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Abstract: This paper emphasizes the thermo-diffusion and
viscous dissipation effects ondouble diffusive natural con-
vection heat and mass transfer characteristics of non-
Newtonian power-law fluid over a vertical cone embed-
ded in a non-Darcy porous medium with variable heat
and mass flux conditions. The Ostwald–de Waele power-
law model is employed to describe the behavior of non-
Newtonianfluid. Local non-similarity procedure is applied
to transform the set of non-dimensional partial differential
equations into set of ordinary differential equations and
then the resulting system of equations are solved numeri-
cally by Runge-Kutta fourth order method together with a
shooting technique. The influence of pertinent parameters
on temperature and concentration, heat andmass transfer
rates are analyzed in opposing and aiding buoyancy cases
through graphical representation and explored in detail.

Keywords: Power-law fluid, Viscous dissipation, Dou-
ble diffusive convection, Vertical cone, Thermo-diffusion,
Non-Darcy porous medium

1 Introduction

From the past few years, the analysis of double diffusive
convection through a porousmediumhas been the subject
of a very intense research activity owing to its large num-
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ber of applications such as chemical contaminant disper-
sion all the way through oil saturated by water, grain stor-
age installations, geothermal reservoirs etc. Double diffu-
sive convection is a convection induced by two different
density gradients which retains distinct diffusion rates. In
double diffusive convection thedensity of fluidmixture de-
pends on concentration and temperature. An extensive re-
search considered on double diffusive free convection flow
over various geometries in porous medium with different
physical conditions [1–4].

Due to the great extent of industrial importance of
non-Newtonian fluid in porous medium, it is required to
analyze the free convection flow of non-Newtonian power-
law fluid through saturated porous medium. In this direc-
tion, Shenoy [5] discussed the heat transfer attributes of
non-Newtonian power law fluids with/without yield stress
embedded in porous media considering oil reservoir and
geothermal engineering applications. Several researchers
to mention a few [6–13] examined the non-Newtonian
power-law fluid flow over various geometries embedded in
Darcy or non-Darcy porous medium, in which the authors
used the Ostwald–de Waele power-law model to describe
the non-Newtonian fluid behavior.

Viscous dissipation plays a vital role in free convec-
tion in various devices which are subjected to large de-
celeration or which operate at high rotational speeds and
also in strong gravitational field processes (Gebhart [14]).
The effect of viscous dissipation is of pragmatic impor-
tance in natural convection embedded in porous medium
in connection with their experimental correlation for the
heat transfer in external flows (Fand and Brucker [15]).
Most of the non-Newtonian fluids are extremely viscous
which motivated the researchers to analyze the viscous
dissipation effect in non-Newtonian fluid through porous
medium. Several researchers discussed the effect of vis-
cous dissipation in convective heat transfer flow over var-
ious geometries embedded in porous medium saturated
with Newtonian/non-Newtonian fluid [16–19].
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Thermal diffusion, also called Soret effect in which
molecules are carried in a multi-component mixture im-
pelled by temperature gradients. Postelnicu [20] stud-
ied numerically the heat and mass transfer characteris-
tics about natural convection over a vertical surface satu-
rated porousmedia by taking chemical reaction and cross-
diffusion effects. The Soret andmelting effects on free con-
vection flow of non-Newtonian power-law fluid saturated
non-Darcy porous medium has been discussed by Kairi
and Murthy [21]. Kairi and Murthy [22] analyzed the vis-
cous dissipation and Soret effects on natural convection
flow over a cone through a non-Darcy porous medium sat-
urated with non-Newtonian fluid.

From the existing literature, it seems that the influ-
ence of viscous dissipation and thermo-diffusion on free
convection flow over a vertical cone in non-Darcy porous
medium saturated by non-Newtonian fluids with variable
heat and mass fluxes has not been discussed so far. Moti-
vated by the erstwhile studies, themain objective of the ex-
isting work is to get a local non-similarity solution for the
aforesaid problem. Local non-similarity method is used to
get the set of similarity equations and the resulting equa-
tions are worked out numerically to get the solution. The
effects of various parameters on flow, temperature and
concentration distributions, and heat and mass transfer
rates are shown graphically.

