduce to the equations of Gardner, Gutfreund, and Yekutieli
in Ref. @2#.

The critical storage capacity is obtained whenq51 and
h5h, keepingx in Eq. ~47! finite. We obtained from Eqs.
~53! and ~54! two coupled equations forac and xc , where
the value ofMc is obtained from Eq.~55!. We show in Figs.
6 and 7 the results forac andM for k50 as a function of
the biasb for different values of the symmetry parameter
h.

When b is close to unity the equations can be solved
asymptotically and we obtain

M'A2~12b2!2ln~12b!, ~56!

ac'
@A11h1A12h#2

4M
. ~57!

V. CONCLUSIONS

The object of this paper is to analyze the volume of the
space of interactions in a neural network satisfying a definite
symmetry constraint as in Eq.~7! and accepting a configura-
tion of biasedpatterns as fixed point of the dynamic equa-
tion.
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The problem for asymmetric interactionsJi jÞJji was
solved by Gardner@1#, while the case of definite symmetry
was studied by Gardner, Gutfreund, and Yekutieli only for
unbiasedpatterns@2#.

The main result of the present paper is that the bias in the
patterns acts as an internal field and introduces correlations
that map the problem into the spin-glass problem, thus pre-
venting its solution. We show in Sec. III by means of rigor-
ous diagrammatic expansions that to each site is associated
an order parameter or ‘‘effective bias’’mj that satisfies TAP-
like equations@5# for a spin glass. Just like in the spin-glass
case the solution to these equations, if it could be found, is
explicitly site dependent. However, for vanishing bias our
equations accept the trivial solutionmj50 for all j that is
explicitly site independent, and the results of our theory co-
incide with those of Ref.@2#. This seems highly surprising as
the authors of this paper assert that their theory is only valid
for extremely dilute networks withC! ln(N), while we have
not made that assumption here. In order to understand this
result we present a detailed analysis of the largeN behavior
of the unrenormalized diagrams that contribute to the TAP-
like expression forNVm

ss in Eq. ~40!, which should scale like
N in the thermodynamic limit.

A. Tree diagrams

The first term in brackets in Eq.~40! sums the unrenor-
malized tree diagrams@4,7# shown in Fig. 2, where now each
bare bond representsi t jk

m /AC.

A tree diagram withs sites ands21 bonds gives a con-
tribution

T~s!'FCNG s21F 1

ACG s21

(
j

S (
k
tk j
m D s21

, ~58!

where from Eq.~5! we introduced a factorC/N for each
occupied bond. From Eq.~13! we obtain

1

AC(
k
tk j
m '(

a
xm j

a 1

AC(
k
Jjk

a 'M , ~59!

whereM is the ferromagnetic bias in Eq.~44!.
Introducing Eq. ~59! into Eq. ~58! gives T(s)

'(C/N)s21Ms21N, then the tree diagrams give the correct
behavior in the thermodynamic limitN→` for the fully con-
nected network withC5N.

B. Tree of bubbles

The single site diagrams in Fig. 5 together with the cor-
responding diagonal self-energy diagrams in Fig. 3 generate
the tree of bubblesshown in Fig. 6~a!. A typical diagram
with s sites ands21 doubly occupied bonds orbubbles
gives a contribution

B~s!'SCND s21

(
j

F 1C(
k

~ t jk
m !2G s21

'N, ~60!

where we used the scaling in Eq.~45! and they are well
scaled for anyC<N. All these diagrams except the single
bubble with two sites vanish in the unbiased case, when
b50. We conclude that within the single site approximation
we are summing diagrams that are well scaled in the thermo-
dynamic limit in the fully connected lattice.

FIG. 6. ~a! Tree of bubble diagrams.~b! Ring diagrams.~c!
Double ring diagrams.

FIG. 7. Critical storing capacityac ~dimensionless! as a func-
tion of the dimensionless biasb for different values of the asym-
metry parameterh for the approximation in Eq.~42!. Full line,
broken line, and pointed line correspond toh50.2, h50.4, and
h50.6, respectively.
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C. Ring diagrams

In order to derive Eq.~40! we expanded the saddle point
equation forn j , Eq. ~37!, and Tr log@G0

21G# in Eq. ~30! to
second order int jk

m , which amounts to neglecting the ring
diagrams with more than two sites that are shown in Fig.
6~b!. What is the error that we are committing with this
approximation? The estimate in Ref.@2# is that a ring dia-
gram withs sites ands bonds isO(Cs/2), thus diverging in a
connected lattice. It is claimed that the neglect of ring dia-
grams withs>3 is only meaningful in the extremely dilute
limit C! ln(N). The counting goes as follows: a ring diagram
with s sites ands bonds contribute

