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Abstract  

Up to 25% of the total European Union (EU) CO2 emissions that contribute to global warming are from 

industry, and while improved energy efficiency and process integration continues to play a role in 

minimizing these, it is carbon capture (CC) that in future will contribute most to mitigation, until nuclear 

energy and renewable technologies take over from fossil fuels. One of several CC methods is to use gas-solid 

adsorption, where the CO2 is adsorbed onto a solid. As with the more common absorption process, 

regeneration is required, and typically a single bed is employed to adsorb CO2 while regeneration and 

removal of the CO2 takes place in the second bed – carried out by pressure swing adsorption (PSA) or 

temperature swing adsorption (TSA). Collaborating in an EPSRC-funded project with Heriot-Watt 

University, where hydrotalcite-based adsorbents are being synthesised, and Sheffield University, where 

modelling is being undertaken, Newcastle University is examining the intensification of CC using a TSA-

based process involving swirling or toroidal fluidized beds. As well as improving adsorption, it is believed 

that recovered waste heat could be used for desorption using a similar intensified technology. This paper 

discusses the potential sources of CO2 that are being addressed, and how they will be integrated with the 

capture and desorption processes where fluidization will be used for the adsorption process. It also describes 

preliminary work on fluidization of the particles using additive-manufactured miniaturized fluid beds.  
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Nomenclature 

dp Average diameter of adsorbent particle (m) 

hmax Maximum heat transfer coefficient (W.m-2.K-1) 

kg Thermal conductivity of fluidizing gas (W.m-1.K-1) 

 

Greek Letters 

ρp Adsorbent particle density (kg.m-3) 

ρsb Bulk density of the adsorbent particle bed (kg.m-3) 

 

Abbreviations 

CC  Carbon Capture 

EPSRC  Engineering and Physical Sciences Research Council 

EU  European Union 

IPCC  Intergovernmental Panel on Climate Change 

MEA  Monoethanolamine 

PSA  Pressure Swing Adsorption 

TSA  Temperature Swing Adsorption 
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1. Introduction 

Industrial processes have historically been prolific emitters of atmospheric pollutants, and while the situation 

has improved significantly since the middle of the last Century, through environmental legislation and the 

need for energy efficiency to reduce costs, the growing awareness of CO2 emissions and their impact on 

global warming has led to industrial plants considering carbon capture. Most carbon capture discussion has 

centred on power generation using fossil fuels, but with industrial process CO2 emissions in the European 

Union accounting for 25% of the total, action is needed to address this problem. The EU has committed to 

three targets for 2020. The first is to reduce emissions by 20% on 1990 levels. The second is to provide 20% 

of its total energy from renewables. The third is to increase energy efficiency by 20% from 2007 levels. EU 

leaders have also endorsed an 80–95% reduction in emissions by 2050 [1]. 

 

It has been estimated that 25% of the total EU CO2 emissions are from industry, and while improved energy 

efficiency and process integration continues to play a role in minimizing these, it is carbon capture (CC) that 

in future will play the major role in mitigation, unless/until nuclear energy and/or a range of renewable 

technologies take over from fossil fuels. As in power stations, CC is likely to become a necessary addition to 

existing industrial processes that are deemed to be significant emitters of CO2. An important question that 

industry is trying to address is the correct choice of CC technology to adopt. 

  

Probably the greatest amount of effort to date, certainly in the case of power plant emissions control, has 

been expended on liquid absorption-based systems, the most common absorbent being MEA 

(monoethanolamine). Amines degrade over time and can react with impurities in the gas stream to produce 

toxic substances that might be lost to the atmosphere. Work at CSIRO in Australia [2] is attempting to 

quantify the loss of MEA due to oxidative degradation, and each of these mechanisms increase the need to 

replenish MEA in the systems – a costly process. 

 

Attempts to reduce the physical impact and cost of absorption systems for CC have concentrated upon 

intensifying the ab- and desorption processes using high gravity fields in a rotating packed bed [3]. An 

alternative CC method is to use gas-solid adsorption, where the CO2 is adsorbed onto a solid. The solid is 

normally in the form of particles of adsorbent, on a fixed bed. As with absorption, regeneration is required, 

and typically a single bed is employed to adsorb CO2 while regeneration and removal of the CO2 takes place 

in the second bed – carried out by pressure swing adsorption (PSA) [4] or temperature swing adsorption 

(TSA).  

 

Collaborating in an EPSRC-funded project [5] with Heriot-Watt University, where hydrotalcite-based 

adsorbents are being synthesised, and Sheffield University, where modelling is being undertaken, Newcastle 

University is examining the intensification of CC using a TSA-based process involving swirling [6] or 

toroidal [7] fluidized beds. The raison d’être is based upon two observations: firstly, current state-of-the-art 

for reducing the energy demand for solvent regeneration has developed solid adsorbents (working capacity 

>3 mmol/g), where the required energy for adsorption can be 30–50% lower than that reported for absorption 

using MEA [8]. Secondly, and in contrast to CC for power generation, significant gains can be made in the 

area of energy efficiency and sorbent regeneration by recovering waste heat in industrial processes. 

Newcastle University has identified the primary CO2 sources in three key industrial sectors (Cement, Iron & 

Steel and Refineries) where there also exists substantial waste heat streams that potentially could be used for 

sorbent regeneration. 

 

Heat transfer in static beds of adsorbent is largely ineffective and both ad- and desorption can be time-

consuming. In order to enhance heat (and mass) transfer, we are measuring the performance of adsorbents in, 

initially, micro-fluidized beds that are made by additive manufacturing on site, starting with a circulating 

fluidized bed, then moving on to a Swirling Fluidized Bed or Toroidal Fluidized Bed-type unit (see Section 

3, where a Torbed unit, a commercially available variant, is shown), culminating in a pilot plant. As well as 

adsorbing, we are examining configurations that will connect the first bed to a desorber that will be linked to 

the adsorber bed to effect a continuous regeneration process (as done in absorption). This may mirror the 

‘racetrack’ [9,48] that was proposed for heat recovery – a role that may aid the regeneration of the adsorbent 

particles. 
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In this paper we discuss the industrial heat sources that may be treated by adsorption to effectively remove 

CO2, before describing the adsorption/desorption technologies that are being studied. Data are given on the 

experimental programme and the use of additive manufacturing to produce prototype fluidized bed 

configurations that can be readily applied as adsorbers. 

 

2. Industrial Sources of CO2 

As briefly discussed in the Introduction, industrial processes account for a large proportion (typically 25%) 

of CO2 emissions in the European Union. It is also rather important to address these sources, as well as those 

from power generation plants, because unlike the increasing trend seen with the latter, renewables are 

unlikely to replace fossil fuels in major industries in the foreseeable future. Of the industrial processes, the 

most important ones to address are cement production, iron and steel production, oil refining, natural gas 

processing, and metals production [10,11]. Data from the IPCC report on the major emitters (excluding 

natural gas processing) are shown in the diagram in Figure 1. 

 

 
Figure 1. Global industrial sources of CO2 in 2010. Excluding indirect emissions (e.g. electricity generation) 

[1] 

 

In order to find suitable CO2 sources and to identify the availability of waste heat for adsorbent regeneration, 

the cement, chemicals and metals production (specifically iron and steel) were studied as to their suitability. 

In all cases a primary source of CO2 was identified which could (or should) be targeted for capture in this 

project. However, only in the cement and iron/steel industries does there appear to be an opportunity for 

waste-heat integrated regeneration of capture sorbents by TSA, as comprehensive waste-heat integration is 

already employed in the refineries sector. Therefore, the target sectors were defined as iron & steel and 

cement, and no further analysis was carried out for the refineries sector. (It should be noted that the 

temperature of waste heat was critical - the data based upon the analysis of the authors in this respect, that 

led to the rejection of oil refining were verified by data in [12], the comprehensive study by Element Energy, 

who extensively studied the potential for waste heat recovery in oil refineries and found the maximum heat 

source temperature to be 150°C). 

