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Abstract
Understanding variability is essential to allow the configuration of software systems
to diverse requirements. Variability-aware program analysis techniques have been
proposed for analyzing the space of program variants. Such techniques are highly
beneficial, e.g., to determine the potential impact of changes during maintenance. This
article presents an interprocedural and configuration-aware change impact analysis
(CIA) approach for determining the possibly impacted source code elements when
changing the source code of a product family. The approach also supports engineers,
who are adapting the code of specific product variants after an initial pre-configuration.
The approach can be adapted to work with different variability mechanisms, it is
more precise than existing CIA approaches, and it can be implemented using standard
control flow and data flow analysis. We report evaluation results on the benefit and
performance of the approach using industrial product lines.
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1 Introduction

Variability is a property of software systems allowing their customization to different
application scenarios. It becomes essential when developers have to implement similar
solutions tomeet awide range of customer requirements (Lettner et al. 2014b). Support
for variability is regarded as a successful strategy for increasing software reuse and for
developing highly customized solutions (Svahnberg et al. 2005). Dealing with vari-
ability, however, leads to many challenges when developing, maintaining, testing, or
analyzing systems. For instance, developers need to ensure that different software vari-
ants behave as expected. However, it has been shown that analyzing all possible system
variants is computationally infeasible, even for small systems (Liebig et al. 2013).
Research on variable software systems has progressed significantly: for instance,
researchers in software product lines and feature-oriented software development have
developed family approaches (Thüm et al. 2014) that allow analyzing the whole space
of software variants by exploiting commonalities between variants. Such approaches
have been shown to be very effective, particularly for program analysis (Liebig et al.
2013). Often, the existing approaches assume that the source code is annotated directly
with variability information, which is the case, e.g., in annotation-based product lines
that use preprocessors (Kästner et al. 2011). However, other variability mechanisms,
such as load-time configuration options, play an equally important role and analysis
support is also needed for such cases.

An important application area for programanalysis is change impact analysis (CIA),
i.e., the identification of the potential consequences of a change, or the estimation of
what needs to bemodified to accomplish a change (Arnold 1996).Our aim is to improve
support for CIA of variable software systems, an area of high practical relevance,
particularly for clone-and-ownproduct lines (Linsbauer et al. 2014;Rubin andChechik
2013). In this paper, we thus present an interprocedural and configuration-aware CIA
approach that uses and propagates variability information. Our approach can handle
load-time configuration options representing software variability.While someprogram
analysis approaches (e.g., Hammer et al. 2006) can handle such runtime variability
by attaching path conditions to system dependence graphs (SDGs) to improve the
precision of slices, their scalability to large programs is limited, as path conditions
need to be extracted for nearly every conditional statement. Our approach thus uses
a conditional system dependence graph (CSDG) (Angerer et al. 2014), an extended
representation of an SDG.

We demonstrate the benefits of our approach using two use cases derived from
an analysis of development practices of our industry partner (Lettner et al. 2014b, a).
We illustrate how the approach facilitates development and maintenance in domain
engineering by supporting software engineers that need to determine the impact of
changing a set of source code elements of a product family. Specifically, we demon-
strate how our configuration-aware CIA allows to automatically determine the set
of possibly impacted products. Such analysis has major benefits for software evolu-
tion: for instance, it allows reducing regression testing to the affected product variants
only. It further simplifies software deployment, as updates only need to be rolled
out to customers affected by certain changes. We further show how our approach sup-
ports development andmaintenance in application engineering by supporting software

123



Automated Software Engineering (2019) 26:417–461 419

engineers changing a specific product variant, which needs to be adapted after deriving
it from a product line. This is a frequent case in clone-and-own product lines (Lins-
bauer et al. 2014; Rubin and Chechik 2013), when engineers customize and extend
the software to the specific requirements of customers. Again, manual CIA would be
error-prone and infeasible due to the high configurability of many large systems in
this case.

Our interprocedural CIA approach annotates potentially impacted elements with
variability information to determine the set of affected products after a change. It
provides the following benefits compared to existing techniques: (i) the approach
can be adapted to work with different variability mechanisms. Our technique does
not assume that the source code is directly annotated with variability information,
i.e., unlike existing approaches it does not assume an annotation-based mechanism
that is resolved at compile-time. Instead, it can handle configuration options that
remain constant after being loaded during the startup of an application. Although the
approach and application focuses on load-time variabilitymechanisms,we have shown
in Angerer et al. (2017) that it can also handle annotation-based variability. (ii) The
approach provides more precise results than existing CIA. Specifically, it discovers
contradicting product configurations and determines source code that can never be
executed. This allows reducing the size of the change impact. (iii) The approach
uses standard control flow and data flow analyses. We ease the implementation of
the approach in different contexts by avoiding the use of new control and data flow
analyses.

This article is based on an earlier conference paper (Angerer et al. 2015). Compared
to this publication our article provides a detailed description of the conditional system
dependence graph including its formal definition, the description of a tool-supported
method supporting key uses cases to interactively explore and investigate the SDG, and
a detailed description of the technical foundations for the conditional change impact
analysis, including a description of the algorithms. We further discuss the background
literature in more detail.

Specifically, our paper is organized as follows: Sect. 2 discusses background
literature relevant for our work. Section 3 illustrates the research problem using
a small example. Section 4 explains the conditional system dependence graph
(CSDG) providing the foundation for our analyses, and presents a tool-supported
method to interactively explore the SDG. Section 5 presents our configuration-aware
CIA approach and its implementation. Section 6 shows the results of evaluat-
ing the approach regarding its benefit and performance. Section 7 presents related
work. Section 8 rounds out the paper with a conclusion and an outlook on future
work.

2 Background

We discuss background literature from the areas of software product lines, variability
mechanisms, static program analysis, and variability-aware program analysis.
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2.1 Software product lines

A software product line (SPL) (Czarnecki and Eisenecker 2000; Pohl et al. 2005) has
been defined as a set of software-intensive systems sharing common, managed set of
features that satisfy the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribedway (Clements and
Northrop 2001). SPLs identify and manage common functionality relevant for most
customers and then support deriving customized solutions based on the customers’
individual requirements. The SPL approach consists of two life cycle phases (Pohl
et al. 2005): in domain engineering, the commonality and variability of the SPL is
defined and reusable artifacts are developed. In application engineering, a concrete
application satisfying the specific customer requirements is realized by exploiting the
SPL’s commonality and variability. Compositional approaches (Kästner et al. 2008)
provide an automated process for composing new product variants by selecting the
software artifacts, e.g. features (Apel andKästner 2009), aspects (Kiczales et al. 1997),
or deltas (Schaefer et al. 2010), to be included.

2.2 Variability mechanisms

Numerous variability mechanisms exist that allow to handle different product-specific
implementations. A common practice is to have a common base and just vary the
implementation where it is necessary (Clements and Northrop 2001). For exam-
ple, developers use preprocessor directives (Liebig et al. 2010), custom-developed
configurators (Lettner et al. 2013), aspect-oriented programming (Kiczales et al.
1997), delta-oriented programming (Schaefer et al. 2010), feature-oriented program-
ming (Apel and Kästner 2009), or load-time configuration options (Lillack et al. 2017)
to name but a few.

For example, the C preprocessor (CPP) is a popular tool which adds an additional
step to prepare the source code for the compiler (Kernighan and Ritchie 1988). The
CPP also provides a directive that allows to include or exclude source text depend-
ing on a given configuration. Therefore, it is a simple but powerful mechanism for
implementing variability (Liebig et al. 2010). However, the use of preprocessors also
has major drawbacks. For example, the CPP introduces directives that also appear in
the source code, i.e., the CPP defines a language for metaprogramming (Liebig et al.
2010). Therefore, analysis tools for the C programming language can only work on
processed source code or need to understand CPP directives (Kästner et al. 2011).
Furthermore, while CPP is well integrated into the majority of the C compiler tool
chains (e.g., the GNU Compiler Collection), other preprocessors are not related to a
programming language and the integration must be done manually (Kästner 2012).

Another widespread technique for implementing variability are configuration
options that are loaded from a file or provided as program arguments to control condi-
tional execution (Lillack et al. 2014). Load-time configuration options can be seen as
a way between compile-time and run-time configuration. Syntactically, they are indis-
tinguishable from run-time configuration because values are loaded from a source and
then stored in program variables. Semantically, load-time configuration options are
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close to compile-time constants because the value is loaded in the startup phase of the
program and remains constant over program execution time. This has the advantage
that no additional techniques are required and variability can directly be implemented
in the programming language.

2.3 Static program analysis

Static program analysis techniques acquire information about the structure but also
run-time behavior of a program without executing it (Nielson et al. 1999). This
allows improving the quality of code, e.g., by providing means to reveal inadequate
code constructs (”code smells”), violations of programming guidelines, and poten-
tial defects (Louridas 2006). Well-known static analyses are control flow analysis,
data flow analysis (Nielson et al. 1999), abstract interpretation (Cousot and Cousot
1977), program slicing (Weiser 1981), and change impact analysis (Arnold 1996).
Control-flow and data-flow analyses were originally developed in context of compiler
technology (Muchnick 1997). Control-flow analysis determines how the program can
be executed, i.e., which program paths may occur. Data-flow analysis determines the
values which can be created in a program and how they can be manipulated and
used (Allen and Kennedy 2001). Typical examples of data-flow analysis methods are
reaching definitions, live variables, and available expressions.