R~s!5SCND s 1

Cs/2(
i1

t i si1
m (

i2
t i1i2
m . . .(

i s
t i s21i s
m , ~61!

where the sum is restricted toi 1Þ i 2Þ i 3 . . .Þ i s . The pes-
simistic evaluation of Ref.@2# says that each summation
gives a factorO(N), then as a resultR(s) would be
O(Cs/2), from where stems their assertion that the theory is
only valid for extreme dilution. But if their counting were
correct, the ferromagnetic bias in Eq.~44! would be
O(AC), while our results in Fig. 8 give a finite value for
M in agreement with the results in Ref.@1#, thus showing the
correct scaling.

A lower bound toR(s) in Eq. ~61! can be obtained by
decoupling the sums and approximating

R~s!'S CND sF 1

AC(
j
t jk
m G s'S CNM D s, ~62!

where we used Eq.~44!. In this case we obtain that
R(s)'O(1) for s>3 and it would be negligible, not diver-
gent, in the thermodynamic limit. The ring diagram with
s52 scales differently and it gives the first contribution to
the bubbles series. There are, however, two related problems
where these diagrams can be calculated and give a meaning-
ful answer for a fully connected lattice: the spin-glass prob-
lem discussed in Ref.@4# and the Hopfield model for a neural
network with hierarchical clustering in Ref.@10#, where we

showed in the Appendix how the ring diagrams can be ex-
actly summed. This happens because in all these well be-
haved cases the interactionsJi j take randomly positive and
negative values, giving rise to cancellations, such as it hap-
pens in the present problem to have a finite value ofM in Eq.
~44!.

Finally, we analyze an approximate solution where the
effective biasmj at each site is calculated by approximating
mk'b,kÞ j , in the local field at sitej . This approximation
amounts to sum only tree diagrams with single unrenormal-
ized bonds and vertices and it interpolates between the re-
sults of Ref.@1# whenh50,bÞ0 and those of Ref.@2# when
hÞ0,b50. The results shown in Figs. 7 and 8 for the criti-
cal values of the storing capacityac and the ferromagnetic
biasM exhibit small deviations with the values of the sym-
metry parameterh.
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APPENDIX

We present here a detailed diagrammatic analysis of
NVm8 in Eq. ~18!. Following Horwitz and Callen@7# we can
write

NVm8 5 (
k51

`

~21!kSk@0#, ~A1!

with

Sk@g#5(
~ i j !

8)
~ i j !

1

Pi j !
SGi j

0 ]

]g i j
D Pi j lnK expS (

~ i j !
g i jh ih j D L ,

~A2!

where( ( i j ) indicates a sum over bonds andPi j are all posi-
tive integers subject to the restriction( ( i j )Pi j5k. The aver-
age over theh j ’s is to be taken with the probability distri-
bution in Eq.~20!, that gives for the first three moments

^h j&50,

^h j
2&512mj

2 , ~A3!

^h j
3&522mj~12mj

2!,

etc., and we notice that^h j
r&Þ0 for r.1. We obtain for the

first terms in the series in Eq.~A1! recalling thatGii
0Þ0

S1~0!5
1

2(i Gii
0 ^h i

2&, ~A4!

FIG. 8. Ferromagnetic biasM ~dimensionless! as a function of
the biasb for different values ofh. Specifications are as in Fig. 7.
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S2~0!5
1

4(i ~Gii
0 !2^@h i

2#2&gc1
1

4(iÞ j
~Gi j

0 !2^h i
2&^h j

2&,

~A5!

S3~0!5
1

12(i ~Gii
0 !3^@h i

2#3&gc1
1

12(iÞ j
~Gi j

0 !3^h i
3&^h j

3&

13(
j ,k

Gj j
0 ~Gjk

0 !2^@h j
2#2&gĉ hk

2&

1
1

6 (
iÞ j5k

Gi j
0Gjk

0 Gki
0 ^h i

2&^h j
2&^hk

2&, ~A6!

where now the sums are over sites.
Each of the terms in Eq.~A4! to Eq. ~A6! may be repre-

sented by a diagram as shown in Fig. 1, where a single line
between sitesi and j representsGi j

0 , a dot at sitej where
m ‘‘ears’’ enter ~or closed lines! and n lines stands for
^@h j

2#m@h j
n#&gc, and the first ‘‘generalized cumulants’’ are

given by

^@h j
2#&gc5^h j

2&,

^@h j
2#2&gc5^h j

4&2^h j
2&2,

~A7!