 

The two target carbon sources have similarities in composition, summarised as follows: 

 

 CO2 concentration in the range 20–28mol%. Hence, any sorbents synthesised in the project should 

be tested for CO2 uptake in streams of this concentration. 

 Absolute humidity in the range of 7–11mol%. Hence, any sorbents synthesised in the project should 

be designed to be able to withstand this degree of humidity (and tested to prove such credentials). 

Further, it will be important to test the effect of this humidity on fluidization of the particles, [13]. If 
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this humidity is found to be a problem for either of the reasons noted, then a dehumidification step 

will have to be included in the overall process design. 

 CO concentration of 0%. Hence, this is not a concern. 

 Significant SOx and NOx concentrations. Hence, the sorbents synthesised in this project should be 

designed to be able to withstand the presence of SOx and NOx (and tested to prove such credentials). 

If this is found to be problematic, then a scrubbing step must be included in the overall process 

design. Schneider [14] investigated carbon capture in the cement industry using an amine absorption 

process and found that the capital cost of scrubbers to pre-clean the stack gas would be ~7% of the 

total capital of the project. Hence, the cost is likely to be insignificant compared to that of the CO2 

capture and compression process. It is assumed that the economics would be similar for the steel 

industry power plant stack gas. 

 Both sources are at atmospheric pressure. This suggests that TSA may be the preferred regeneration 

strategy. 

One significant difference between the two CO2 sources is the temperature; 80–180°C in the cement industry 

stack gas, and 300oC in the iron/steel power plant stack (see Table 1). Here, it is proposed that the target 

temperature is set to a maximum of 180°C based on the following rationale: 

 

 It is considered easier to design for one temperature carbon source than for multiple sources. 

 A pre-cooling step in the iron/steel industry case would be easy to design and include; this excess 

heat could also be used for pre-heating the regeneration process prior to TSA through heat 

integration. 

 This range should still allow chemisorption of CO2 onto the sorbents; it being believed that CO2 

uptake would be significantly higher under chemisorption than physisorption, and that the 

temperature at which chemisorption is initiated is in the range 20–200°C. 

 

Table 1. Summary of the CO2 source data for the two selected industrial sectors 

Sector Cement Iron & Steel 

CO2 Source Stack Gas Power Plant Stack 

Pressure (kPa) 101.3 101.3 

Temperature (°C) 80–180  300 

Composition 

CO2 (mol%) 19–22 23–28  

N2 + Air (mol%) 67–68 68 

O2 (mol%) 2–4  1 

H2O (mol%) 7–11 8 

CO (mol%) 0 0 

SOx (ppm) 60 >200 

NOx (ppm) 200–3000  >200 

 

The flow rate of the “Power Plant Stack” gas from the Iron/Steel industry is known to be 400 m3/s for a 

typical plant that produces 5 million tonnes of steel per year [15]. The flow rate of the cement industry 

“Stack gas” is not known, though it can be inferred as follows. The carbon generated per tonne of clinker is 

800 kg/tonne of clinker. This is excluding indirect emissions (i.e. this is the amount emitted from the stack 

gas itself). Conversion of mol% to mass% (assuming mass of CO2, NOx and SOx are negligible) is achieved 

in Table 2: 

 

Table 2. Conversion of moles per 1 mole stack gas (mol%) to mass% 

 CO2 N2 O2 H2O TOTAL 

Moles per 1 mole gas (mol) 0.22 0.67 0.02 0.09 1 

Molar mass (g/mol) 44 28 32 18 - 

Grams per 1 mole gas (g) 0.005 0.024 0.00063 0.005 0.035 

mass% 14.4 69.3 1.8 14.4 - 
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The 800 kg of carbon per tonne of clinker corresponds to 14.4 mass% of the total flow rate; thus, the total 

flow rate of the stack gas can be calculated as 5556 kg/tonne (clinker). This corresponds to a volumetric flow 

rate of 4790 m3/tonne (clinker). In the UK, recent (2014) data suggest that typical cement production is 10 

million tonnes per annum, spread across 13 sites [16]. Hence, the average UK cement works produces 

770,000 tonnes of cement per annum. Based upon these production data and an assumption of 8000 

operational hours per year, one can estimate typical cement production rates at a UK cement plant to be 97 

tonne/h, or 27 kg/s. This corresponds to a stack gas mass flow rate of 150 kg/s, and stack gas volumetric flow 

rate of 129 m3/s. The mass flow of CO2 in the stack gas is 21.6 kg/s. The flow rate of CO2 in the iron and 

steel industry power plant stack is calculated using a similar methodology; the total flow rate of 400 m3/s 

gives a mass flow of CO2 of 71 kg/s. A summary of the data for the “primary” heat sources identified in each 

industry is shown in Table 3 below. 

 

Table 3. Summary of primary heat source data for each sector 

Sector Cement Iron & Steel 

Stream Cooler Exhaust Basic Oxygen Furnace Off-Gas 

Phase Gas Gas 

Flow Rate1 (kg/kg solid) 1.42 0.30 

Specific Heat Capacity2 (kJ/kg.K) 1.0 1.0 

Temperature (°C) 400 1700 

Enthalpy (kJ/kg solid) 568 508 

 

The heat load of each source is calculated by multiplying the enthalpy (kJ/kg) by the production rate (kg/s). 

For the cement industry, the average production rate of cement is estimated as 27 kg/s. For the steel industry, 

the carbon source data is based on a typical UK integrated process site with an annual production of 

5,000,000 tonne/year. Assuming continuous operation and 8000 hours per year of plant time, the average 

production rate is 174 kg/s of steel. Therefore, the waste heat loads in the cement industry “cooler exhaust” 

and iron and steel industry “basic oxygen furnace (BOF) off-gas” are calculated to be 15.3 MW and 88.4 

MW respectively. 

A simplified dataset for the two selected sectors is summarised in Table 4. This allows one to state the 

problem as: “to capture w kg/s of carbon in a stream at x oC and regenerate using y MW of waste heat at z 
oC”. However, stream impurities (previously discussed) and concentrations must also be considered during 

sorbent design and synthesis. Both streams for capture and regeneration contain impurities in the form of 

gases and particulates that must be taken into account in the system design. 

 

Table 4. Dataset for the Cement and Iron and Steel Sector CO2 Capture 

 Cement Iron & Steel 

CO2 Source Name Stack Gas Power Plant Stack 

CO2 Source Temperature (°C) 180 300 

CO2 Source Total Volumetric Flow Rate (m3/s) 129 400 

CO2 Source Total Mass Flow Rate (kg/s) 150 464 

CO2 Component Mass Flow Rate (kg/s) 21.6 71 

Heat Source Cooler Exhaust BOF off-gas 

Heat Source Temperature (°C) 400 1700 

Heat Source Load (MW) 15.3 88.4 

Heat available per kg CO2 (MJ/kg) 0.71 1.25 

Max. Temperature Swing (°C)  

(Assuming adsorption temperature of 180°C) 
220 1520 

 

3. Tailoring Hydrotalcites for Industry, and Hydrotalcite Quantity 

Hydrotalcites are basic clay-like materials that exhibit modest CO2 capacities; typically around 1 mmol/g at 

temperatures of 200–500 °C. Nonetheless, hydrotalcites have been identified as a suitable candidate for 

carbon capture from hot and wet effluent streams because they are thermally stable, relatively cheap to 

produce, exhibit fast sorption kinetics and possess high CO2 selectivities, even in the presence of water. 

Hydrotalcites are layered doubled hydroxides (LDHs) comprising alternative positively charged layers of 
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metal oxides and interlayers containing water and anions. The general structure of LDHs is [M2+
1-

xM3+
x(OH)2]x+[An-

x/n.yH2O], where M2+ and M3+ are the divalent (e.g. Mg2+, Ni2+, Zn2+, etc.) and trivalent 

(e.g. Al3+, Ga3+, Mn3+, Y3+, Fe3+, etc.) metal cations contained within brucite-like sheets and An- is a charge 

compensating anion (e.g. CO3
2-, Cl-, SO4

2-, etc.) located in the interlayer space (Figure 2). Hydrotalcites 

typically contain Mg2+, Al3+ and CO3
2-, with an Mg/Al ratio of ~3 as the de-facto standard [17].  