Program slicing is a technique for reducing a program to the subset of statements
(the slice), which faithfully represents a specific program behavior (Weiser 1981). The
method is based on the observation that for producing a particular program behavior,
often only a subset of a program is required. The goal usually is to reduce the effort
required to understand and maintain the program by only having to consider a part
of it. The original slicing algorithm by Weiser (1981) uses the control flow graph
of a program. Ottenstein and Ottenstein (1984) then formulated slicing as a graph
reachability problem on the program dependence graph. However, this method was
limited to intraprocedural slicing. Furthermore, Horwitz et al. (1990) introduced the
SDG and a traversing algorithm for finding interprocedural slices. In general, using
reachability algorithms on dependence graphs is the most popular way for computing
slices (Xu et al. 2005).

Change impact analysis (CIA) is the process of determining the potential effects of
a proposed modification in the software (Bohner 2002). For instance, in the context of
this paper this means to determine a set of impacted statements after modifying source
code. Since the exact impact of a change is again hard or impossible to compute, CIA
approaches just compute a possible impact. CIA approaches can be classified into
guided and unguided techniques, techniques using heuristics, approaches using static
or dynamic approaches, and combinations of several approaches.

2.4 Variability-aware program analysis

Using program analysis techniques during development and maintenance of SPLs
requires to consider all possible product variants (Brabrand et al. 2012). This is neces-
sary because every single possible product variant must be covered to ensure that the
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whole SPL is correct. Unfortunately, the number of possible product variants grows
exponentially with the number of available options (Thüm et al. 2014). Therefore,
researchers developed variability-aware program analysis that use the same principle
as SPLs for analyzing SPLs (Brabrand et al. 2012; Liebig et al. 2013). Such approaches
perform the analysis for all common parts just once and only diverge the analysis if the
program diverges. The core concepts of variability-aware program analysis are late
splitting and early joining (Liebig et al. 2013). Late splitting means that the analysis
is performed without variability until variability is encountered. Early joining is the
concept of collapsing intermediate analysis results as soon as possible, i.e., if data
flow from different product variants reaches a destination that is common for several
product variants again. Variational data structures efficiently represent variability in
data and enable variability-aware computations (Walkingshaw et al. 2014). For exam-
ple, managing the artifacts of a SPL requires information about when to include the
artifacts in a product. Variational data structures are often used for variability-aware
program analysis. A well known example of such data structure is a variational AST.
TypeChef, for instance, parses preprocessor-annotated source code and represents the
variability of the source using a variational AST (Kästner et al. 2011). The CSDG
presented in Sect. 4 is another example of such a variational data structure.

3 Problem illustration

Change impact analysis allows to automatically determine and systematically review
the possibly impacted source code for changes. However, state-of-the-art CIA tech-
niques (Chen and Rajich 2001; Jász et al. 2008; Bohner 2002; Black 2001) do not
consider load-time variability. For example, Listing 1 shows an illustrative program
example that can be configured by enabling or disabling the configuration options
c0 and c1. Existing CIA techniques do not provide information about the product
variants that are affected by a change. Even this small configurable program shows
that manually determining the set of affected products is difficult due to many depen-
dencies as can be seen in the simplified SDG for Listing 1 shown in Fig. 1. Assume a
developer changing the return statement in line 38, represented as a node in the lower-
right corner of the SDG. Existing CIA techniques follow the forward edges and mark
all visited nodes as possibly impacted by the intended change, i.e., the nodes labeled
return d.bar()* d.bar(), return 2 * d.bar(), int res = obj.foo(d)

and System.out.println(res) are in the set of impacted statements.
Performing configuration-aware analysis is much harder if also considering

load-time variability, as one needs to find out if the statements are executed and
the data flows are valid under certain conditions. For example, the statements
object = new B(); return; and object = new C(); depend on the condi-
tions c0 and ¬c0 ∧ c1. Therefore, the bodies of classes B and C also depend on these
conditions. In class D, an additional local condition ¬c1 appears. Hence, statement
return 1; is only executed if the condition (c0 ∨ ¬c0 ∧ c1) ∧ ¬c1 holds, while
statement System.out.println(res) is executed if ¬c0 holds. However, com-
bining and simplifying both conditions results in f alse, i.e., changing the statement
return 1; has no impact on System.out.println(res).
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1 class Main {
2 static Properties p = Properties.load("conf.prop")
3 static boolean c0 = "on".equals(p.getProperty("c0"));
4 static boolean c1 = "on".equals(p.getProperty("c1"));
5
6 public static void main(String [] args) {
7 A obj = new A();
8 D d = new D();
9 if(c0) {

10 obj = new B();
11 return;
12 } else if(c1) {
13 obj = new C();
14 }
15 int res = obj.foo(d);
16 System.out.println(res);
17 }
18 }
19
20 class A {
21 int foo(D d) {
22 return 2;
23 }
24 }
25 class B extends A {
26 int foo(D d) {
27 return d.bar() * d.bar();
28 }
29 }
30 class C extends A {
31 int foo(D d) {
32 return 2 * d.bar();
33 }
34 }
35 class D {
36 int bar() {
37 if(!c1) return 1;
38 return 0;
39 }
40 }

Listing 1 Small configurable program

Researchers have already developed program analysis techniques considering the
variability of programs, e.g., when performing data flow analysis (Liebig et al. 2013).
However, many current techniques assume that source code is annotated with variabil-
ity information, that is resolved during compilation by only considering the syntactic
structure of a program. However, as pointed out, many product lines and configurable
software systems use different variability mechanisms, such as load-time configura-
tion options. There are some approaches, e.g., (Snelting 1996), that are able to consider
such runtime variability, but they do not differ between configurations that remain con-
stant throughout execution and the regular control flow of a program. In the example
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_int res   =  obj.foo(d)    

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

Fig. 1 SDG for the small configurable program in Listing 1

in Listing 2, the value of a configuration option is stored in a local variable (line 5),
which is used subsequently to decide which other configuration option to load (line 7).
Current analysis techniques assume a strict separation of the variability mechanism
and program control flow. Hence they cannot handle such situations, i.e., they do not
recognize that the execution of the statements in lines 15 and 17 also depends on the
configuration option c0. In this small example it is obvious that the execution of the
statements in lines 15 and 17 also depends on conditions c0 and c1. Finally, the call in
line 19 also depends on both configuration options since the reaching objects depend
on those configuration options.

4 Conditional system dependence graph

Change impact analysis (CIA) is commonly performed by following edges in a system
dependence graph (SDG) (Horwitz et al. 1990). An SDG consists of nodes represent-
ing concrete and abstract program elements and edges encoding control and data
dependencies. To make the CIA configuration-aware, the variability of the program
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1 class Main {
2 static Properties prop = Properties.load("conf.prop")
3
4 public static void main(String [] args) {
5 boolean c0 = "on".equals(prop.getProperty("F"));
6 boolean c1;
7 if (c0) {
8 c1 = "on".equals(prop.getProperty("X"));
9 } else {

10 c1 = "on".equals(prop.getProperty("Y"));
11 }
12
13 A obj;
14 if (c1) {
15 obj = new A1(); // indirectly depends on c0
16 } else {
17 obj = new A2(); // indirectly depends on c0
18 }
19 obj.foo();
20 }
21 }

Listing 2 Influence of configuration options on program execution

must be represented in the SDG. In this work, we use a conditional system dependence
graph (CSDG), an extension of the SDG that represents variability in form of presence
conditions. The presence conditions encode if a dependency exists in a configuration.
Thus, a configuration-aware CIA can be performed that also considers the different
product configurations.

4.1 System dependence graph

An SDG is a directed graph representing different kinds of dependencies between
program elements. It usually represents control-flow and data-flow dependencies, but
other types such as definition-use dependencies are also possible (Horwitz et al. 1990).
In this work the following node types are used for representing concrete or abstract
program elements in the SDG (cf. Fig. 2 showing the SDG of the program from
Listing 3).

Method nodes representmethods, procedures, functions or any other type of callable
program unit. In the following wemake no distinction between those types of program
elements, but use the termmethod as a synonym for all types of callable program units.
Thus, method nodes represent the entries of callable program elements. Further, they
group parameter nodes and statement nodes. Figure 2 contains method nodes for the
procedures main, foo and the two variants of bar from classes M1 and M2 from
Listing 3. Additionally, the main node also acts as a container for global variables.

Statement nodes represent the statements in methods and always belong to one
method node.
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1 class Main {
2 static Properties p = Properties.load("conf.prop")
3 static boolean M1_linked =
4 "M1".equals(p.getProperty("m"));
5 static boolean M2_linked =
6 "M2".equals(p.getProperty("m"));
7 static boolean config_double =
8 "on".equals(p.getProperty("config_double"));
9 public static int global = 0;

10 static M m;
11
12 public static void main(String [] args) {
13 m = (M1_linked) ? new M1() : new M2();
14 int a = foo(m.bar());
15 print("result = " + a);
16 }
17 static int foo(int p0) {
18 if (config_double) {
19 return p0 * 2;
20 } else {
21 return p0;
22 }
23 }
24
25 static interface M {
26 public int bar();
27 }
28
29 static class M1 implements M {
30 public int bar() {
31 global --;
32 if (global < 0) {
33 global = 0;
34 }
35 return global ;
36 }
37 }
38
39 static class M2 implements M {
40 public int bar() {
41 global --;
42 return global ;
43 }
44 }
45 }

Listing 3 Sample program for illustrating the CSDG

Call nodes are used to represent method calls, i.e., call nodes are special types of
statement nodes. They are particularly important in the SDG as they link statement
nodes to method nodes. Figure 2 shows call nodes for the calls to methods foo and
for both versions of bar.

Formal parameter nodes are used for representing any data dependencies between
a method and its environment. The return values of methods and access to global
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variables are also represented as formal parameter nodes. Figure 2 contains formal
parameter nodes (with black background) for the method parameters, return values,
and the global variable global accessed in the two versions of procedure bar.

