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ABSTRACT 1 

Digital Elevation Model (DEM) is one of the most important controlling factors determining 2 

the simulation accuracy of hydraulic models. However, the currently available global 3 

topographic data is confronted with limitations for application in 2-D hydraulic modeling, 4 

mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. 5 

A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve 6 

modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth 7 

DEM), developed from the SRTM DEM to include both vegetation height and SRTM 8 

vegetation signal. Then, a newly released DEM, removing both vegetation bias and random 9 

errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. 10 

Last, an approach to correct the Multi-Error Removed DEM is presented to account for the 11 

insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The 12 

approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an 13 

automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with 14 

the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive 15 

biases of the raised segment in the river networks based on bed slope to generate the 16 

hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to 17 

improve the flow connectivity of river networks without manual adjustment. To demonstrate 18 

the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on 19 

the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected 20 

DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently 21 

performed to assess the simulation accuracy and performance of four different DEMs and 22 
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favorable results have been obtained on the corrected DEM. 23 

KEYWORDS: DEM Correction; Vegetation Bias; Flow Connectivity; Two-dimensional 24 

Hydraulic Model; SRTM  25 
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1 INTRODUCTION 26 

The frequent occurrence of extreme floods (e.g., Pakistan in 2010; Thailand in 2011; India in 27 

2014; China in 2016) has drawn continuous attention from the public and research communities 28 

in recent years. Historically, flooding has been recognized as one of the main types of natural 29 

hazards in terms of economic damages and casualties (Dottori et al., 2016). Between 1980 and 30 

2013, flooding had caused about $1 trillion direct economic losses and 220,000 fatalities (Re, 31 

2014). Flood induced damages and causalities are widely predicted to dramatically increase due 32 

to economic development and population growth (Winsemius et al., 2015), land use/cover 33 

change (Saghafian et al., 2008; Ward et al., 2008) and climate change (Alexander et al., 2006; 34 

Lu et al., 2016; Quintana-Seguíet et al., 2016; Cheng et al., 2017a; Cheng et al., 2017b). 35 

Implementing more effective flood risk reduction and management strategies has become an 36 

important task for governments at different levels across the world.  37 

In recent years, significant efforts have been made to better understand the physical process 38 

of flooding and develop different types of models to predict flood hazard. 39 

Numerical/mathematical models for quantifying and mapping flood hazards and risks have 40 

become effective tools in facilitating flood risk management and reducing the catastrophic 41 

impacts (European Commission, 2007). Many up-to-date advanced hydro-system analysis 42 

methods, e.g. discrete principal-monotonicity method (Cheng et al., 2006a; Cheng et al., 2006b), 43 

have been developed to simulate highly complicated hydrological processes, which are based 44 

on the responses between input and output datasets. Besides the data-driven models, 45 

mechanism-based flood models have also been developed with different levels of complexity, 46 

ranging from the simplified lumped approaches, distributed hydrological models, to the highly 47 
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detailed 2-D hydraulic models. The data-driven models and lumped models (e.g. GR model, 48 

Perrin et al., 2003) deal with the system as a whole and do not consider the spatial heterogeneity 49 

of the problem domain (Khakbaz et al., 2012). However, flooding may present clear spatial 50 

variations as influenced by localized weather and topographic conditions (Chen et al., 2017a; 51 

Cheng et al., 2017c; Cheng et al., 2017d). Distributed hydrological models (e.g. SWAT, Arnold 52 

et al., 1998) take into account the heterogeneities in both the catchment characteristics and 53 

hydrometeorological inputs (Nguyen et al., 2015; Chen et al., 2017b). However, they usually 54 

adopt conceptual or simplified approaches to route runoffs and flood waves (Khan & Valeo, 55 