 

 
Figure 2. Basic structure of hydrotalcites [18] 

 

Hydrotalcites adsorb CO2 through physisorption and chemisorption. Importantly, their performance can be 

tailored towards the target industrial CO2 source conditions using a number of methods. For instance, CO2 

uptake capacities as high as 9.27 mmol/g were reported by adjusting the ratio of Mg/Al from 3 to 30 [19]. 

For comparison, the capacity of the more established MEA absorbent is around 0.174 mol CO2/mol MEA 

after 30 min of contact [20], equivalent to 2.85 mmol/g. Increased surface basicity is also known to promote 

higher affinity and selective binding of the acidic CO2. The basicity can be tuned using the calcination 

temperature, or by impregnating with elements that increase basicity such as K2CO3 [21]. Larger anions with 

higher charges also increase the CO2 capacity by increasing the interlayer spacing/void space; CO3
2- has been 

found to produce high CO2 capacities, whilst the addition of NaNO3 to the interlayer also positively 

influences the CO2 capacity [21]. Other modifications such as doping with rare earth elements [22], 

impregnating with alkali metals (such as K+, Cs+, Na+, etc.) [23] and changing the cations/anions [24,25] are 

described. Finally, the synthesis conditions, such as pH [25] and aging process (e.g. conventional heating, 

microwave heating, etc. [26,27], have been used to modify uptake behaviour. 

 

As a preliminary estimate, using the 9.27 mmol/g capacity quoted in the literature [19], 53.0 and 174.1 kg/s 

of hydrotalcite would be needed to capture 100% of the CO2 from the cement and iron/steel industries 

respectively based on the data reported in Table 4. Assuming a 5 min cycle time, this corresponds to total 

loads of 15.9 tonnes and 52.2 tonnes of hydrotalcite sorbent. The distribution of solids between the capture 

and regeneration units will depend on the specific adsorption and desorption kinetics. The hydrotalcite 

quantity required for complete CO2 capture can be decreased by increasing the cyclic load capacity of the 

hydrotalcite, and/or improving the adsorption and desorption kinetics. This is currently being investigated by 

Heriot-Watt University using the methods described above, with the additional goal to optimise their 

synthesis and scale-up. The various synthesis routes currently being explored to optimise the hydrotalcutes to 

the conditions shown in Table 4 include: (a) co-hydration, (b) amide hydrolysis, (c) co-precipitation, (d) 

post-synthesis modification and (e) in-situ generation of clay-supported mixed metal oxides. At the present 

stage in the project it is not possible to evaluate the efficiency of the proposed CO2 capture technology. 

However, the efficiency will be evaluated in the final work package, which will also deliver the whole 

system integration, life cycle assessment, and techno-economic assessment.  
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4. Intensification of Adsorption using a Toroidal Fluidized Bed 

4.1 Adsorption  

Adsorption using solid sorbents offers several advantages compared to liquid-based absorption. From an 

engineering perspective, advantages include eliminated liquid waste streams, simple disposal routes for 

benign solids waste and a wide range of compatible operating temperatures [10]. Additionally, solid 

adsorbents are not volatile, and can avoid the large energy penalties associated with the regeneration of 

liquid absorbents due to the requirement to evaporate water in the stripper [28]. From a materials 

perspective, solid sorbents possess higher cyclic CO2 capacities per unit weight than liquid absorbents and 

the chemistries of solid sorbents can be more easily tuned [29].  

 

Adsorption technologies are broadly classified as fixed or moving. Fixed bed adsorption typically involves 

the use of packed beds containing either pelletized sorbents (in a random arrangement) or structured sorbents 

(created by using a binding agent or impregnating the sorbent in a substrate). These packed beds can be 

configured as single vessels, or used in simulated moving bed or rotating arrangements [30]. Moving 

adsorption systems are any system that involves the transport of powdered/pelletized sorbents between 

different vessels for adsorption/regeneration; examples include moving beds and fluidized beds. The 

advantages and challenges of fixed and moving adsorption are summarised in Table 5. 

 

Table 5. Advantages and challenges of fixed and moving bed adsorption [10,29] 

 Fixed Bed Moving Bed 

Advantages  Low sorbent degradation/attrition rates 

 Controllable pressure drop (using 

structured packings) 

 Continuous (steady-state) operation 

 Full utilisation of the particle bed 

 Thermal mass of equipment can be 

ignored 

 Online sorbent replacement/treatment 

 Simpler heat transfer  

Challenges  Non-steady state operation 

 Only a small section of the bed is 

actively involved in adsorption at any 

one time (mass transfer zone) 

 Heat transfer must be designed to avoid 

sorbent overheating (via the release of 

heat of adsorption) and avoid energy 

penalties associated with the loss of 

liberated heat 

 Dead-space volumes 

 Enhanced sorbent attrition 

 Non-uniform residence times 

 Operation and control 

 

The total cost for implementing adsorptive CO2 capture is driven by both the system size and operating cost 

[29]. The size of the adsorber is defined according to the cycle time (defined as CO2 uptake per cycle per unit 

volume of material) and the desired CO2 capture duty. The cyclic capacity is mainly governed by the choice 

of sorbent material, but could also be influenced by the design of the adsorber itself. For instance, a fluidized 

bed might necessitate a larger particle diameter than a packed bed to avoid elutriation, which would 

introduce additional mass transfer resistances. MacDowell et al. [30] describe the main challenges for 

selecting solid sorbents for industrial adsorption via drop-off in cyclic capacity over time due to sintering, 

attrition and chemical deactivation. The operating cost is principally affected by the energy requirement of 

the regeneration process, but should also consider any energy penalties associated with modifications to the 

process that result from the addition of a carbon capture system (e.g. loss of delivered power from a power 

station). An intensified adsorber system must therefore not require extensive modification of the sorbent 

material (e.g. agglomeration to increase particle size) and should be easily retrofitted to the existing process 

without requiring substantial alteration. 

 

Temperature swing adsorption (TSA) is of interest for this project because it is compatible with the direct 

utilisation of waste heat from the process of interest; suitable waste heat sources have been identified in both 
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the cement and iron/steel processes (as summarised in Table 3). Although pressure swing adsorption (PSA) 

is usually preferred because it is much faster than TSA, vacuum swing adsorption (VSA) would be necessary 

to avoid the need to pressurise the flue gas prior to adsorption. This would require multi-stage vacuum units 

to achieve the low pressures needed for regeneration (<5 kPa), increasing the cost/power requirements [28]. 

Another development is rapid temperature swing adsorption (RTSA). For example, Lively et al. [31] 

describe the use of hollow fibre adsorbents that contain an impermeable core that can incorporate cooling or 

heating agents for more efficient adsorption and rapid regeneration respectively. Although elevated attrition 

would be likely, a fluidized bed system would be theoretically smaller because of the lower inventory of 

material (all of the fluidized bed would be actively involved in adsorption). 

 

4.2 Toroidal Fluidized Bed Concept 

In this project, it is proposed that a toroidal fluidized bed (the commercially-available unit being called the 

Torbed) can deliver a new approach for realising intensified adsorption using TSA. The toroidal fluidized 

bed, also referred to as the swirling fluidized bed (SFB) or vortexing fluidized bed (VFB) in the literature, 

involves fluidising a particle bed using a swirling gas stream generated using either an angled blade 

distributor or tangential inlet gas stream. The two main configurations of the angled blade design available 

from Torftech, the manufacturer of the Torbed variant, are the Compact Bed Reactor (CBR) and Expanded 

Bed Reactor (EBR), whose schematics are shown in Figure 3.  

 

The Torbed and other similar concepts use inclined blades to impart tangential motion to the fluidising gas. 