2 Mathematical Formulation

Consider the two-dimensional, steady, laminar boundary
layer flow due to natural convection over a vertical cone
embedded in non-Darcy porous medium saturated with
non-Newtonian power-law fluid. The surface of the cone
is subject to variable heat and mass fluxes QT and QC,
respectively. The ambient temperature and concentration
are T∞ and C∞, respectively. The porous medium is as-
sumed to be homogeneous and isotropic. The origin of
the coordinate system is at vertex of cone and the cone is
placed with its axis of symmetry along the vertical direc-
tion. The cone apex of angle is γ. Choose the coordinate
system such that x-coordinate measures along surface of
the cone and y-coordinate is perpendicular to the surface
of cone, as exhibited in Fig. 1.

Making use of Boussinesq and boundary layer approx-
imations, the governing equations for fluid flow problem
(Kairi and Murthy [22]) may be written as:

∂(ru)
∂x + ∂(rv)

∂y = 0 (1)

Fig. 1: Physical Model and coordinate system

∂un

∂y + ρ∞bK*

μ*
∂u2
∂y = ρ∞g cos γK*

μ*

(
βT

∂T
∂y + βC

∂C
∂y

)
(2)

u ∂T
∂x + v ∂T∂y = α ∂2T

∂y2 + μ*
ρ∞K*cp

u
(
un + ρ∞bK*

μ* u2
)

(3)

u ∂C
∂x + v ∂C∂y = D ∂2C

∂y2 + D1
∂2T
∂y2 (4)

The boundary conditions are given by

y = 0 : v = 0, ∂T∂y = −QT
k , ∂C∂y = −QC

D (5)

y → ∞ : u → 0, T → T∞, C → C∞ (6)

In the above equations, u and v are velocity compo-
nents along the x- and y- directions respectively, α indi-
cates the effective thermal diffusivity, ρ∞ is the reference
density, T is the temperature, g represents the accelera-
tion due to gravity, k is the effective thermal conductivity
of the saturated porous medium, C represents the concen-
tration, D is the effective solutal diffusivity, D1 quantifies
the contribution to themass flux due to temperature gradi-
ent, βT and βC are the thermal and solutal expansion co-
efficients, respectively, cp is the specific heat at constant
pressure, b indicates the empirical constant related to the
Forchheimer porous inertia term, μ* represents the consis-
tency index of power-law fluid, n represents the power-law
index in which n < 1 refers to pseudo-plastics fluid, n = 1
represents Newtonian fluid and n > 1 indicates dilatants
fluid. Christopher andMiddleman [23] andDharmadhikari
and Kale [24] proposed the following relationships for the
permeability of the flow as a function of the power-law in-
dex n as follows:

K* = 1
2ct

( nφ
3n + 1

)n
(
50K
3φ

) n+1
2
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where K = φ3d2
150(1−φ)2 , is the porosity of the medium and

ct =⎧⎨
⎩

25
12 Christopher and Middleman [23]

2
3

(
8n
9n + 3

)n ( (10n−3)
6n+1

) ( 75
16

) 3(10n−3)
10n+11 Dharmadhikari and Kale [24]

for n = 1, ct = 25
12 .

In view of the continuity equation, we define the
stream function ψ(x, y) by u = 1

r
∂ψ
∂y and v = −1

r
∂ψ
∂x .

Introducing the following transformations

η = y
x Ra

1
3
x , ψ(ϵ, η) = αrRa

1
3
x f (ϵ, η),

T − T∞ = QT
k xRa−

1
3

x θ(ϵ, η),

C − C∞ = Qm
D xRa−

1
3

x ϕ(ϵ, η), r = x sin γ

and ϵ = gβT cos γ
cp where

Rax =
( x
α

) 3n
2n+1

[
ρ∞βT cos γK*QTx

μ*

] 3n
2n+1

On substituting the above transformations in Eqs. (2)–
(4), we get the following nonlinear system of partial differ-
ential equations.

(nf ′
n−1

+ 2Gr*f ′)f ′′ = (θ′ + Nϕ′) (7)

θ′′ + 3n + 2
2n + 1 fθ′ − n

2n + 1 f ′θ + ϵf ′
[
(f ′)n + Gr*(f ′)2

]
= ϵ

(
f ′ ∂θ∂ϵ − θ′ ∂f∂ϵ

)
(8)

1
Le ϕ

′′ + 3n + 2
2n + 1 fϕ′ − n

2n + 1 f ′ϕ + Srθ′′ = ϵ
(
f ′ ∂ϕ∂ϵ − ϕ′ ∂f

∂ϵ

)
(9)

and the associated boundary conditions become

f + 2n + 1
3n + 2 ϵ ∂f∂ϵ = 0, θ′ = −1, ϕ′ = −1 at η = 0 (10)

f ′ → 0, θ → 0, ϕ → 0 as η → ∞. (11)

In the above, Sr = D1QT
αQC

is the Soret parameter, Le =
α/D indicates the Lewis number, ϵ = Gex (= Gebhart num-
ber) represents the viscous dissipation parameter, Gr* =(

ρ∞bK
μ

) ( α
x
)2−n Ra4−2n/3x is the modified Grashof number.