^@h j
2#3&gc5^h j

6&23^h j
4&^h j

2&12^h j
2&3,

^@h j
2#@h j

3#&gc5^h j
5&2^h j

2&^h j
3&,

etc. ThenS1(0) is represented in Fig. 1~a!, the two terms for
S2(0) in Figs. 1~b! and 1~c!, to S3(0) corresponds to Figs.
1~d!–1~g!, etc.

The diagrammatic series in Fig. 1 may be renormalized by
introducing the ‘‘propagator’’

Gi j5Gi j
01(

k,l
Gik
0 SklGl j ~A8!

represented in Fig. 3~a!, where the ‘‘self-energy’’Skl is
shown in Fig. 3~b!. Following standard methods in many
body theory@8#, the quantityNVm8 can be written as the
stationary functional ofGi j shown in Eq.~26!.

We now calculateNFss, the sum of single site ‘‘star’’
skeleton diagrams shown in Fig. 5:

NFss5(
j

F j , ~A9!

where, from Eq.~A4! to Eq. ~A7!,

F j5 (
n51

`
1

n!
^@h2#n&gc~Gj j !

n5 log^eh j
2Gj j & ~A10!

and we obtain from Eq.~20!

^eh j
2Gj j &5e~11mj

2
!Gj j

cosh~t j22mjGj j !

cosh~t j !
. ~A11!

Introducing Eq.~A11! into Eq. ~A10! we obtain Eq.~29!.

Calculation of the volume in the effective field approximation

In order to calculate the volume in phase space within the
effective field approximation in Sec. IV we introduce inte-
gral representations for the constraintsd functions and for
the relations defining the order parameters in Eqs.~44! and
~45!. We assume here replica symmetry and site indepen-
dence@2#, but it is understood that the validity of this as-
sumption is limited to the effective field approximation in
Sec. IV and it does not hold for the general results in Sec. III
whenbÞ0. By introducing Eq.~43! into Eq. ~11! we obtain

logV52NCH 12 FE1hG2Fq2Hh1
MP

AC G
1
1

4
ln@~G2H !22~E2F !2#1

i

4

P2

E2F1~G2H !

1
1

4

F1H

E2F1~G2H !
1
1

4

F2H

E2F2~G2H !
2aQJ

SP

,

~A12!

where the variables should be taken at their saddle point
values. In Eq.~A12! Q is given by

Q5H 2 i @wF1cC1wW#1 (
s561

1
2 ~11sb!E Dz lnH~ x̃s!

2 1
4 ~12b2!2@~12q!c1qw#2 iMb2wJ

SP

, ~A13!

where

x̃s5S k1F2Mbs1 i
w

2
~h2h!~12b2!2

1zF22iW1
1

2
q~12b2!2G1/2D

3
1

@22iC1 1
2 ~12q!~12b2!2#1/2

~A14!

and the variablesw,F,c,C,w,V should be taken at their
saddle point value that extremizesQ. We obtain at the
saddle point

F5
i

2
w~h2h!~12b2!22 iMb2,

C5
i

4
~12q!~12b2!2, ~A15!

W5
i

4
q~12b2!2,

2 iw5F (
s561

~11sb!

2 E Dz
e2~1/2!xs

2

A2pH~xs!
G

3
1

@22iC1 1
2 ~12q!~12b2!2#1/2

, ~A16!
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while the expressions forw and c are immaterial because
they drop fromQ at the saddle point. We obtain from Eqs.
~A13! and ~A14!

Q52
1

2 H r 2

h2h
2 (

s561
~11sb!E Dz ln~xs!J ,

~A17!

xs5
1

A12q
H k2Mbs~11bs!

~12b2!
2r1zAqJ , ~A18!

where we calledr52 iw(h2h)(12b2) and from Eq.~A16!

r5
~h2h!

A12q
(
s

~11sb!

2 E Dz
e2~1/2!xs

2

A2pH~xs!
. ~A19!

We observe that, just like in Gardner’s work@1#, the aux-
iliary field P associated with the ferromagnetic biasM ap-
pears multiplied byC21/2 and drops out in the thermody-
namic limit. By solving the saddle point equations for
E,F,G,H, we can recast logV in Eq. ~A12! into Eq. ~46! in
the main text.
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