The vertical velocity component provides fluidization, while the horizontal velocity component produces 

swirling motion around the annulus. Entrainment of the particles is minimised because the majority of the 

gas stream momentum is dissipated at the base of the bed in the radial and tangential directions, while the 

central cone results in an increasing cross-sectional area moving away from the distributor. This allows 

smaller particle sizes to be “fluidisable” compared to conventional fluidized beds. These smaller particles 

present smaller thermal masses, allowing for more rapid heating and cooling, and decreased internal 

diffusion pathlengths leading to intensified mass transfer. Energy dissipation by the distributor also results in 

high amounts of turbulence in the bed, causing thinning of the boundary layers around the particles leading 

to further intensification of heat and mass transfer [32]. 
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Figure 3. Schematics of the Torbed processes | (a) Compact Bed Reactor (CBR), and (b) Expanded Bed 

Reactor (EBR) – reproduced from Torftech literature 

 

The CBR is a shallow bed design that uses inclined blades to impart tangential motion to the fluidising gas. 

The CBR generates a lower pressure drop across the bed compared to conventional fluidized beds, and is 

advantageous for short retention time processes (order of minutes and less) because of the small bed mass 

[33]. The EBR alternatively promotes both axial circulation of the particles at the periphery of the vessel and 

swirling around the annulus. This is achieved by using a tapered section between the distributor and outer 

wall such that cyclonic motion is also present. Here, particles are initially entrained by the process gas, 

resulting in them rising through the centre of the reactor. Then, due to centrifugal forces generated by their 

swirling motion, the particles move outwards towards the edge of the vessel before returning to the base to 

be entrained. The EBR is therefore a competitor to the circulating fluidized bed (CFB). Intensification is 

achieved in the EBR through enhanced mixing, hybridisation (integral reaction and cyclonic separation) and 

decreased reactor size to achieve a particular particle retention time.  

 

The flow regimes of Swirling Fluidized Beds have been described according to both the pressure drop [6] 

and behaviour of the particle bed [34]. Design equations/models have also been proposed for the minimum 

swirling fluidization velocity [35,36,37], gas pressure drop [34,35] and transport velocity [35,37].  

 

4.3 Precedent for Industrial Carbon Capture and SWOT 

Laboratory scale applications of swirling fluidized beds have also been investigated reported by Kuprianov 

et al. [38], Zhu and Lee [39], McQueen [40], Sundaram and Sudhakar [41], Dodson et al. [42], Farrell [43], 

Lee et al. [44] and Dodson [45]. A list of industrial case studies that have adopted the Torbed technology has 

also been compiled by Groszek and Laughlin [32]. Some of the main features of SFBs observed in these 

applications that are relevant to carbon capture include: low specific energy consumption, precise 

temperature control, isothermal operation, rapid heat/mass transfer, compact system, low pressure drop, low 

particle elutriation, processing of a wide range of particle sizes, independent adjustment of gas and solid 

residence times and uniform particle residence times.  
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Regarding scalability, there is precedent for handling very high gas flow rates. For example, one of the 

industrial case studies described by Groszek and Laughlin [32] involved the removal of hydrogen fluoride 

from the exhaust gases of an aluminium smelter using the feed alumina material as a scrubbing agent. 

Around 1990, Comalco Aluminium Ltd installed 13 Torbed® reactors (6 m diameter) that could each treat 

380,000 m3/h of gas using a single pass of the gas stream and alumina sorbent particles, producing HF and 

particulate emissions of 1 mg/Nm3. For comparison, the respective volumetric flow rates of the target CO2 

sources from the cement and iron/steel sectors are 129 m3/s and 400 m3/s, or 464,400 m3/h and 1,440,000 

m3/h, well within the total capacity of the established Comalco installation.   

 

Table 6 shows the results of a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis applied to 

the Swirling Fluidized Bed (SFB) technology for the purpose of carbon capture based on the findings and 

observations of the aforementioned applications. 

 

 

Table 6. SWOT Analysis Applied to a Swirling Fluidized Bed in the Context of CO2 Capture 

STRENGTHS WEAKNESSES 

 Of the SFB concepts being studied, the Torbed® 

is already commercialized, and there are 

numerous examples of the technology in various 

industrial applications 

 High specific throughputs 

 High impact velocities and enhanced shear 

around the particles promote intensified heat and 

mass transfer rates 

 Lower pressure drop compared to standard 

fluidized bed technologies. High temperature 

process gas can therefore be recirculated to 

recoup energy savings 

 Shallow particle beds allow rapid (real-time) 

process control 

 The Torftech EBR can, it is believed, provide 

higher particle retention times than their CFB 

due to the longer circulation paths generated by 

vertical swirling motion 

 Only a single commercial supplier of the 

technology exists (Torftech Ltd.) 

 Lack of ‘open source’/standardised design 

methodology 

 Lack of a robust scale-up methodology (typically 

requires pilot scale experimentation for proofs-

of-concept) 

 Likely to see enhanced attrition of the adsorbent 

particles 

OPPORTUNITIES THREATS 

 Fine particles (<50 μm) can be handled 

compared to conventional fluidized beds, 

enabling higher adsorbent surface area to volume 

ratios to be used 

 Decoupling of the gas mass flow rate (or 

volumetric flow rate) and fluidization velocity 

might help alleviate the issue discussed in 

Section 4 

 The large surface area to bed volume ratio of the 

distributor blades might provide a route for 

achieving rapid heat transfer to the particle bed 

 The EBR would enable integrated adsorption and 

cyclonic separation of the particles 

 Enhanced radial mixing could allow heat 

exchange between the outer wall and the particle 

bed 

 Amine-based absorption using intensified 

rotating packed beds (RPBs)  

 A continuing move away from fossil fuel 

combustion as an energy source 

 Ultra-Low Carbon Dioxide Steelmaking 

(ULCOS) 

 OxyFuel technology in the cement sector for 

carbon capture 
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4.4 Stage Configurations and Solids Transfer 

The efficiency of a continuous TSA-based adsorption/desorption process using fluidized beds for CO2 

capture is heavily dependent on the heat/mass transfer rates to the sorbent (discussed in Section 4.6), as well 

as the gas-solid contacting strategy. Ideally, countercurrent contact of the gas and sorbent is required to 

maintain the driving force for CO2 uptake, necessitating the use of multistage fluidized bed reactor 

models/designs [46]. Pirklbauer et al. [46] conducted a detailed thermodynamic analysis of the potential 

stage configurations for a dual fluidized bed system containing an amine-based sorbent and showed that the 

total energy demand (measured in MJ/kgCO2) decreased as both the number of adsorber and desorber stages 

increased. They also showed that lean-rich sorbent heat exchangers become more effective at reducing the 

energy demand at higher numbers of adsorber and desorber stages. However, the true optimum configuration 

requires additional consideration of the capital cost; additional sorption stages and sorbent heat exchangers 

decreases the OPEX at the expense of CAPEX. This compromise between OPEX and CAPEX may be more 

sensitive in the toroidal fluidized bed because of the enhanced heat/mass transfer and increased cost of the 

angled blade distributor compared to a conventional distributor.  

 

For continuous adsorption and desorption using fluidized beds, circulation of the sorbent between beds is 

achieved by operating the beds in the pneumatic transport regime, where the gas velocity is sufficient to 

entrain the particles. The gas and particles can be subsequently separated in a cyclone, allowing the captured 

sorbent to be delivered to the other bed [47], creating a sorbent circuit. The individual fluidized bed stages 

themselves can be separated using finely perforated plates, with movement of the particles between stages 

facilitated by downcomers [48].   