N = βCQmk/βTQTD is the buoyancy ratio with N > 0 rep-
resents the aiding buoyancy and N < 0 represents the op-
posing buoyancy.

Integrating Equation (7) once and using the boundary
condition (11) gives:

f ′n + Gr*f ′2 = θ + Nϕ (12)

On introducing equation (12) the equation (8) trans-
formed to:

θ′′ + 3n + 2
2n + 1 fθ′ − n

2n + 1 f ′θ + ϵf ′(θ + Nϕ)

= ϵ
(
f ′ ∂θ∂ϵ − θ′ ∂f∂ϵ

)
(13)

The local Nusselt number Nux = QTx/(k(Tw − T∞))
and local Sherwood number Shx = Qmx/(D(Cw − C∞)) are
defined in non-dimensional form as:

Nux

Ra
1
3
x

= 1
θ(ϵ, 0) (14)

Shx

Ra
1
3
x

= 1
ϕ(ϵ, 0) (15)

3 Numerical Method

To solve the nonlinear coupled partial differential equa-
tions (7), (9) and (13) along with the boundary conditions
(10) and (11), first apply a local non-similarity procedure
(Minkowycz and Sparrow [25]) which has been studied by
several researchers to solve various non-similar bound-
ary valueproblems. Theboundary value problem resulting
from this procedure is solved numerically by Runge Kutta
fourth order method with Shooting technique.

According to local non-similarity procedure, the sys-
tem of partial differential equations considered here are
first converted to a system of ordinary nonlinear differen-
tial equations by introducing new unknown functions of
ϵ derivatives. In the first level of truncation the ϵ deriva-
tives in equations (9) and (13) can be neglected because,
the terms accompanied by ϵ = ∂

∂ϵ are assumed to be very
small and this is true when ϵ � 1. Thus we get the local
similarity equations (first level of truncation) are(

nf ′n−1 + 2Gr*f ′
)
f ′′ = (θ′ + Nϕ′) (16)

θ′′ + 3n + 2
2n + 1 fθ′ − n

2n + 1 f ′θ + ϵf ′(f ′n + Gr*f ′2) = 0 (17)

1
Le ϕ

′′ + 3n + 2
2n + 1 fϕ′ − n

2n + 1 f ′ϕ + Srθ′′ = 0 (18)

The corresponding boundary conditions are

η = 0 : f (ϵ, η) = 0, θ′(ϵ, η) = −1, ϕ′(ϵ, η) = −1 (19)
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η → ∞ : f ′(ϵ, η) → 0, θ(ϵ, η) → 0, ϕ(ϵ, η) → 0 (20)

For the second level of truncation, we introduce new
variables G = ∂f

∂ϵ , H = ∂θ
∂ϵ and K = ∂ϕ

∂ϵ restoring all the
neglected terms at the first level of truncation. Thus, the
governing equations at the second level are:(

nf ′n−1 + 2Gr*f ′
)
f ′′ = (θ′ + Nϕ′) (21)

θ′′ + 3n + 2
2n + 1 fθ′ − n

2n + 1 f ′θ + ϵf ′
(
f ′n + Gr*f ′2

)
= ϵ

(
f ′H − θ′G

)
(22)

1
Le ϕ

′′ + 3n + 2
2n + 1 fϕ′ − n

2n + 1 f ′ϕ + Srθ′′ = ϵ(f ′H − θ′G)

(23)

The corresponding boundary conditions are

η = 0 : f + 2n + 1
3n + 2 ϵG = 0, θ′(ϵ, η) = −1, ϕ′(ϵ, η) = −1

(24)

η → ∞ : f ′(ϵ, η) → 0, θ(ϵ, η) → 0, ϕ(ϵ, η) → 0 (25)

At the third level of truncation, we differentiate
Eqs. (21)–(23) with respect to ϵ and neglecting the terms
∂G
∂ϵ ,

∂H
∂ϵ and ∂K

∂ϵ to get the following system of equations
(
nf ′n−1 + 2Gr*f ′

)
G′′ + (n(n − 1)f ′n−2 + 2Gr*)G′f ′′ = H′ + NK′

(26)