Actual parameter nodes represent expressions for actual parameters inmethod calls.
The SDG contains the following types of edges for representing the various types

of dependencies between program elements:
Control edges link method nodes with statement and call nodes directly contained

in the method. Control edges represent that a statement or call will be executed if the
method is called. Furthermore, conditional statements are represented as control edges
labeledwith true (T), to connect the conditionwith all the nodes of the then branch, and
edges labeled with false (F), to connect the condition with the nodes of the else branch.
For example, the statement a := foo(bar()) in Listing 3 is executed uncondition-
ally as soon as the procedure main is executed. Therefore, the corresponding statement
node in the SDG is directly connected to the correspondingmethod nodewith a control
edge. In distinction, the statement RETURN p0 * 2 is only executed if the condition
config_double evaluates to true. This is represented by the control edge labeled
with T between the corresponding statement nodes in the SDG. On the other hand, the
statement RETURN p0 is only executed if the same condition evaluates to false. This is
represented by the control edge labeledwithF. Control edges are shown as solid lines in
Fig. 2.

Parameter edges connect method nodes with all formal parameter nodes used
by the method. Analogously, there are parameter edges from a call node to the
actual parameter nodes. Parameter edges are represented with dashed-dotted lines in
Fig. 2.

Data dependence edges show data dependencies between parameter or variable
nodes and statement nodes in the SDG. Data dependence edges between actual and
formal parameter nodes show parameters passing during method calls. Data depen-
dence edges between statement nodes represent data-flow dependencies. In Fig. 2 data
dependencies are shown as dashed lines.

4.2 Presence conditions

A CSDG is built from the SDG by annotating edges with presence conditions. There
are different ways how variability can be implemented in a program and the presence
conditions are used for expressing and abstracting from different variability imple-
mentation concepts. For example, variability can be implemented using conditional
statements testing configuration settings (i.e., load-time configuration options (Lil-
lack et al. 2014, 2017)), or module link configurations determine the modules to be
used in case alternative modules are available. Furthermore, compile-time variabil-
ity (Kästner et al. 2011) allows implementing variability by selecting and composing
source code snippets. Such approachesmay, however, modify the source code in a non-
structured way, which can be prevented by transforming compile-time to load-time
variability (von Rhein et al. 2016).

In the CSDG, presence conditions are encoded as Boolean formulas representing
the set of valid product variants (cf. Kästner et al. 2011). Thus, an edge is enabled
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for a specific configuration if the condition is satisfied with respect to that concrete
product configuration.

Dependent on the typeof edge, the presence conditions canbe interpreted as follows:
if a control dependence edge is annotated with a presence condition, the execution
of the program element will only occur in a configuration satisfying the presence
condition. Analogously, a presence condition attached to a data dependence edge
means that the data flow only exists in the product variants satisfying the presence
condition.

Consider the configuration variable config_double in Listing 3: There will be
presence conditions on the edges connecting the statement node config_double
in procedure foo with nodes RETURN p0*2 and RETURN p0 as shown in the
CSDG in Fig. 2. Further, the classes M1 and M2 contain two alternative implemen-
tations of procedure bar. Depending on which class is actually instantiated, one of
the variants will be called. Therefore, there are presence conditions M1_linked and
M2_linked on the two respective edges.

4.3 Formal definition of the CSDG

After getting an intuitive understanding, we give a formal definition of the CSDG in
the following (cf. Ferrante et al. (1987)). First, let us formally define an SDG.

Definition 1 SDG. An SDG is a tuple

SDG = (V , E, T )

where V is the set of nodes of the SDG and E ⊆ V × V are the edges and
T : E → {ctrl, data} is a function determing if the edge represents a control or
data dependency.

The control-flow edges e = (a, b) ∈ E ∧ T (e) = ctrl represent the execution
semantics. Intuitively, a node b is control dependent on a node a if the node a decides
if b will be executed.

The definition of control dependency is based on Ferrante et al. (1987):

Definition 2 (Control dependency) There is a control dependency
e = (a, b) ∈ E, T (e) = ctrl between nodes a, b ∈ V if node a decides if node

b is executed. We write a
ctrl−−→ b. More formally: a

ctrl−−→ b if

1. There is a path p from a to b in the control-flow graph such that b post-dominates
every vertex v ∈ p, v �= a, and

2. b is not the immediate post-dominator of a

This definition uses the post-dominator relationship on the CFG which is defined
as follows.

Definition 3 (Post-Dominator) Node b post-dominates node a in the CFG if every
path from a to EX IT (excluding a) contains b.
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In other words, if a node has children in the control flow graph (CFG), then the
node is a decision point. If a node b post-dominates a child of node a, then node b is
control dependent on node a. In this case, node a then was the nearest decision point
for the execution of b.

Data dependence edges are determined by the reaching definition relation between
nodes.

Definition 4 (Data dependency) There is a data dependency
e = (a, b) ∈ E, T (e) = data between nodes a, b ∈ V if node a defines the value of

some data element and this definition is read in b. We write a
data−−→ b.

Based on the definition of the SDG, a formal definition of the CSDG is as follows.

Definition 5 CSDG. A CSDG is a tuple

CSDG = (V , E, T ,C, PC)

where V , E and T are the same as in the SDG, C is a set of Boolean configuration
variables and PC is the presence condition function

PC : E → (BC → B)

where B = {True, False} is the set of Boolean values and which for each edge gives
a function that determines a Boolean presence value based on a vector of values of
Boolean configuration variables C . Note, that the presence condition function will be
constantly True, if the edge is not dependent on a configuration.

4.4 Support for exploring the CSDG

The CSDGs of real-world programs get huge as our evaluation in Sect. 6 will show.
Therefore, tool support is needed to convey the program dependencies and the vari-
ability information encoded in the CSDG to developers.

The SDG Browser (Feichtinger 2017) is a tool for visualizing and interactively
browsing the dependencies of a program. It allows selectively displaying nodes of
corresponding program elements and following their dependencies. Specifically, it
covers four use cases addressing fundamental development andmaintenance activities:
executions, variable assignments, change impact, and change cause.

Executions support finding out how a statement (or procedure) can be executed,
i.e., it reveals all possible program paths leading to its execution. A developer can
select a statement in an editor and then start the SDG Browser showing the respective
CDSG node for this statement. The developer can then follow the control dependence
edges backward, to visualize all the program paths leading to the selected statement.
This effectively gives a graph which contains all possible stack traces that could be
observed for any execution.
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For example, Fig. 3a shows the possible execution paths for the statement
return 0. Starting from return 0, the control paths are followed backward,
until the node main is reached.

Variable assignments allow to find out how a specific variable can be set. In this
use case a developer first selects a variable in the editor, which is then displayed as
the initial node in the SDG Browser. If multiple instances of this variable exist, e.g.,
in case of an object variable, all its instantiations are displayed. Based on the data
dependencies, all assignment statements affecting this variable are accessed. From the
assignment statements the executions as outlined above can be shown. Thus, the use
case shows how the assignment statements to the selected variable can be executed
and the variable can be set.

Figure 3b shows the execution of the assignments to variable obj. The vari-
able declaration in the CSDG has a data dependency edge to the three assignment
statements (not shown in the diagram). From those the control edges are followed
backwards.

Change impacts canbe computed to support a developer in determining statements or
variables possibly affected by changing or executing a particular statement or variable.
This feature allows displaying a sub-graph of theCSDG,which is connected by control
or data dependencies. Therefore, after selecting a program element or a group of
program elements, the control as well as data dependence edges are followed forward.
The user can selectively open parts of the sub-graph for inspection.

Figure 4a shows the change impact of statement return 0. Starting with this
statement, the algorithm follows all data and control dependency edges. If the devel-
oper changes, e.g., the returned value, there might be an impact on the selected
statements.

Change cause is inverse to analysing the change impact. This feature determines for
any program element the statements or variables which might have an impact on its
value or execution. It works similar to change impact, but follows the control and data
dependencies in a backward direction. This use case can be helpful, for instance, if a
developer wants to know the cause that the execution of a statement changed.

Figure 4b shows the change causeof statementreturn d.bar() * d.bar().
The return value can be influenced by the two returns of method d.bar. However,
also the execution of the predecessor control node B.foomight effect the execution,
i.e., if it is executed or not. Continuing from those nodes, all the control and data
dependencies are followed backwards.

SDG browser tool

Figure 5 shows a screenshot of the SDG Browser tool, currently showing the vari-
able assignment for a variable tmp. In the example program, there are two instances
of the building block declaring the variable, therefore two instances of the variable
exist. Those are set in different ways. The tool allows expanding/collapsing nodes
and following edges (+ button). In the example, one execution is partially expanded,
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Fig. 3 The use cases for using
the SDG
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Fig. 4 The use cases continued
from Fig. 3
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Fig. 5 Screenshot of the SDG Browser tool showing a variable assignments for two instances of a variable
tmp

the other collapsed. The statement nodes are contained in the procedure nodes (green
boxes).

Considering configuration options

In the use cases discussed above, no configuration options are considered. When
considering a specific configuration setting, certain edges are not enabled and therefore
the edges will be excluded in the use cases. This is straightforward for the executions
and variable assignment use cases. For example, if we know that option c1 is not set,
then the control edge from return 0 to the statement if (!c1) is not enabled
and the return statement cannot executed. In the SDG Browser tool the selection
“Dim inactive nodes” allows shadowing the nodes which cannot be executed due to
the current configuration. However, for change impact analysis configuration options
propagate. This is discussed in detail in Sect. 5.