 

It has been shown that the pneumatic transport gas velocity in swirling/toroidal fluidized beds is substantially 

higher than in conventional fluidized beds [37] because the gas momentum is mainly directed in the radial 

and tangential direction. Nevertheless, these beds can still be configured to transport and separate the solids 

using the same pneumatic transport/cyclone separator approach as the circulating fluidized bed 

[37,38,39,45]. The main difference is the toroidal fluidized bed also promotes additional swirling motion 

during the particle rise, which increases the contact time between the gas and solid phases whilst delivering 

better heat/mass transfer. Regarding inter-stage sorbent transfer, the solid particles can be injected toward the 

centre of the bed and extracted at the outer periphery because of the outward motion of the particles 

generated by centrifugal force. This configuration is mentioned in the list of case studies described by 

Groszek and Laughlin [32], and a sketch of the concept is included in Figure 4.  

 

 
Figure 4. Sketch of particle extraction from the outer periphery of a toroidal fluidized bed [32, 42] 
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4.5 Current Progress on Heat Transfer in Toroidal Fluidized Beds 

Initially, Newey and Howard [9] investigated the use of a partitioned oval-shaped fluidized bed as a gas-to-

gas heat exchanger that used angled distributor blades to promote the flow of a particle bed around a 

complete circuit, akin to a form of rotating regenerator (known as the ‘racetrack’). Described in a Patent 

[49], the particles acted as an intermediary between the hot and cold gas streams fed on to opposite sides of 

the partition. The authors characterised the heat transfer with an effectiveness factor defined as the ratio of 

actual heat transfer rate between the streams to the heat transfer rate obtainable from an exchanger with 

perfect parallel-flow under the same inlet conditions. The effectiveness was highest for shallower beds with 

low hot stream gas velocities and high cold stream gas velocities. Cross-contamination of the hot and cold 

streams could purportedly be controlled by adjusting the partition gap size (used for exchanging solids 

between the hot and cold side) and by applying a pressure differential of 600 Pa between the hot and cold 

side freeboard regions. However, the cross-leakage of 10–40% would make this configuration in its current 

form unsuitable for carbon capture and sorbent regeneration. 

 

Lu et al. [50] later determined the heat transfer coefficients between submerged heating cylinders and the 

particle bed in a rectangular SFB. Their rectangular chamber had a width, length and height of 457 mm, 584 

mm and 1192 mm respectively. Fluidization was achieved via vertical gas distributors placed below the bed, 

while 12 secondary air injection nozzles (three per corner) generated the swirling motion. Based on previous 

literature for fluidized beds, Lu et al. [50] showed that two simple correlations could reasonably predict the 

maximum value of the heat transfer coefficient between the bed and heaters (errors of <12%) for particle 

diameters of 0.359–0.718 mm (equation 1 [51]) and 0.18 mm (equation 2). In these equations, ρp is the 

particle density, kg is the gas thermal conductivity, dp is the particle diameter and ρsb is the bulk density of the 

bed. Similar to data in [6], Lu et al. [50] observed that h decreased at increasing heights above the 

distributor. They also noted that hmax occurred for gas velocities between 1.5–3 times the minimum 

fluidization velocity.  

 

ℎ𝑚𝑎𝑥 = 35.8 𝜌𝑝
0.2𝑘𝑔

0.6𝑑𝑝
−0.36 1 

ℎ𝑚𝑎𝑥 = 120.8 ln (7.05 × 10−6
𝜌𝑠𝑏

𝑑𝑝
) 2 

 

4.6 Potential Heat Transfer Solutions 

Heat transfer to the particle bed is critical for the design of the regeneration system. However, as shown in 

the previous section, there are very few published results concerning the heat transfer characteristics of the 

Torbed (or other SFB variants), which might hinder the design of a large-scale SFB carbon capture process. 

An additional challenge is the need to minimise any energy penalties associated with the regeneration of the 

sorbent. For instance, although hybrid fluidized bed drying technologies analogous to sorbent regeneration 

exist (e.g. microwaves, ultrasonication and infrared lamps) [84] (Sivakumar et al., 2016), these require 

additional energy input that would increase the parasitic load of the carbon capture system. The three main 

practical approaches for delivering thermal energy to the particles that are compatible with the waste heat 

sources identified in Table 3 are via: (1) thin-walled heat transfer surfaces immersed in the bed, (2) wall-bed 

heat transfer, and (3) direct gas-solid heat exchange, whose characteristics are discussed below. 

 

As identified by Ramshaw et al. [52], the heat transfer coefficient around a tube in a gas stream can be 

increased by an order of magnitude using a fluidized bed (compared to gas flow alone) because the particles 

facilitate the transport of sensible heat directly from the boundary layer. However, Botterill et al. [53] have 

also shown that there is a significant heat transfer performance deficiency at the top and bottom of circular 

tubes submerged in conventional fluidized beds. This is because above the tube there exists a de-fluidized 

particle zone, whilst below the tube there is a particle-free zone. In the SFB heat transfer study conducted by 

Lu et al. [50], the circumferential heat transfer characteristics of the submerged heaters was not measured. 

Nevertheless, it can be inferred from Botterill et al.’s observations [53] that a circular tube will presumably 

produce a de-fluidized wake that will be orientated according to the angle of the swirling gas. Further, there 

is a limit to the maximum heat transfer rate using circular tube bundles because the particle motion will 

eventually become hindered if the tube packing density is too high [54]. To eliminate the deficiency zones 

obtained with circular tubes, Ramshaw et al. [52] proposed the use of thin hollow slats that can be assembled 
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in a matrix array using simple support rods (Figure 5a). Thus, the same principle can be extended to the 

toroidal fluidized bed. Figure 5b shows a sketch of a theoretical arrangement to maximise heat transfer and 

minimise gas pressure drop and dead-zones, while Figure 5c shows a sketch of a potential multi-stage 

configuration using the same concept. Here, the angled slats would help to compensate for the loss of angular 

momentum from the gas-solid interaction, at the expense of higher pressure drop.  

 

 
Figure 5. (a) Sketch of a fluid bed heater matrix for use in shallow fluidized beds (adapted from [52,55]), (b) 

sketch of an angled hollow slat structure in a toroidal fluidized bed, (c) sketch of a countercurrent multi-

stage toroidal fluidized bed regenerator using immersed hollow slats 

 

In addition to transferring heat from immersed surfaces, the toroidal fluidized bed also presents an 

opportunity to transfer heat from the peripheral wall, via integrated heat exchangers, to the particles. Heat 

transfer between the exterior wall and the particles has been studied in conventional fluidized beds as a 

model system for understanding the wall-particle heat transfer dynamics [56,57]. Further, it has been shown 

that the temperature profile across the bulk particles in a wall-cooled fluidized bed is flat [58], implying 

sorbent regeneration could be uniform. However, steep thermal boundary layers are also observed in close 

proximities to the walls in conventional fluidized beds [58]. It is envisaged that these thermal gradients can 

be minimised in the toroidal fluidized bed to enable practical extraction of sensible heat from the wall 

because of the enhanced radial mixing. This is because the axial momentum of the particles is converted to 

radial and tangential momentum by the swirling gas phase [59]; the resulting centrifugal forces draw 

particles towards the outer wall to accelerate heat transfer in the wall region. Precedent for rapid heat transfer 

and uniform bed temperatures has been demonstrated in a number of swirling fluidized bed studies 

[60,61,62]. Wall-integrated heat exchangers would advantageously minimise disturbances to the particle 

mixing, and would be simpler/cheaper to construct than immersed heat transfer surfaces. However, the 

effectiveness might diminish for increasing bed diameters, meaning this approach might be better applied in 

combination with immersed heat transfer surfaces. 