H′′ + f ′(θ + Nϕ) − 3n + 1
2n + 1 f ′H + 3n + 2

2n + 1 fH′ + 5n + 3
2n + 1Gθ′

− n
2n + 1G′θ = ϵ(G′H − H′G − G′(θ + Nϕ) − f ′(H + NK))

(27)

1
Le K

′′ − 3n + 1
2n + 1 f ′K + 3n + 2

2n + 1 fK′ + 5n + 3
2n + 1Gϕ′

− n
2n + 1G′ϕ = ϵ(G′K − K′G) (28)

The corresponding boundary conditions are

η = 0 : G(ϵ, η) = 0, H′(ϵ, η) = 0, K′(ϵ, η) = 0 (29)

η → ∞ : G′(ϵ, η) → 0, H(ϵ, η) → 0, K(ϵ, η) → 0 (30)

4 Results and discussion

The non-linear coupled differential equations (21–23) and
(26–28) along with the boundary conditions (24–25) and
(29–30) are worked out numerically using shooting tech-
nique. The integration length η∞ varies with the param-
eter values and it has been suitably chosen every time
such that the boundary conditions at the outer edge of the
boundary layer are satisfied. In order to validate the ac-
curacy of the solution, the existing results are compared
with those obtained by Yih [11, 26] in some special cases
and found that the results are in good agreement as shown
in Table 1 and 2. Numerical calculations have been car-
ried out for different values of the various dimensionless
parameters. The variation in temperature, concentration,
heat and mass transfer coefficient are shown graphically
for some selected values of the parameters.

Table 1: Comparison of θ(0, 0) for vertical cone with Sr = 0, ϵ =
0, Gr* = 0 and N = 0.

n Yih [11] Present Work

0.5 1.1358 1.1357
0.8 1.0839 1.0836
1.0 1.0564 1.0563
1.5 0.9871 0.9873
2.0 0.9760 0.9764

Table 2: Comparison of θ(0, 0) and ϕ(0, 0) with previously pub-
lished article of Yih [26] for free convection flow of Newtonian fluid
over a vertical cone in a saturated porous medium.

N Le θ(0, 0) ϕ(0, 0)
Present Present

Yih [26] Work Yih [26] Work

1 1 0.8385 0.8385 0.8385 0.8385
1 10 1.0211 1.0209 0.2618 0.2617
4 1 0.6178 0.6177 0.6178 0.6176
4 10 0.9490 0.9492 0.2273 0.2278-
0.5 1 1.3310 1.3313 1.3310 1.3313
-

0.5 10 1.0781 1.0785 0.2925 0.2929

Figures 2(a) and 2(b) depict the variation of non-
dimensional temperature distribution θ in aiding buoy-
ancy N > 0 for n = 0.5 (pseudoplastics fluid) and n = 1.5
(dilatants fluid), respectively, for two different values of
dissipation parameter ϵ and thermo-diffusion parameter
Sr with fixed values of other parameters. It is observed
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that for both pseudoplastic and dilatant fluids, the tem-
perature distribution inside the boundary layer increases
with increased value of the dissipation parameter ϵ be-
cause the impact of viscous dissipation term in the energy
equation performs as an internal distributed heat source
generated due to the action of viscous stresses. Moreover,
for both pseudoplastic and dilatant fluids the temperature
decreases across the boundary layerwith an increase of Sr.
The variation of non-dimensional concentrationin ϕ aid-
ing buoyancy (N > 0) for n = 0.5 (pseudoplastics fluid)
and n = 1.5 (dilatants fluid) against the similarity vari-
able η for different values of Sr and ϵ is shown in Figs. 3(a)
and 3(b), respectively. The diffusive species with higher
Soret values accelerates the concentration hence for both
pseudoplastics and dilatants fluids, the concentration en-
hances with an increase in the values of Sr while it de-
creases with an increasing values of ϵ.

Figures 4 and 5 illustrate the variation of non-
dimensional heat transfer coefficient (local Nusselt num-
ber) and non-dimensional mass transfer coefficient (local
Sherwood number) against the power-law index parame-
ter n in aiding buoyancy (N > 0) with varying ϵ and Sr. It
is observed that the local Nusselt number increases with
n and Sr while decreases with an increasing ϵ. This is be-
cause of the thermal boundary layer thickness increases
with Sr anddecreaseswith ϵ and η (Figs. 2a–2b).Moreover,
it is shown in the equation (14), Nux

Ra
1
3
x

is directly propor-

tional to 1
θ(ϵ,0) . On the other hand, Sherwood number in-

creases with n and ϵwhile reduces with increasing Sr. The
reason for such happening can be stated from the Figs. 3a–
3b as concentration boundary layer thickness increases
with Sr while decreases with ϵ. Moreover, it is shown in
the equation (15), Shx

Ra
1
3
x

is directly proportional to 1
ϕ(0,ϵ) . It

is also noted that thermo-diffusion plays an important role
to control heat andmass transfer rates due to the presence
of viscous dissipation in the porous medium for all types
of power-law fluids.