5 Configuration-aware change impact analysis

Recall from Sect. 3 that configuration options influence the control and data flow in the
program and therefore need to be considered when determining a change impact. We
thus now show how the CSDG with the presence conditions is used to propagate con-
figuration options to see if and under which conditions a change impact really prevails.
The propagation algorithm starts at the presence conditions from the CSDG and prop-
agates and combines them along the forward slices for finally determining a configura-
tion condition for the change impact. We call these propagated conditions impact con-
ditions, as they represent the influence of configuration options on the change impact.
Further, configuration conditions may spread in the program by assignments along
data dependencies. The approach therefore computes reaching definitions for con-
figuration conditions to know for each program position which variables store which
configuration conditions.We call thismapping of variables to configuration conditions
reaching conditions.
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Fig. 6 The steps for the
propagation of the variability
information showing the CSDG
and how the presence conditions
are propagated

Snapshot (a): Propagating presence condition !c0 to
change impact criterion.

Snapshot (b): Propagating presence condition c0
to change impact criterion.

(a)

(b)
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Fig. 7 The steps for the
propagation continued from
Fig. 6

Snapshot (c): Propagating presence condition !c0
&& c1 from change impact criterion along forward de-
pendencies.

Snapshot (d): Combining presence condition of
change impact criterion and of impacted statement to
false.

(a)

(b)
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5.1 Problem illustration

We now explain condition propagation using an example. Figures 6 and 7 illustrates
how the variability information is propagated to compute the impact conditions for
the introductory example from Sect. 3. Let’s assume that the statement return 1 on
line 37 is to be modified and the impact of this change needs to be computed.

Snapshot (a) First, as shown in Fig. 6a, the initial presence condition !c0 arises
from statement IF c0 which tests a configuration value. Since the successor IF c1

is in the else branch of the if statement, the condition c0 is negated finally reveal-
ing the impact condition !c0. The first propagation step moved condition !c0 over
node IF c1 and reaches the next presence condition c1. In this case, the two con-
ditions are conjunctively combined resulting in !c0 && c1. The resulting impact
condition is then moved iteratively to successors int res = obj.foo(d), C.foo,
return 2*d.bar(), and D.bar. Since these nodes are not related to configuration,
the propagated condition does not change and the impact condition of this ingoing
edge to D.bar is !c0 && c1.

Snapshot (b) Figure 6b shows the next five propagation steps. The presence condi-
tion c0 from the edge to the node representing the then-branch is moved iteratively
to successors int res = obj.foo(d), B.foo, return d.bar()*d.bar(), and
D.bar. Again, these nodes are not related to configuration and thus do not modify the
condition. However, when the condition is moved over node D.bar, it is disjunctively
combined with condition !c0 && c1 because the node is a method node and the
two incoming edges represent call edges. Therefore, the conditions are disjunctively
combined because either of the calls may happen and the analysis has to assume that
both calls are possible. This node is thus called a join node and the two incoming
conditions are combined to c0 || c1 which defines the impact condition for the
outgoing edge of D.bar.

Snapshot (c) Figure 7a shows the final propagation steps and the steps for the
change impact analysis. Condition c0 || c1 from node D.bar first propagates over
node IF !c1 and results in impact condition (c0 || c1) && !c1which is equal
to c0 && !c1. Now, the propagated condition is at the change impact criterion
return 1 and the change impact is computed by following the outbound edges while
carrying the already propagated impact condition.

Snapshot (d) Finally, the print statement is reached (cf. Fig. 7b) and the impact con-
dition c0 && !c1 is combined with the incoming condition !c0. The combination
is a contradiction, i.e., the result is always false and we can conclude that there will
be no change impact to the print statement when changing return 1.

Let’s now consider the spreading of configuration conditions by assignments along
the data dependencies to intermediate variables. For example, in Listing 2 the value of a
configuration option is stored in a local variable c0 (line 5). which is used subsequently
to decide which other configuration option to load (line 7). As pointed out above,
currently available analysis techniques cannot handle such situations as they assume a
strict separation of the variability mechanism from program control flow, i.e., they do
not consider that the execution of the statements in lines 15 and 17 also depends on the
configuration option c0. In this small example it is obvious that the above condition
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reaches the statements in lines 15 and 17 and thus their execution also depends on
conditions c0 && c1 and !c0 && !c1. Finally, the call in line 19 also depends
on both configuration options since both configuration options reach this statement.

It is thus essential to know which configuration conditions can reach which loca-
tions in the program. This is accomplished by a reaching definitions calculation for
configuration variables, which we denote as reaching conditions.

5.2 Definitions

Relating to the formal definition of the CSDG (cf. Sect. 4.3) and for formally repre-
senting the impact conditions and reaching conditions resulting from the propagation
approach, we introduce the impact conditions function and reaching conditions func-
tion as follows:

Definition 6 Impact Conditions (IC) is a function

IC : E → (BC → B)

which maps edges in E to functions mapping a vector of values of configuration
variables C to a Boolean impact condition value.

That means IC determines if the edge is enabled in the current propagation and the
given configuration settings. Note, that impact conditions and presence conditions
have equal structure.

Definition 7 Reaching Conditions (RC) is a function

RC : E → (Var → (2BC→B))

which maps edges in E to functions from program variables v ∈ Var to a (possibly
empty) set of configuration conditions, where Var is the set of program variables
used for configuration conditions. That means RC gives for an edge and a variable
the configuration conditions which can reach this edge.

In summary, we will use the following terms when further explaining our approach:

– Presence conditions (PC) as introduced in Sect. 4.2 represent the initial conditions
on edges in the CSDG resulting from configuration options.

– Impact conditions (IC) are the conditions resulting from the propagation and com-
bination of conditions along the edges in the CSDG. Impact conditions relate to
presence conditions, as presence conditions are the starting point for propagation.

– Reaching conditions (RC) are the configuration conditions stored in variables.
Reaching conditions are computed for edges in the CSDG by computing reaching
definitions sets for configuration variables in the propagation process.

– The change impact criterion is that program element for which the change impact
is computed.
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Fig. 8 Overview of the CA-CIA approach. Starting with the CSDG containing the presence conditions, first
a backward slice is computed from the CIA criterion to determine all influencing nodes. Second, conditions
are propagated within the computed backward slice. Then, the incoming condition of the CIA criterion is
taken and a forward slice is computed

5.3 Approach

The CA-CIA approach determines the configuration-aware change impact by starting
at the presence conditions in the CSDG and propagating resulting impact conditions as
well as reaching conditions to CSDG nodes. A naïve approach would be to start at the
presence conditions from the CSDG and globally propagate all conditions until every
CSDG node is annotated with the appropriate impact condition and then performing
a forward slice starting at the statements of interest. However, it is expected that most
changes will affect only a subset of the code. Propagating the conditions globally and
in advance would thus be too costly. Therefore, our CA-CIA algorithm propagates
conditions only in the required domain.

Figure 8 shows the steps for computing the configuration-aware change impact. The
approach starts at the node for which we want to compute the change impact, i.e, the
CIA criterion. First, it computes the backward slice for the CIA criterion by computing
all statements that possibly have an influence on the CIA criterion. This set of nodes is
the so-called domain. It then takes presence conditions from the CSDG and propagates
them together with the reaching conditions according to propagation rules within the
computed backward slice, such that impact conditions and reaching conditions are
determined for all incoming edges of the CIA criterion. Next, it determines the actual
change impact by performing a forward slice, starting with the CIA criterion and
propagating the impact conditions and reaching conditions.

Further, the approach needs to know the impact conditions and reaching conditions
for all nodes in the change impact to compute the correct conditions in the forward
slice. Figure 9 illustrates the situation where some nodes visited during the forward
slice do not have impact conditions on the incoming control flow edge. The box with
the dashed border denotes the initial domain, i.e., the set of nodes and edges that already
have been considered in the initial backward slice. The highlighted control edge from
the filled node is not part of the domain and does not yet have conditions. However, a
condition on this edge might also have an influence on the conditions of the impacted
statements. Therefore, the node with this incoming edge is registered, and in the end,
a backward slice and the propagation within this slice are performed in a second pass.
We thus mark all nodes with incoming edges that were not in the initial domain. After
collecting these nodes, we compute a backward slice to determine the final propagation
domain, which contains all nodes that can possibly reach and influence the nodes in
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Fig. 9 Including further nodes in the propagation domain during the forward slice: The node with the bold
border is the change impact criterion. The area surrounded by the dotted line depict the initial propagation
domain. During the forward slice, the red node represents a node without a condition and therefore has to
be included in the propagation domain in a second backward slice

the change impact. Finally, we apply the propagation algorithm in this domain and
label all edges in the change impact with the correct impact conditions.

5.4 Algorithm

This section presents the algorithm for performing the CA-CIA as illustrated above
based on the formal definitions of the CSDG and of the IC and RC functions. The
inputs to the algorithm are the CSDG and the change impact criterion cri terion.
The algorithm iteratively computes updates of the impact conditions IC and reaching
conditions RC . The result of the algorithm is the final impact condition function
IC representing conditions for the change impacts on possibly influenced nodes.
Specifically, algorithm 1 works in several phases:

– First, a backward slice starting at the CIA criterion is computed to determine the
initial domain, i.e., the subgraph of theCSDG,which has influence on the criterion.

– Second, the variability information, i.e, the impact conditions and reaching con-
dition sets, are propagated within this domain, i.e., impact conditions IC and
reaching conditions RC are computed within the domain. In this way, the influenc-
ing variability information is brought to the CIA criterion. The presence conditions
PC from theCSDG serve as initial values for the impact conditions IC . The reach-
ing condition sets for all variables are empty initially.