 

Finally, the thermal energy for sorbent regeneration could be taken from the fluidization/sweep gas itself in a 

direct gas-solid heat exchange process, the main precedent being fluidized bed dryers, which are already 

established as an industrial application. This approach would involve convective/radiative heat transfer from 

the gas phase to the solid followed by subsequent conduction within the solid to supply the thermal energy 

required for sorbent regeneration. In conventional fluidized beds, the convective, radiative and conductive 

heat transfer mechanisms can be approximated as being separate and additive [63], though radiation will be 

negligible for the temperatures below 500 K for particle diameters around 500 μm [64]. The convective heat 

transfer coefficient is a function of the Archimedes and Prandtl numbers, and the overall heat transfer 

coefficient typically undergoes a maximum when increasing particle size [63]. This is because of the 

changing influences of conduction and convection. Although smaller particles produce smaller conductive 

thermal resistances, these fine particles (<10 μm) typically agglomerate and produce gas channelling that 

reduces the effectiveness of convection. One of the main benefits of toroidal fluidized beds in this regard is 

high gas velocities can be used without particle elutriation, meaning higher convective heat transfer 

coefficients could be attainable; a heat transfer coefficient as high as 8 kW/m2°C has been reported for 

vermiculite exfoliation [65]. Further, this method does not disturb the fluidization process, meaning the 

attrition rates will likely be smaller than the proposed configuration shown in Figure 5b. One potential pitfall 



 

- 14 - 

is whether the waste process gas (Table 3) is clean enough to be used directly in the fluidized bed; this may 

necessitate a preliminary gas-to-gas heat exchanger that will increase energy losses and therefore reduce the 

overall capture efficiency.  

 

Ultimately these concepts are speculative, and therefore require experimental validation in order to assess 

their feasibilities. Thus, it is highly recommended for future toroidal fluidized bed studies to focus on these 

heat transfer configurations. In particular, it is essential to produce reliable/robust correlations that describe 

the heat transfer rate from immersed surfaces, the walls and the fluidizing gas to the particles that can be 

used for design. Furthermore, careful consideration of the particle residence time distribution is required, 

because highly variable residence times would lead to non-uniform regeneration of the sorbents, which is 

one of the reported challenges of analogous continuous fluidized bed dryers [66]. 

 

5. Regenerating Bed Design and Heat Recovery Considerations 

The concept of using direct air-solid heat transfer is appealing because it minimises the complexity of the 

regeneration unit. However, it is highly unlikely that a fluidized bed (standard or toroidal) using nitrogen, or 

air, or other process gas as the fluidising gas will be used for regeneration of the sorbent as this will lead to a 

high degree of dilution of the CO2 desorbed from the sorbent because a similar volumetric flow rate to the 

adsorber would be needed to maintain fluidisation. Therefore, it is envisaged that the regenerating bed will 

be either a fixed or moving bed (low gas flow rates, high levels of concentration) or, alternatively, will make 

use of superheated steam as a sweep/fluidising gas. This would potentially allow the use of a fluidized bed 

with high transport rates (relative to fixed/moving beds). One potential problem with this idea is that the 

superheated steam may not be chemically inert to the sorbents synthesised during this project. However, 

Coenen et al. [67] report that the cycling working capacity of potassium-promoted hydrotalcites increases 

when using steam for regeneration, because steam is able to regenerate certain sites whereas nitrogen cannot. 

Additionally, Wood et al. [68], used superheated steam to regenerate hydrotalcite-type sorbents in a fixed 

bed regenerator suggesting that one could also use superheated steam to regenerate hydrotalcites in a 

fluidized bed configuration. Finally, in their thermodynamic analysis, Pirklbauer et al. [47] showed that 

superheated steam produced a lower energy penalty for regenerating an amine-functionalized solid sorbent 

compared to regeneration in a pure CO2 stream when using TSA. 

 

The means of recovering/providing heat to the regenerator for each idea is as follows: 

 

 Fixed/moving bed. It is envisaged that the main supply of heat to the bed will be via heat transfer tubes 

(or similar) submerged within the bed (similar to the designs discussed in Section 4.6). The relatively 

small gas flow to the sorbents will also be pre-heated. The heating medium for both the gas pre-heater 

and the heat transfer tubes will be process steam. Hence, a waste-heat boiler will be used to raise steam 

(using waste heat from heat source) that will then be used for regeneration. 

 Fluidized bed using superheated steam. The superheated steam will be used as the fluidising/sweep gas 

and the heating medium to the bed. In this scenario, the super-heat will provide the heat of desorption to 

the sorbent without any condensation. The CO2 will desorb into the steam sweep/fluidising gas and the 

steam will be condensed downstream of the bed, to produce a pure CO2 stream and saturated water. 

Hence, a waste heat boiler and super-heater will be required to recover waste heat from the heat source. 

It is envisaged that the steam will be relatively low pressure with a relatively high superheat (similar to 

that employed in superheated steam dryers which is often also generated using waste heat – see [69] for 

examples). Superheated steam has also been investigated in fluidized bed dryers [70]. 

In both cases, the primary means of waste heat recovery will be via a waste heat boiler that is a well-

established technology employed throughout the process industries. It is also worth mentioning that direct 

and indirect heating for regeneration is technically applicable to both fixed/moving beds and fluidized beds. 

However, direct heating of the moving bed with a sweep gas would necessitate a minimum flow rate to 

ensure a good heat transfer rate with the bed. This would dilute the captured CO2 resulting in poorer capture 

efficiency, meaning the use of indirect heating via heat transfer surfaces in the bed would be the preferred 

approach. 
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6. Proposed CO2 Capture Configurations 

6.1 Cement 

Cement is produced from calcium carbonate (CaCO3) via a three-stage process. First, the raw materials 

(limestone, aluminium oxides, silicon oxides and iron) are grinded and blended before being pre-heated in a 

suspension pre-heater using exhaust combustion gases from the rotary kiln. Here, the limestone undergoes its 

initial calcination. In some plants, a dedicated pre-calciner heated by exhaust gases from the kiln and a 

secondary burner is also used. Following pre-heating (and pre-calcination), the mixture of limestone and 

corrective additives enters a rotary kiln, where it undergoes further reduction to produce lime (CaO). The 

heat required for the reaction is supplied by combusting pulvarised coal (or another fuel) directly in the kiln 

[71]. The rotary kiln itself typically comprises four main stages: (i) dehydration (20–900°C), (ii) calcination 

(850–950°C), (iii) clinkerisation and partial melting (1200–1450°C), and (iv) cooling (1350–1200°C), to 

allow for crystallisation of calcium aluminate and calcium ferrite from the partial melt [72] The clinker 

emerging from the kiln is then cooled using air before being stored prior to distribution or cement 

preparation. The final cement product is obtained by combining and milling the clinker with gypsum and 

other mineral compounds.  

 

There are four different integrated process routes used for the production of cement, differentiated by the 

moisture content of the raw materials entering the kiln. These are the wet process, semi-wet process, semi-

dry process and dry process. These processes have respective fuel consumptions of 5000–7000 kJ/kg, 3500–

5000 kJ/kg, 3500–5000 kJ/kg and 2750–4000 kJ/kg of clinker [72]. Initially, cement production processes 

used water to create slurries to improve the homogenisation of the raw materials blend. However, the 

production of clinker has evolved towards the dry process, as technological developments have made it 

possible to produce homogeneous dry blends [72]. Over 90% of cement production operations in Europe 

employ the dry process [73]. Its main advantage is less waste heat associated with the dehydration of the raw 

materials.  

 

The rotary kiln is the single largest emitter of CO2, where CO2 is produced both as a combustion product 

(usually from coal) and from the calcination of limestone [71]. The flue gas produced by the kiln is often 

directed through the pre-calciner and suspension pre-heater before reaching the stack. Thus, any CO2 emitted 

during preliminary processing are also emitted from the same single source [73]. The total mass of emitted 

CO2 from this stack amounts to 0.8 tonne per tonne of clinker, based on a study of average emissions from 

the UK cement sector [75]. Thus, the stack is the obvious target for the development of the hydrotalcite 

adsorbents. 

 

Waste heat is abundantly available in cement plants, as there is a lack of heat sinks in a suitable temperature 

range for conventional waste heat recovery [76]. Khurana et al. [48] concluded that up to 35% of heat in a 

cement plant is lost as unrecovered waste. This is outlined in the Sankey diagram in Figure 6. These data 

were verified by a more recent investigation into industrial waste heat recovery by Element Energy et al. 