In Figs. 6a and 6b, the non-dimensional temperature
profiles are plotted in the opposing buoyancy (N < 0)
against the similarity variable η for n = 0.5 (pseudoplas-
tic fluid) and n = 1.5 (dilatant fluid), respectively, for dif-
ferent values of Sr and ϵ. It is observed that the tempera-
ture profile grows with Sr while the temperature is dimin-
ished inside the boundary layer with the enhancing of the
dissipation parameter ϵ. Figures 7a and 7b represent the
variation of concentration profiles in opposing buoyancy
(N < 0) against the similarity variable η for n = 0.5 and
n = 1.5, respectively. From the definition, Soret number
can be defined as the effect of temperature on concentra-
tion. This shows that diffusive species with higher Soret

(a)

(b)

Fig. 2: (a) Variation of temperature profiles against η for n = 0.5
(Aiding Buoyancy); (b) Variation of temperature profiles against η
for n = 1.5 (Aiding Buoyancy)

values accelerates the concentration profile. Hence, con-
centration profile raises with Sr while it reduces with in-
side the boundary layer. The behavior of temperature and
concentration with effects of Sr and ϵ for n = 0.5 (pseudo-
plastic fluid) and n = 1.5 (dilatant fluid) resembles with
existing results of Kairi and Murthy [22].

Figures 8 and 9 explain the variation of local Nusselt
and Sherwood numbers against power-law index n in op-
posing buoyancy ( N < 0) with varying Gr* and ϵ. It is seen
that local Nusselt number enhances with the increasing
value of power-law index n but decreases with the increas-
ing non-Darcy parameter. The role of non-Darcy parameter
is very obvious because an increased value of non-Darcy
parameter induced higher inertial effect (Forchheimer ef-
fect) into the flow that results retardation in the flow inside
the boundary layer. On account of that there is a drop in
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(a)

(b)

Fig. 3: (a) Variation of concentration profiles against η for n = 0.5
(Aiding Buoyancy); (b) Variation of concentration profiles against η
for n = 1.5 (Aiding Buoyancy)

Fig. 4: Variation of heat transfer coefficient against n (Aiding Buoy-
ancy.

Fig. 5: Variation of mass transfer coefficient against n (Aiding Buoy-
ancy.

(a)

(b)

Fig. 6: (a) Variation of temperature profiles against η for n = 0.5
(Opposing Buoyancy); (b) Variation of temperature profiles against
η for n = 1.5 (Opposing Buoyancy)
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(a) (b)

Fig. 7: (a) Variation of concentration profiles against η for n = 0.5 (Opposing Buoyancy); (b) Variation of concentration profiles against η for
n = 1.5 (Opposing Buoyancy)

Fig. 8: Variation of heat transfer coefficient against n (Opposing
Buoyancy.

heat and mass transfer rates. The effect of dissipation pa-
rameter on local Nusselt and Sherwood numbers is same
as in aiding buoyancy (Figs. 4 and 5). The combined dissi-
pation and Forchheimer effects are significant in dilatant
as compared to pseudoplastic fluids.

5 Conclusions

This article considered the combined viscous dissipation
and Soret effects on natural convection flow over a vertical
cone in a non-Darcy porous medium with non-Newtonian

Fig. 9: Variation of mass transfer coefficient against n (Opposing
Buoyancy.

power-law fluid using variable heat and mass fluxes. The
various values of flow influencing parameters on con-
centration and temperature distributions, heat and mass
transfer rates are exhibited graphically for both opposing
and aiding buoyancy cases. For both the types of power-
law fluids (n < 1 and n > 1) along with Newtonian
fluid (n = 1), as the viscous dissipation parameter in-
creases, the heat transfer rate reduces while the mass
transfer rate enhances for both opposing and aiding buoy-
ancy cases. The combined dissipation and Forchheimer ef-
fects are significant in dilatant as compared topseudoplas-
tic fluids. Moreover, thermo-diffusion plays an significant
role in companywith viscous dissipation through a porous
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medium for all types of power-law fluids (i,e., pseudoplas-
tic, Newtonian and dilatant fluids).
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