– Next, a forward slice is performed that carries the impact conditions and reaching
conditions from the CIA criterion along the dependency edges.

– Then, the nodes that have been visited during the forward slice and are not in the
initial domain, are the starting point for a second backward slice.

– Once this second backward slice is computed resulting in an extended domain,
another propagation phase starting at the CI criterion is performed to compute the
final change impact conditions.

Algorithms 2–6 provide details for these individual steps.
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Algorithm 1 CA-CIA algorithm.
1: procedure ConfigurationAwareCIA(CSDG = (V , E, T ,C, PC), cri terion)
2: domain ← BackwardSlice(CSDG, cri terion)
3: (IC, RC) ← (PC, RC0) with RC0(e)(v) = ∅, ∀e ∈ E,∀v ∈ Vars
4: (IC, RC) ← Propagate(CSDG, domain, (IC, RC))
5: ((IC, RC), visi ted) ← ChangeImpact(CSDG, cri terion, (IC, RC))
6: extendedDomain ← BackwardSlice(CSDG, visi ted\domain)
7: (IC, RC) ← Propagate(CSDG, extendedDomain, (IC, RC))
8: return IC
9: end procedure

Algorithm 2 The backward slicing algorithm.
procedure BackwardSlice(CSDG = (V , E, T ,C, PC), cri terion)

visi ted ← ∅
queue ← cri terion
while queue �= ∅ do

n ← removeFirst(queue)
visi ted ← visi ted ∪ {n}
for (p → n) ∈ E) do

if p /∈ visi ted then
queue ← queue ∪ {p}

end if
end for

end while
return visi ted

end procedure

Algorithm 2 defines the backward slicing algorithm as presented by Ottenstein and
Ottenstein (1984). Since the CSDG is an extended SDG, we can simply perform a
graph traversal. Therefore, we first insert the CIA criterion into the queue and then
determine all reachable nodes by following the edges backwards.

Algorithm 3 performs the propagation of impact conditions and reaching conditions
in the domain, i.e., the forward propagation along the edges in the domain to carry
the impact conditions and reaching conditions to the CIA criterion. It actually is a
fixpoint algorithm, which propagates impact conditions and reaching conditions as
described by the propagation cases in Sect. 5.5. The input parameters are the CSDG
and the domain as well as the initial impact conditions and reaching conditions (empty
initially). The algorithm uses a working queue containing nodes to consider. It starts
by looking for nodes which have outgoing control edges with presence conditions by
iterating over the nodes in the domain. Those nodes are put into the working queue to
start propagation. Then, propagation of impact conditions and reaching conditions is
done as long as the working queue is not empty. Thus, for each node in the queue, it
will propagate the conditions along the outgoing edges to the next nodes. As soon as
there is a change of impact conditions or reaching condition on an edge, the next node
is put into the working queue. The propagation cases described in Sect. 5.5 guarantee
termination of the algorithm. First, for the initial presence conditions a conjunction is
built with the incoming conditions, cf. Fig. 10a. However, there is only a finite set of
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Algorithm 3 The propagation algorithm distributing variability information within a
domain.
procedure Propagate(CSDG = (V , E, T ,C, PC), domain, (IC, RC))

queue ← ∅
for nodes n ∈ domain do

if ∃(n → s) : PC(n → s) �= True then
queue ← queue ∪ {n}

end if
end for
while queue �= ∅ do

n ← removeFirst(queue)
for outgoing edges e = (n → s) ∈ domain do

((IC, RC), changed) ← MoveCondition(CSDG, e, (IC, RC))
if changed then

queue ← queue ∪ {s}
end if

end for
end while
return (IC, RC)

end procedure

edges carrying presence conditions and propagation is effective only the first time, i.e.,
combining it conjunctively a second time does not change the condition. Then only
disjunctions are built when combining impact conditions, cf. Fig. 10b. This guarantees
that the impact conditions will always get more general until possibly becoming true.
Moreover, there is also only a finite set of assignments of conditions to variables and
thus also the reaching conditions will stabilize.

Algorithm 4 is the change impact algorithm and performs a forward slice start-
ing at the CIA criterion. The input parameters of the algorithms are the CSDG, the
CIA criterion, and the impact conditions and reaching conditions as computed so far.
The algorithm moves the propagated conditions and reaching condition sets during
traversal and also collects the visited nodes.

Algorithm 4 The forward propagation algorithm for computing the change impact
conditions starting at the CI criterion.
procedure ChangeImpact(CSDG = (V , E, T ,C, PC), cri terion, (IC, RC))

visi ted ← ∅
queue ← {cri terion}
while queue �= ∅ do

n ← removeFirst(queue)
visi ted ← visi ted ∪ {n}
for outgoing edges e = (n → s) ∈ E do

((IC, RC), _) ← MoveCondition(CSDG, e, (IC, RC))
if s /∈ visi ted then

queue ← queue ∪ {s}
end if

end for
end while
return ((IC, RC), visi ted)

end procedure
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Algorithm 5 is responsible for performing a single propagation step for a single
edge. Its inputs are the CSDG, the edge and the current impact conditions and reaching
condition sets. It returns possibly updated impact conditions and reaching condition
sets and a flag indicating a change. The main work is done by algorithm Propagate-
Conditionwhich combines the conditions from the predecessor edges and the presence
conditions of the edge itself. This is shown in Sect. 5.5 (Algorithm 6).

Algorithm 5 Computes the impact condition and reaching conditions for an edge by
combining the conditions from the predessor edges and its presence condition.
procedure MoveCondition(CSDG = (V , E, T ,C, PC), e, (IC, RC))

(ice, rce) ← PropagateConditions(CSDG, e, (IC, RC))
changed ← IC(e) �= ice ∨ RC(e) �= rce
(IC ′, RC ′) ← update((IC, RC), (ice, rce))
return ((IC ′, RC ′), changed)

end procedure

5.5 Propagation cases

This section describes the basic propagation cases as performed by Algorithm 6. Each
case is illustrated by a fraction of the CSDG with three node levels. The upper node
level are the predecessors, the middle node level contains the current node with the
outgoing edge to process, and the lower level contains the successor node. The node
types are not specified explicitly since they result from the content of the node and
the edge types are specified by the line type. Solid lines represent control dependence
edges and dashed lines represent data dependence edges. Furthermore, the impact
conditions (IC) and reaching conditions (RC) are depicted by a tuple [IC, RC]. If
the tuple contains three dots (…), the element at this position does not matter. The
presence conditions (PC) on edges are shown without square brackets if present.

Case 1. Introducing a presence condition from a control edge In this case shown
in Fig. 10a, the edge has a presence condition f0. Moreover, the incoming edge to
the source node already contains some impact condition C. When propagating this
incoming impact condition, it has to be combined with the presence condition f0. The
outgoing edge thus gets an impact condition C && f0.

Case 2. Joining impact conditions In this propagation case depicted in Fig. 10b, the
source node has multiple incoming control dependence edges, each carrying distinct
impact conditions. The conditions of the incoming edges are combined disjunctively
and the combined condition is then put on the outgoing edge. That means that the edge
is enabled if either of the two conditions is fulfilled.

Case 3. Introducing and using new configuration variables In this case shown in
Fig. 11a, a new configuration variable x is introduced in a predecessor node, which
gets assigned a combination of two presence conditions f0 and f1. This is forwarded
in a reaching condition definition for variable x along a data dependence edge. Then
this variable is used in an if statement. This results in the reaching condition being
used in the impact condition !(f0 && f1) of the outgoing control dependence edge.
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...

...

...

[C, ...]

[C && f0, ...]
f0

Introducing a presence condition on a
control edge.

Joining impact conditions.(a) (b)

Fig. 10 Basic cases of propagating impact conditions

(a) Introducing and using new configu-
ration variables. The reaching condition
(x, f0 ∧ f1) is used by branch statement
IF !x. Therefore, a new impact condition
is created by negating the reaching con-
dition.

(b) Propagating impact conditions to
data dependence edges. The outgoing
edge will only be enabled if the statement
is executed, i.e., C0 is satisfied, and if at
least one incoming data edge is enabled,
i.e., f0 ∨ f1 is fulfilled.

Fig. 11 Propagation cases with interaction between impact and reaching conditions

Case 4. Propagating impact conditions to data dependence edges This case defines
how conditions on incoming control and data dependence edges are propagated to an
outgoing data dependence edge (cf. Fig. 11b). First, the impact conditions of incoming
control dependence edges propagates to all outgoingdata dependence edges, as the data
dependence of the node only occurs if the node is executed. Therefore, the outgoing
data dependence edge gets an impact condition C0 in the example. Secondly, there are
incoming data dependence edges with conditions f0 and f1. However, the statement
can only be executed if one of these edges provides data. The outgoing data dependence
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Updating a reaching condition set by
a new reaching condition introduced by
assigning configuration variable x.

Joining reaching condition sets. The
two incoming definitions of configuration
variable x are combined disjunctively.

(a) (b)

Fig. 12 Basic cases of propagating reaching conditions

edge is thus only enabled if the statement is executed and if there is incoming data,
i.e., the impact condition (C0 && (f0 || f1) is satisfied.

Case 5. Updating reaching condition sets This case presented in Fig. 12a deals with
propagating a reaching condition set across a node introducing a new configuration
condition overwriting the existing one. As can be seen in Fig. 12a, the incoming data
edge carries a reaching condition fA for variable x. The node redefines variable x
with a new condition fB. Thus, the definition for x is overwritten and the outgoing
data edge carries the definition (x, fB).