[12].  
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Figure 6. Sankey diagram for a typical cement plant [77] 

 

For this project, the waste heat provided by the cooler exhaust has been deemed to be the best option for the 

temperature swing regeneration process. This waste heat stream has a source temperature of 400°C [12], 

which would provide a 220–320°C temperature swing between the carbon source (stack gas) and heat source 

before any pre-cooling of the carbon source is considered. With 568 kJ of heat available per kg of clinker, 

this is the second-most abundant heat source, just 10% lower than the largest heat source (pre-heater exhaust) 

[12]. Importantly, the cooler exhaust is not integrated into the process like the pre-heater exhaust gas. This 

means it is not emitted via the common stack (main CO2 source), making it available for heat recovery. 

Although outside the scope of the present project, future work could also evaluate the potential of recovering 

heat from the pre-heater exhaust as well. This might be advantageous should the stack gas require cooling 

prior to carbon capture (e.g. depending on the sorbent requirement), because it would reduce the amount of 

cooling duty required.  

 

Figure 7 outlines the proposal of the present project to capture CO2 from the main stack of a cement plant 

employing the dry process with pre-calcination via a dual fluidized bed system. Here, regeneration of the 

sorbent is achieved using superheated steam (raised using the waste heat from the cooler exhaust). Following 

cooling and condensation of the steam, an almost pure stream of CO2 will be captured, avoiding the 

aforementioned dilution problem encountered with dual fluidized beds (see Section 4). Technical challenges 

to address with the Swirling Fluidized Bed reactor in this project are the potential cross-leakage of the gases 

between the two beds, sorbent attrition, and optimisation of the contacting strategy (balancing mixing 

intensity vs contact time).  
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Figure 7. CO2 capture from the stack gas produced in the dry-cement process with pre-calcination with 

sorbent regeneration achieved using superheated steam raised from the waste heat from the clinker cooler 

exhaust | adapted from the schematic of the dry process with pre-calcination reported by the IEA [72] 

 

6.2 Iron & Steel 

Iron and steel are produced from a combination of iron ore, limestone and coal in a three-step process: (i) 

raw materials preparation, (ii) iron making and (iii) steel making. The main routes for iron manufacture are 

via the blast furnace, smelt reduction or direct reduction, whilst the two main routes for steel are the basic 

oxygen furnace and electric arc furnace [78]. Carpenter [79] outlines these technologies in detail. For the 

purpose of this project, the integrated blast furnace-basic oxygen furnace route is considered. In the blast 

furnace, sintered iron ore pellets are reduced using carbon monoxide (created from the oxidation of coke) to 

form pig iron with 93–95% iron content; the limestone’s purpose is to remove sulphur and other impurities. 

In the basic oxygen furnace, the pig iron (along with scrap iron) is contacted with oxygen to reduce the 

carbon content to 1% and remove impurities [77]. This is followed by ladle metallurgy (addition of alloying 

elements such as chromium and nickel) and casting/rolling. 

 

Emission of CO2 from the iron and steel sector is complicated by the wide range of CO2 sources, some of 

which are already highly integrated in waste-heat recovery circuits, thereby shifting the points of emission. 

Off-gases are produced by the coke oven (COG), blast furnace (BFG) and basic oxygen furnace (BOFG). 

Approximately 70% of the COG is used in various unit operations for the production of iron and steel; ~15% 

is recycled back into the coke oven whilst a further ~15% is used for steam raising in the power plant [80]. 

The remainder of the 70% is presumably used to heat the sinter plant/lime kiln and pre-heat the air fed to the 

blast furnace. Surplus COG is usually flared or emitted directly to the atmosphere [81]. The BFG, containing 

17–25% CO2, is usually used as a fuel in both the blast furnace stove and coke oven, with the remainder used 

in the power plant for onsite steam and electricity generation [79]. Finally, the BOFG is still typically flared 

at many sites owing to its intermittent generation, variations in temperature and varying concentrations of 

CO (55–80%) and N2 (8–26%). Some producers of steel already capture and use the BOFG; however, the 

main challenge for recovering this waste heat via a retrofit are the high capital costs and difficulties emerging 

from the use of hot dirty gases [79,82].  

 

For the basis of this project, it is assumed that the preferred point of capture would be from the points of 

emission, therefore minimising disruption to the process and the complexity of the retrofitting operation. It is 

assumed that this will increase the attractiveness of the carbon capture solutions developed within this 

project. Based on data available in the literature [83], the power plant stack was subsequently identified as 

the target carbon dioxide source for development of the hydrotalcite adsorbents, as it is the largest point of 

emission and also the most potent source of CO2 (concentrations up to 28%). For this project, only gaseous 

waste heat sources are considered because the residual heat in the molten iron/steel (or other solid sources) 
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are assumed to present an insurmountable recovery challenge within the scope of this project. See Carpenter 

[79] for a brief discussion for the waste heat recovery from slag. The basic oxygen furnace (BOF) off-gas has 

been selected for this project as the primary heat source for sorbent regeneration because it presents the 

highest temperature and enthalpy [11] and has the least existing integration into the iron/steel process 

(compared to COG and BFG).  

 

Figure 8 presents a schematic of an integrated iron/steel mill with the proposed post-CO2 capture achieved 

via a dual fluidized bed system using superheated steam for sorbent regeneration (again to avoid the dilution 

problem outlined in Section 4). Here, the superheated steam is raised using the waste heat recovered from the 

BOF off-gas. The same technical challenges as identified in Section 5.1 must be considered. There is 

minimal scope to extend this concept to processes using the electric arc furnace (EAF) because this waste 

heat is typically already used for the pre-heating of scrap steel.  

 

 
Figure 8. CO2 capture from the power plant stack from an integrated iron/steel mill with sorbent 

regeneration achieved using superheated steam raised from the waste heat from the BOF off-gas (COG = 

Coke Oven Gas, BFG = Blast Furnace Gas, BOF = Basic Oxygen Furnace, BOFG = Basic Oxygen Furnace 

Gas) | based on the schematic for a conventional integrated steel mill reported by Ho et al. [78] 

 

7. Experimental Testing of the Concept 

The prospect for capturing CO2 from industrial sources (mainly cement and iron/steel) will be evaluated in 

this EPSRC collaboration through the implementation of four work packages: 

 

 WP1. Synthesis and screening of novel, tailored and low-cost hydrotalcites 

 WP2. Process intensification of a combined energy-efficient unit for capture 

 WP3. Process modelling and simulation of the adsorber and the carbon capture process 

 WP4. Whole system integration, technical, economic and environmental assessment of the proposed 

technology 

The bulk of the experiment work at Newcastle University is focussed on WP2, i.e. the development of an 

intensified unit for CO2 capture and sorbent regeneration. The main experimental objectives are (i) to install 

and optimise the use of a 3D printer to manufacture/assemble micro-scale testing rigs, (ii) investigate the 

hydrodynamics of novel micro-/mini-fluidized bed designs, (iii) screen the adsorption and desorption 

performance of different hydrotalcite materials in different fluidized bed configurations under operating 

conditions equivalent to industrial conditions, and (iv) commission the use of a pilot-test facility for the 

screening of hydrotalcite materials at larger scales (up to 100 kg/h). A brief overview of the present 

methodology is described below.  
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7.1 3D Printing (Additive Manufacturing) of Novel Mini-Fluidized Beds  

All milli/micro-scale fluidized beds and small scale swirling fluid bed  reactors are being fabricated via 

additive manufacturing using the stereolithographic (SLA) approach in a Form2 (FormLabs) 3D printer. 

Stereolithography involves the layer-by-layer construction of prototype parts through the 

photopolymerisation of a resin. The Form2 uses a 405 nm UV laser (140 μm spot size, 250 mW) to cure a 

transparent methyl acrylate based proprietary resin (FLGPCL02) comprising methyl acrylate monomers (55-

75% w/w), methyl acrylate oligomers (35-40% w/w) and photo-initiator additives (10-15% w/w). 