Case 6. Joining reaching condition sets In this case a node has two incoming and
one outgoing data dependence edge as can be seen in Fig. 12b. The reaching conditions
are combined using a union operation but reaching conditions for the same variables
(x, fA) and (x, fB) are combined using a logical OR operator.

Algorithm 6 describes how the impact conditions and reaching condition sets are
computed. It implements the propagation cases from above. The input parameters
are the CSDG, the edge, the current impact conditions and reaching conditions. The
variable icce is used for the new impact condition for edge e if e is a control dependence
edge. The variable icde is used for the new impact condition for edge e if e is a
data dependence edge. The variable rcde is the reaching conditions set from data
dependence edge predecessors.

In the first loop, the algorithm iterates over all predecessor edges and depending
on the predecessor edge’s type, the impact conditions and the reaching conditions are
combined as illustrated by Case 2, 4 and 6. For combining the reaching conditions
function, the operator ⊕ is used. It forms the union of two given reaching condition
functions RC(e0) and RC(e1), but definitions affecting the same variables are joined
by combining the condition disjunctively. For example, {(x, f A)} ⊕ {(x, f B)} =
{(x, f A ∨ f B)} as illustrated in Case 6.

After the for statement, the algorithm tests if the source node n contains an assign-
ment statement and the receiver of the assignment is a variable contained in the reaching
conditions. If so, the reaching conditions are updated such that (x, f B) is the only
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element using x on the left side in RC(e) as (cf. Case 5). The else branch covers
Case 3. It is tested if the node is an if statement and the expression contains a config-
uration variable. If so, the expression expr is converted to an condition by replacing
all occurrences of variables available in RC(e). The resulting presence condition is
then conjunctively combined with icce.

In the end of the algorithm, the new impact condition and reaching conditions
are combined and returned. If the edge e is a control edge, the icce is conjunctively
combined with the presence condition (cf. Case 1). If the edge e is a data dependence
edge, the impact condition icce is conjunctively combined with icde (cf. Case 4)
and the presence condition (cf. Case 1). The resulting impact condition and reaching
conditions for edge e are returned.

Algorithm 6 Computes the condition for a provided edge.
procedure PropagateConditions(CSDG = (V , E, T ,C, PC, RC), e = (n, s), (IC, RC))

icce ← ∅ � Impact condition for control dependence edges
icde ← ∅ � Impact condition for data dependence edges
rcde ← ∅ � Reaching conditions for data dependence edges
for pe = (p → n) ∈ E do

if T (pe) = ctrl then
icce ← icce ∪ IC(pe) � Case 2

else if T (pe) = data then
icde ← icde ∪ IC(pe) � Case 4
rcde ← rcde ⊕ RC(pe) � Case 6

end if
end for
if n = "x := fB" ∧ x ∈ Vars then � Case 5

Update rcde by inserting tuple (x, f B).
This possibly replaces any tuple with (x, f B) on the left side.

else if n = "IF x" ∧ ∃var ∈ expr : var ∈ Vars(rcde) then � Case 3
Extract reaching condition C = rcd(x) from expression
icce ← icce ∩ C .

end if
if T (e) = ctrl then

return (icce ∩ PC(e), ∅) � Case 1
else if T (pe) = data then

return (icce ∩ icde ∩ PC(e), rcde) � Cases 4, 1
end if

end procedure

6 Evaluation

Our evaluation investigates the benefits regarding complexity reduction and the per-
formance of the configuration-aware CIA approach in two use cases: (i) development
and maintenance in domain engineering, i.e., for determining the different product
variants affected by a change; and (ii) development and maintenance in application
engineering, i.e., for determining code affected by a change made to a specific product
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variant. Specifically, we use product families of our industry partner to explore the
following research questions:

RQ1 How beneficial is the configuration-aware CIA for maintaining a prod-
uct line? Our approach is highly beneficial in situations of high variability
complexity. We thus estimate the benefit by computing the degree and com-
plexity of variability information a domain engineer needs to consider when
determining the impact on product variants after changing code in a product
line.

RQ2 How beneficial is the configuration-aware CIA for maintaining a specific
product variant? This situation is common in clone-and-own product lines. Typi-
cally, in such product lines systems are configured in a two-stage derivation process,
where some variability is resolved in first stage, e.g., by setting configuration options.
Then in a second stage, developers adapt and fine-tune the product variant to meet
specific customer needs. We estimate the benefit by computing the increased preci-
sion of the change impact, as a smaller change impact will reduce the development
effort.

RQ3 Is the performance of the configuration-aware CIA sufficient for realistic
maintenance tasks? A major problem of static program analysis is high run time
complexity. We perform benchmarking to show the practicality and suitability of the
approach in realistic maintenance tasks.

6.1 Case study and code base selected for the evaluation

To investigate these research questions, we applied our tool to real-world software
systems provided by our industry partnerKebaAG (http://www.keba.com), amedium-
sized company developing and producing tools, hardware, and software for the
industrial automation domain. One of their systems is KePlast (Lettner et al. 2013), a
comprehensive solution for the automation of injectionmoldingmachines. The core of
KePlast is a configurable control software frameworkwhich is implemented in a propri-
etary dialect of the IEC 61131-3 standard (IEC 2013), a widely-adopted programming
language standard for implementing industrial automation systems. KePlast exists in
multiple different product families addressing different market segments. Keba uses a
custom-developed product configuration tool to select components from their KePlast
platform based on customer requirements. The selected components are then adapted
and extended by application engineers to meet specific customer needs not yet cov-
ered by the platform. In this stage, the derived software is still configurable by using
load-time configuration options, the variability mechanism targeted by our approach.
Two load-time variability mechanisms are used in the KePlast system: (i) There is a
test predicate IS_LINKED to determine if certain modules have been linked in the
first stage and are thus present in the system. Based on this test other program parts
are then enabled or disabled at run time. (ii) There is a set of configuration variables
loaded from configuration files at load time. The configuration-aware analysis relies
on this information.

As a baseline for our evaluation we derived product variants from KePlast’s fami-
lies, which contain a maximum number of features selectable together in the product
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Fig. 13 Components of the program analysis tool chain: Parser and Resolver, Jimple Generator, and System
Dependence Graph Builder

configuration tool. These maximum products do not contain the full code base of the
product line, but are a good approximation for the purpose of our study. In particular,
we used 9 different still configurable product variants with a size ranging from 53
kLOC (family4) to 302 kLOC (family2).

Furthermore, these maximum product variants of a family indeed have commonali-
ties and differences. In the case of our industry partner’s product families, the common
code, i.e. the mandatory features, is a substantial part of the source code because it
includes implementations for basic data structures and algorithms used in all product
variants.We therefore concentrate on the variable part of the analyzed product families
to obtain data that is most relevant for our research questions. Specifically, we only
considered change impacts containing at least one impact condition. This was the case
for 27% of all change impacts in our case study (median across product families).

6.2 Tool implementation and adaptation

We have developed a tool chain for implementing the CA-CIA approach, which
is shown in Fig. 13. KePlast has been developed in a proprietary dialect of the
IEC 61131-3 standard, for which no parser or compiler suitable for program analysis
was available. We thus first had to create a parser frontend using the parser generator
CoCo/R (Wöß et al. 2003) and an abstract syntax tree (AST) to represent the parsed
source code. Our AST implementation is based on Modisco (Bruneliere et al. 2014),
an implementation of the OMG ASTM standard that defines an AST meta model.
For data flow analysis and pointer analysis we use Soot (Lam et al. 2011), an anal-
ysis framework originally developed for Java code analysis. Based on the AST, we
thus generate input for the Soot framework which preserves the control flow and data
semantics of the original program. Finally, the System Graph Builder creates the SDG
which is then further annotated with impact conditions. A detailed description of the
tool chain is available from Grimmer et al. (2016).

The CA-CIA method takes the CSDG and a CIA criterion as input. The result is a
subgraph of theCSDGwith the propagated impact conditions. The SDGbrowser based
on the Eclipse framework allows visualizing the results for developers (cf. Sect. 4.4).
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6.3 RQ1: Domain engineering

Asargued above, the benefit of the configuration-awareCIAdepends on the complexity
of the variability information and the contradictions of the impact conditions, which
allow pruning the change impact. Recall that in our approach variability information
is propagated based on the program dependencies and is therefore usually not visible
directly in the source code.

We define three metrics to characterize the variability of a code base.
The Variability Complexity is the ratio of edges with variability information to the

total number of edges within a change impact. Our approach is more beneficial if more
edges are annotated with variability information, as this would make a manual CIA
even harder.

TheVariability Interaction Ordermeasures the average number of involved distinct
configuration options in the variability information. This is computed by counting the
number of distinct configuration options in a single impact condition and computing
the mean of these numbers over all edges. For example, if the two conditions a∧b and
¬a∨c are in a change impact, the interaction measure would be 2+2

2 = 2. This metric
thus represents the interaction between different configuration options. The benefit
of the approach increases with the order of the variability interaction, as manually
analyzing complex interactions is hard to infeasible.

Contradicting Conditions Ratio The propagation of impact conditions may result
in contradicting impact conditions, which can never become true, regardless of the
product configuration. Such invalid edges allow removing statements from the change
impact. Our measure is the ratio of invalid edges to the total number of edges. A higher
value is better because the change impact is smaller and more precise.

MethodWeperformed the configuration-awareCIA for every single statement in the
selected product families. This was done in two phases: in phase 1 we built the CSDG
for the product family. This included parsing the source code, performing control flow,
data flow and pointer analysis to build the SDG, and extracting the initial conditions
from the source code. In phase 2 we performed the configuration-aware change impact
analysis as outlined in Sect. 5. Specifically, we iterated over all statement nodes in the
CSDG and performed a configuration-aware CIA.

Results Figure 14a shows the results of our evaluation for the metric Variability
Complexity. The x-axis shows the complexity values, i.e, the portion of nodes with
variability information. We grouped the values into intervals of width 0.1. Thus the
x-axis represents intervals ]0.0, 0.1[, [0.1, 0.2[, …, [0.9, 1.0]—an interval is denoted
by its middle value on the x-axis. The y-axis is the number of change impacts con-
tained in a certain interval. The chart shows the cumulative distribution of change
impacts for these groups. For example, the data point at 0.65 of the family2 says that
approximately 25,000 change impacts had a variability complexity value in interval
]0.0, 0.7[. Therefore, a impact condition was available for up to 70% of the statements
in the change impact.

Figure 14b shows the results for metric Variability Interaction Order. The x-axis
shows the average number of configuration options involved in the impact conditions
of a change impact. The y-axis is the number of change impacts that have a certain
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Fig. 14 Results for RQ1 computed by applying our tool to a set of real-world product families provided by
our industry partner
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average number of involved configuration options. For example, the family6 has a
peak at x = 4, i.e., around 6000 change impacts involve on average 4 configuration
options.

Figure 14c shows the results for metric Contradicting Conditions Ratio. The x-axis
shows the portion of nodes that are invalid because of a contradicting condition. We
again grouped the values into intervals of width 0.1. The x-axis therefore represents
intervals ]0.0, 0.1[, [0.1, 0.2[,…, [0.9, 1.0]—an interval is denoted by itsmiddle value
on the x-axis. The y-axis again represents the number of change impacts as in Fig. 14a.
The chart shows the cumulative distribution of change impacts for these groups. For
example, in family2 at x = 0.15 the size of 33,000 change impacts could be reduced
by up to 20%.

DiscussionThe results ofmetricVariability Complexity shown in Fig. 14a show that
the approach is beneficial given the complexity of variability in real-world systems.
The graph shows a cumulative distribution function. The steeper a line the more vari-
ability information is available in the computed change impacts. The chart also shows
that larger product families provide even more variability information. For example,
consider family2, the largest product family in our study. It first grows moderately
until 0.45 but then it starts to grow faster, i.e., 50% of the statements in most change
impacts had variability information available. When combining the data in Fig. 14a
to one value, we see that overall the change impacts have 50–60% impact conditions
available on average (median).

The results formetricVariability InteractionOrder shown inFig. 14b showa similar
picture.Dealingwith interactions involving2 or 3 configuration options is alreadyquite
cumbersome. The results show that many change impacts had conditions with 5 and
more configuration options. Other empirical studies have shown an interaction degree
of 2 or 3 to be common (cf. Apel et al. 2013), similar to our results. However, we
also found quite a few change impacts with higher numbers of 10 to 35 configuration
options per impact condition, an order that is almost infeasible to comprehend by
developers.

In Sect. 6.1 we described that our analysis is performed on product families which
have already been partially configured and can be compiled. Therefore, the product
families’ source code does not contain any mutually exclusive feature implementa-
tions. So regarding the Contradicting Conditions Ratiowe did not expect a significant
increase of the precision of change impacts by finding contradicting impact condi-
tions. This did in fact happen for the analyzed product families family0, family4, and
family5. We see no increase in the corresponding lines in Fig. 14c, i.e., we could not
remove any statements from the change impacts. However, we still could increase the
precision of change impacts in the other product families. For example, the difference
between the last two data points of family2 shows that it was even possible to find
approximately 2000 change impacts whose size could be reduced by 90–100%.

6.4 RQ2: Application engineering

For this use case we perform CIA for a specific product configuration, i.e., we remove
elements from the result that are not reachable when evaluating the impact condtions
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Fig. 15 Results for RQ2 computed by applying our tool to a set of real-world product families provided by
our industry partner

in this specific configuration. Again, we distinguish between change impacts with
and without variability information, because the latter one covers most commonly
just library code, which is less interesting in terms of variability. We define metric
Relative Change Impact Size to measure the reduced numbers of edges in the change
impact after evaluating the impact conditions compared to the original change impact.
The original change impact is the configuration-aware change impact but ignoring the
impact conditions.

Method Analogously to themethod for RQ1,we performed the configuration-aware
CIA for every single statement of our product families (phase 1). However, for answer-
ing RQ2, we created concrete product configurations by randomly generating Boolean
values for each known configuration option (phase 2). When computing the change
impact, the impact conditions were then evaluated using these randomly generated
values for the configuration options. We measured the reduction of the change impact
size compared to its size not considering configurations. This was repeated 10 times
with different generated values to compute an average for the Relative Change Impact
Size.

Results Figure 15a shows the results for RQ2. Each line corresponds to one of the
analyzed product families. The x-axis shows the relative size of the reduced change
impact compared to the change impact without considering configurations. The y-axis
represents the number of statements where the change impact could be reduced by
that ratio. The results are again grouped into intervals of width 0.1. For example, the
data point at x = 0.85 of family4 means that the size of approximately 800 change
impacts has been reduced by 10–20%.

Discussion We observe that evaluating the impact conditions after computing the
change impacts reduces the size to 90% in most cases. Figure 15a shows a sharp
edge at the end of all lines, which means most change impacts are in the last group.
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There are also many change impacts that could be reduced to less than 80% of their
size if not considering configurations. While we expected these numbers to be more
distributed across the other groups, the results show that configuration does not equally
impact all parts of a program. To answer RQ2, we conclude that evaluating the impact
conditions yields noticeable benefit for maintenance because fewer statements have
to be considered, although we expected to do better.

6.5 RQ3: Performance

One major problem of static program analysis techniques is commonly their analysis
time.We therefore measured the analysis time of our tool when analyzing our industry
partner’s product families.

Method We separately analyzed the performance for building the CSDG and for
performing the configuration-aware CIA. For analyzing the building of the CSDG
we used 34 different product variants derived from the KePlast automation platform
from our industry partner (cf. Grimmer et al. 2016 for details). We measured the time
required to build the SDG and the peak memory consumption (Java heap space). We
executed all performance runs 10 times and took the median of the results.

The performance of the change impact method were measured based on 9 differ-
ent product variants of the KePlast platform with a size ranging from 53 kLOC to
302 kLOC. We measured the size of all configuration-aware change impacts for all
statements and the time required to compute them (cf. phase 2 of RQ1 and RQ2).

The tool chain is written in Java. The experiments have been conducted using a
Java 8 HotSpot 64-Bit Server VM onWindows 7 running on PCs with an Intel Core i7
with 2.93 GHz and 16 GB DDR3-SDRAM and 3.4 GHz and 16 GB DDR3-SDRAM,
respectively.

Results The results of the performance evaluation for building the CSDG for 8
representative product variants (PV) of different size are shown inTable 1. The selected
program sizes range from 53 kLOC to 302 kLOC. The table shows the different times
for the different phases in the tool chain as well as the size of the SDG in kNodes. The
total time for the whole analysis process is between 30 and 271 seconds. Number of
nodes range from 106 to 708 kNodes. Figure 16 relates the size and the total analysis
time for 34 product variants (the selected product variants contained in Table 1 have
circles as markers).

The results of the evaluation of theCA-CIA are shown in Fig. 17.A cross in the chart
represents a change impact. The x-axis lists the size of the change impacts in terms
of included statements. The y-axis shows the time required to compute the change
impacts in seconds.

Discussion The performance measuere obtained for building the CSDG showed a
maximum time of 272 sec and amaximumnumber of nodes in the SDGof 708 kNodes,
which is reasonable for a program size of 302 kLOC. Moreover, results show a strong
linear correlation between program size and execution time (Pearson’s correlation
coefficient 0.982; p value < 2.2 × 10−16). From these results it can be deduced that
the tool chain scales well to large-scale industrial applications.
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Table 1 Results from the run-time performance evaluation

PV Size PM AST JCG PDG SDG Total SDG Size
(kLOC) (GB) (sec) (sec) (sec) (sec) (sec) (k#Node)

1 53 1.5 2.8 2.5 11.2 14.2 30.7 106

2 60 2.1 3.9 3.2 20.1 22.3 49.5 164

3 81 1.8 3.9 4.0 22.4 19.5 49.8 187

4 98 3.3 4.9 5.4 20.9 42.8 74.0 188

5 205 7.3 10.2 16.5 107.6 36.8 171.1 416

6 253 8.0 12.2 23.5 130.5 49.9 216.1 604

7 265 9.4 12.7 24.4 135.4 53.8 226.3 626

8 302 9.5 14.9 29.8 163.9 62.9 271.5 708

The size of the product variants (PV ) is specified in lines of code (Size). PM indicates the peak memory
consumption. AST represents the time needed for parsing and building the AST. JCG is the time for the
Jimple code generation. PDG specifies the time required to build the PDGs including their instantiation,
SDG is the time required for building the SDG. Total is the overall time needed. SDG Size shows the size
of the resulting SDGs in number of nodes

Fig. 16 Timings tested on 34 product variants

The results for the performance of the CIA approach showed that the computation
of a change impact is fast and never takes longer than 3.5 seconds. It also seems that
the time required to compute a change impact does not depend on its size because we
cannot observe any linear or higher-order dependency on the change impact size. We
assume the time is dominated by the first step of the CA-CIA algorithm, i.e., com-
puting the backward slice to determine the possible influencing conditions. Moreover,
computing the change impact is negligible compared to the time required to build the
SDG.
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Fig. 17 RQ3—Average time required to compute configuration-aware change impacts of a specific size

6.6 Threats to validity

There is a potential bias caused by the selection of product families in a specific
application domain that have been developed in a specific programming language.
We thus present detailed evaluation results and avoid generalizations of how well
the approach would work for other programming languages and PLs. However, our
evaluation focuses on load-time configuration options, a variability mechanism that
is widely used in all programming languages. Also, given that companies typically
do not provide access to data about their product lines we believe that our evaluation
results are valuable and promising.