Construction of each layer involves the laser scanning quickly through the resin tank according to the shape 

defined by the corresponding slice through the geometry, adhering the new layer to the previous layer. The 

Form2 delivers a maximum XY (horizontal) resolution of 150 μm and Z-axis (vertical) resolutions of 25–100 

μm. Examples of novel fluidized bed designs currently being tested in this project are shown in Figure 9 

below. 

 

 
Figure 9. Novel 3D printed fluidized bed samples | (a) mini swirling gas distributor, (b) mini planar gas 

distributor (25×25 mm cross-section) with pressure measurement ports above and below the distributor 

 

7.2 Flow Regime Mapping of Mini-Scale Fluidized Beds 

The purpose of the hydrodynamics investigation is to produce a flow map that identifies the minimum 

fluidization, minimum bubbling and slugging velocities based on particle size, bed height, bed size, gas flow 

rate, etc. Producing such a flow map will allow the small-scale carbon capture experiments to be performed 

in a non-mixing limited regime to ensure the underlying kinetics are observed (slugging would likely be 

detrimental to mixing performance, and therefore CO2 uptake for example). The hydrodynamics 

investigation is being conducted in various scaled 3D printed fluidized beds. Characterization of the bed 

designs is achieved via high-speed imaging and pressure drop measurements. Details of the approach along 

with preliminary results are described below. 

 

The fluidized beds can be filled with either silica or glass beads (densities of 2.65 and 2.5 g/cm3 respectively) 

with particle diameters of 75–180 μm and bed heights ranging from 6–100 mm. Gas distributor channels are 

integrated into the beds and fitted with fine mesh screens (26 μm aperture) to support the static particle bed. 

Glass wool packed below the distributor also assists in the prevention of gas maldistribution. The fluidizing 

gas is compressed air regulated to 1 bar using an AW4000 regulator; the flow rate is controlled via a series of 

Omega float meters, ranging 0.4–4000 mL/min. High speed imaging of the fluidized beds is performed using 

a Basler acA1300-200uc camera (169 fps, 1.3 MP) fitted with a COSMICAR Television lens (12.5 mm, 

1:14), and is monitored via Pylon Viewer software. The bed is illuminated with an LED light panel and fibre 

optic directional lamp (Microlight 150). Custom pressure ports are also integrated into each printed bed at 

different positions around the distributor and gas exit (examples in Figure 6b). A Druck LP1000 series ultra-

low different pressure transducer (LPX1012-C1S-1) enables the pressure drop between any two of these 
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ports to be measured in the range of -1 to +1 mbar. A PicoScope system monitors the pressure transducer at 

its maximum response rate of 10 ms in order to capture the dynamics of emerging gas bubbles in the bed.  

 

Figure 10 shows several still image samples recorded from the high-speed camera in a 5×25 mm fluidized 

bed containing 93 μm silica particles. These images show the progression of more intense bubbling behavior 

as the gas velocity is increased. The range of flow rates in these images covers the optimal working range of 

the CO2 analyzer that will be used for in situ measurements during the hydrotalcite screening experiments 

(see Section 6.3).  

 

 
Figure 10. Snapshots of the bubbling fluidization of 93 μm silica particles (2.65 g/cm3, H/Dt = 4) by air in a 

3D printed fluidized bed (5×25 mm cross-section) 

 

7.3 Small-Scale CO2 Adsorption Tests using Hydrotalcites 

Small-scale CO2 capture experiments will take place in two stages. In stage 1, adsorption will be investigated 

in semi-batch operation in an optimized fluidized bed geometry in a suitable flow regime identified from the 

hydrodynamics investigation. Then in stage 2, both adsorption and regeneration of the sorbent will be studied 

simultaneously using a novel 3D printed circulating fluidized bed. These configurations are outlined 

schematically in Figure 11. 
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Figure 11 – Small scale CO2 capture experiment | (a) stage 1: adsorption only, (b) stage 2: adsorption and 

desorption 

 

A flue gas analogue will be created by mixing N2 and CO2 in the desired stoichiometry, with the flow fates 

rates controlled using similar Omega flow meters to the hydrodynamics investigation. To ensure the 

adsorption experiments are conducted at conditions matching the industrial processes (Table 1) an in-line 

heater and humidifier will be used. The fluidized bed for these experiments will be fabricated from either a 

high-temperature polymer blend available for the Form2 printer, or in stainless steel. As in the hydrodynamic 

experiments, a GE Druck LP1000 series pressure transducer (monitored with a PicoScope system) will be 

used to measure the pressure drop across the bed during the experiment. This measurement will be used to 

ensure the desired operating regime is maintained. An in-line cooler situated after the fluidized bed will be 

used to prepare exiting gas for the CO2 analyzer. The CO2 analyzer is a Vaisala CARBOCAP© Carbon 

Dioxide Module (GMM111), which is suitable for CO2 concentrations of up to 5%, 10% and 20% depending 

on the selected measurement range. The minimum, optimal and maximum flow rates for this detector are 200 

mL/min, 800 mL/min and 10,000 mL/min respectively. A second nitrogen cylinder will also be used to 

adjust the total flow rate entering the CO2 analyzer to ensure the minimum flow rate is maintained.  

 

For regeneration of the sorbent particles, a decision still has to be made as to which mode for desorption will 

be adopted. The options identified in Section 4 were fluidization in superheated steam or using a moving bed 

with internal heat exchanger. The option selected will have consequences for the design of the circulating 

fluidized bed system. However, the bulk of the sorbent regeneration rig will be the same, requiring an in-line 

heater capable of matching the target desorption temperature, pressure transducers, a sorbent filter, in-line 

cooler and second CO2 analyzer. If the superheated steam option is selected, a small-scale boiler will also be 

required. Alternatively, for the moving bed option, desorption will require just an N2 cylinder and additional 

rotameters.  

 



 

- 22 - 

8.  Conclusions and Future Work 

The capture of CO2 from exhaust gas streams is driven by the need to reduce greenhouse gas emissions that 

cause global warming.  There are several methods for removing CO2 from streams that originate from fossil 

fuel combustion processes, be they for power generation or to fuel industrial processes. This paper has 

examined the opportunities for capturing CO2 from processes in two industrial sectors, cement and iron and 

steel, which are responsible for a significant proportion of the up to 25% of the total European Union (EU) 

CO2 emissions that arise from industry. 

 

Post-combustion capture commonly uses liquid absorption for removing the CO2 from gas streams, but an 

alternative method is to use gas-solid adsorption, where the CO2 is adsorbed into onto a solid. The solid is 

normally in the form of particles of adsorbent, in a fixed bed. As with absorption, regeneration is required, 

and typically a single bed is employed to adsorb CO2 while regeneration and removal of the CO2 takes place 

in the second bed – carried out by pressure swing adsorption (PSA) or temperature swing adsorption (TSA). 

TSA has been shown to be more compatible with the industrial sources of waste heat examined here, and, in 

common with approaches to absorption carbon capture, it is believed that process intensification can aid 

process efficiency and reduce capital/installed cost and equipment sizes.  This should help organisations 

making a case for retrofitting the equipment. 

 

In this project, intensification of the adsorption process is to be achieved via fluidization of the adsorbent 

particles, in this case hydrotalcites. Preliminary examination of bubbling fluidization has been performed in 

polymer-based mini-scale fluidized beds fabricated using additive manufacturing to identify target flow 

regimes for CO2 capture screening experiments. The test facility has also been designed and in a future 

paper, experimental data will be presented. 

 

Future Work: Initial tests will measure the adsorption capacities of the hydrotalcite materials synthesized at 

Heriot Watt in the mini-scale fluidized beds. Then, screening experiments will be performed in novel 

additive-manufactured mini-scale Swirling Fluidized Beds that more closely represent the larger throughput 

toroidal fluid bed that will form the basis of a practical industrial-scale carbon capture unit that can be 

retrofitted to industrial processes. Regeneration of the adsorbent will be tested at laboratory scale using either 

fluidization in superheated steam, or via a moving bed with an internal heat exchanger. These results will 

also help to guide the design of the industrial scale regeneration system using process waste heat. 
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