Specifically, our evaluation is based on partially configured product families, that
have been derived from a product line by selecting all features defined in a custom-
developed configurator. We could not analyze the full code base of the product line,
as the variability information is stored implicitly in the configurator. As a result the
evaluation is based on a less configurable code base, e.g., certain alternative features
are not included. However, this means that the results would be even more favorable
for the full code base.

A prerequisite of our approach is that the mechanism for implementing variability
in source code is known. This could be a problem in software projects without any
conventions for this aspect, as extracting the initial conditions might not be possible.
However, related work (Berger et al. 2010) indicates that most of the time it is known
how variability is realized. Furthermore, Reisner et al. (2010) show that open source
systems heavily use configuration options to implement variability.

The analyzed product families are executed in a runtime environment that provides
library functions, whose implementation is unknown. This is also a source of impre-
cision when building the CSDG. However, such system functions occur in almost
all execution environments and must be handled appropriately. Our implementation
handles this problem by assuming the worst case if something is not known. For exam-
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ple, if a system variable returns a reference to a variable and this reference cannot be
determined, we assumed that every reference may be returned. This is the common
strategy to preserve soundness but sacrifices precision.

We have taken several measures to mitigate the risk of incorrect computations: we
use the data flow and pointer analysis of the widely used Soot tool suite to build the
SDG, so we have a high confidence that this part of the implementation produces
correct results. Furthermore, the part of our implementation that extracts variability
information from source code has already been reviewed by a developer of our industry
partner in a qualitative process in our previous work (Angerer et al. 2014). Finally,
we performed unit testing and manual reviews for the results based on test input.
Furthermore, the tool suite was used on large-scale industrial systems and our industry
partners selectively validated the results.

7 Related work

We structure our comparison to related work into work concerning (i) tracking config-
uration options, (ii) variability-aware program analysis, and (iii) program slicing and
change impact analysis.

Tracking configuration options Lillack et al. (2014, 2017) developed an approach
for tracking load-time configuration options. They use a modified taint analysis to
determine source code depending on configuration options and also compute condi-
tions for the presence of code elements. The propagation phase of our algorithm is
comparable to their taint analysis, but their tool computes a different information. They
create mappings between configuration options and source code statements whereas
our approach globally propagates variability information and provides this informa-
tion for an arbitrary change impact. Lillack et al. (2014) implemented their approach
in a tool called LOTRACK by modifying Soot’s taint analysis. The implementation
of our approach works at a higher level, i.e. the CSDG, and is therefore less depen-
dent on the analysis implementations required to build the CSDG. We think this is an
important property because modifying existing implementations is often difficult and
error prone.

Xu et al. (2013) introduce a tool named SPEX that analyzes a program’s source
code to infer constraints for configuration options by tracking the data-flow of each
configuration variable. They also use program slicing to reduce the domain to consider
but only on a configuration variable’s data flow graph. The reduced domain is then
used to infer constraints for configuration options by analyzing the statements using
them. This is related to our approach, as we also analyze how a configuration variable
is used, by considering the data flow graph of the variable. However, their two-phase
algorithm may infer unsatisfactory constraints, whereas the fixpoint algorithm we use
computes an over-approximation, i.e., the results are sound but may provide false
positives.

Variability-aware program analysis Several authors have presented analysis tech-
niques considering program-level variability mechanisms. Variability-aware program
analysis techniques exploit the similarities among individual variants to reduce pro-
gram analysis effort. Kästner et al. (2011) present the tool TypeChef, which parses
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unpreprocessed C source code and encodes the variability in the abstract syntax tree
using presence conditions. Brabrand et al. (2012) present an approach to automati-
cally lift standard intraprocedural dataflow analyses to feature-sensitive analyses. A
lifted analysis can then analyze the whole program space of a preprocessor-based
product line at once. Liebig et al. (2013) provide variability-aware type checking and
a variability-aware liveness analysis for preprocessor-based product lines, also based
on encoding variability using Boolean formulas. They also use a fixpoint algorithm to
compute the result for single program elements, as in all dataflow analyses. The work
introduces the patterns of early joining and late splitting, which is crucial for scala-
bility. While we also use these patterns to keep the number of explicitly stored result
data minimal, our approach differs with respect to when the variability information is
added. The above approaches extract variability information from a variable AST, then
build a variable control flow graph (CFG) and finally carry out the variability-aware
analysis. In our case, the variability information is added in the last step after building
the SDG. However, considering variability in the AST and CFG could further increase
the precision of building the CSDG and therefore improve the overall results of our
analysis. But since in our context variability is mainly implemented using run-time
configuration options instead of #IFDEF directives, we do not need variability-aware
parsing.

Our discussion shows the two main strategies proposed in the literature to make
existing program analysis techniques variability-aware: (i) program analysis can be
lifted by considering variability already in the parsing stage; or (ii) analysis can be
delayed by considering and recovering variability only when needed. The delayed
variability analysis works by performing an analysis completely variability-oblivious,
i.e., ignoring any variability in the first place, and then recovering the variability
and augmenting the results. The drawback of this strategy is the loss in precision
because the delayed variability analysis needs to overapproximate situations to be
sound. In Angerer et al. (2017) we provide an in-depth comparison of our approach
with SPLLIFT (Brabrand et al. 2012), including an analysis and discussion of the
trade-offs regarding precision and run-time performance. The results of our experiment
show that the delayed strategy is significantly faster but at the same time typically less
precise.

Kästner et al. (2014) provide comprehensive support for creating feature models,
locating feature code based on manual condition definitions, and rewriting code into
conditional compilation and feature modules. Our approach also employs program
analysis techniques to build the CSDG. However, our goal is not to locate or rewrite
feature code, although the propagation of the conditions could be used for feature
location.

Zhang andErnst (2013) present theConfDiagnoser approachwhich uses static anal-
ysis, dynamic profiling, and statistical analysis to reveal the root cause of configuration
errors. Our approach also exploits static analysis techniques and uses configuration
files as input, however, we do not focus on determining configuration options leading
to an error. Reisner et al. (2010) empirically analyze how configuration options affect
program behavior. In particular, the authors use symbolic evaluation to discover how
run-time configuration options affect line, basic block, edge, and condition coverage
for different subject programs.We also compute the influence of configuration options
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to statements. Our approach is not limited to compute the impact when changing a
configuration option, but works with arbitrary statements.

Program slicing and change impact analysis Our approach builds on earlier CIA
research like (Arnold 1996), or program slicing approaches as summarized in Xu et al.
(2005). In particular, the implementation of our approach is based on the interproce-
dural program slicing technique described by Horwitz et al. (1990). The approach
presented in this paper further uses the CSDGwe have presented in our previous work
(Angerer et al. 2014). In contrast to most existing change impact analysis approaches,
our approach extracts and propagates conditions over the CSDG, similar to Snelt-
ing (1996), who aims at increasing the accuracy of slices by eliminating impossible
execution paths. This is done by extracting path conditions from all conditional state-
ments and employing an SMT solver to eliminate infeasible paths. In contrast, we only
extract conditions considering configuration variables and only deal with variability
that can be represented by Boolean formulas. Since we extract fewer conditions and
can use a SAT solver for reasoning, our approach can deal with much larger programs
compared to data reported by Hammer et al. (2006).

8 Conclusions and future work

This paper presented a configuration-aware change impact analysis approach, which
is based on program slicing techniques and a conditional system dependence graph
(CSDG), an extension of an SDG. The approach can deal with load-time configuration
options. It propagates conditions representing the variability of the analyzed software
system. We implemented the approach based on the Soot analysis framework (Lam
et al. 2011).We additionally built a front end for Soot for an industry partner’s software
systems and programming language.We then evaluated the benefit and performance of
our approach on 9 product families of the industry partner to investigate the distribution
and complexity of variability information and the required analysis time.

Regarding RQ1 we found high variability complexity demonstrating the benefit
for our approach in industrial-size systems. Specifically, in more than 50% of all
computed change impacts, 50–60% of the impacted nodes carried variability informa-
tion. Regarding Variability Interaction Order, we also observed very high interaction
orders of up to 35 configuration options. With respect to RQ2, the evaluation showed
a noticeable benefit because fewer statements have to be considered in maintenance
tasks. Regarding RQ3, the runtime performance of building the SDG and comput-
ing the change impacts allow the use of our technique in typical development and
maintenance tasks.

As future work, we plan to formalize our approach using the framework by Midt-
gaard et al. (2014), which allows to derive variability-aware analyses for software
product lines. We want to show that our configuration-aware CIA can be derived from
a standard CIA approach. The evaluation of the approach as presented in this paper has
been done based on industrial software systems implemented in an implementation
of the IEC 61131-3 standard from our industry partner. However, the approach is also
applicable to other imperative and object-oriented languages. For example, in Angerer
et al. (2017) we have presented a study, which is based on Java product lines.
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Furthermore, we have extended our tool to support multi-language software sys-
tems, e.g., with parts written in IEC 61131-3 as well as Java (Angerer 2014). This is
important for industrial software systems, which often comprise subsystems written in
different languages. For instance, it is common practice to load configuration options
in one subsystem and communicate this information to other subsystems using dif-
ferent languages. Performing a configuration-aware CIA in such an environment, will
require extensions to our approach allowing to jointly analyze the subsystems.
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