2016), and are incapable of representing certain common flow phenomena, such as flow over 56 

flat slopes, reversing flow, and backwater effect (Kim et al., 2012). This may constrain the 57 

wider application in flood risk management where detailed floodplain hydrodynamics is 58 

typically required. The 2-D hydraulic models can simulate the dynamics of surface runoff 59 

across watersheds with complex topographies using minimal model parameters, in accordance 60 

with continuity and momentum principles. Hydraulic models better depict the dynamics of 61 

flood waves and physical characteristics of the watersheds. With the availability of rich sources 62 

of high-resolution topographic and hydrological data and much enhanced computational power, 63 

a number of 2-D hydraulic models have been successfully applied to flood simulations at the 64 

watershed scale (e.g. Neal et. al., 2012; Paiva et. al., 2013). 65 

Hydraulic models rely on accurate topographic data to reliably predict flooding processes over 66 

landscapes (Callow et al., 2007). The accuracy of DEM has been viewed as the most important 67 

controlling factor determining the simulation accuracy of hydraulic models (Bates et al., 1998; 68 

Sanders, 2007; Jarihani et al., 2015). To date, the Shuttle Radar Topographic Mission (SRTM) 69 
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Digital Elevation Model (DEM) (Rabus et al., 2003; Farr et al., 2007) is thought to be the most 70 

popular and best freely available topographic data that covers most parts of the globe surface 71 

(Hirt et al., 2010; Jing et al., 2014; Athmania & Achour, 2014; Sampson et al., 2015). An 72 

alternative to SRTM is ASTER (the Advanced Spaceborne Thermal Emission and Reflection 73 

Radiometer, Fujisada et al., 2012). However, although the spatial resolution of ASTER (30 m) 74 

has an advantage over that of SRTM (90 m), SRTM is more suitable for hydraulic modeling as 75 

it is distorted by fewer surface objects with higher vertical accuracy (Jing et al., 2014; Athmania 76 

& Achour, 2014; Varga & Bašić, 2015; Chaieb et al., 2016). For these reasons, this study will 77 

focus on SRTM DEM. 78 

SRTM DEM has been widely used for flood modeling in previous studies (e.g. Sanders, 2007; 79 

Samantaray et al., 2015; Fernández et al., 2016). But, all of the existing works have faced the 80 

same challenge, i.e. how to remove the vegetation bias presented in the original SRTM DEM 81 

and to obtain a Bare-Earth DEM from SRTM DEM (O'Loughlin et al., 2016). The inability of 82 

the C-band radar employed by SRTM to completely penetrate the vegetation canopy to the 83 

ground has caused significant positive biases in the SRTM DEM (Brown et al., 2010). Thus, 84 

the original SRTM DEM may overestimate the ground elevation in certain areas (Carabajal & 85 

Harding, 2005; Lalonde et al., 2010; Shortridge & Messina, 2011; Wang et al., 2012). Baugh 86 

et al. (2013) indicated that removing the vegetation bias for SRTM DEM in a reach of the 87 

Amazon Basin clearly improved hydrodynamic modeling accuracy in terms of both water depth 88 

and inundation extent. A number of other researchers have also tried to correct the vegetation 89 

bias before flood modeling. However, all of these existing works did not consider either the 90 

spatial variability of the vegetation height (Wilson et al., 2007; Coe et al., 2008; Paiva et al., 91 
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2011) or the spatial variability of SRTM vegetation permeation signal (Baugh et al., 2013; Pinel 92 

et al., 2015; Luo et al., 2017). Besides, all of the studies mentioned above have conducted in 93 

the Amazon Basin. So more case studies with different watershed characteristics should be 94 

further considered to better understand the problem. Recently, the release of global forest 95 

canopy heights (Lefsky, 2010; Simard et al., 2011) and other related remote sensing products 96 

has provided a desirable opportunity to enable systematic vegetation corrections for SRTM 97 

DEM, accounting for the spatial variability of both vegetation height and SRTM vegetation 98 

signal. O'Loughlin et al. (2016) combined these remote sensing datasets to correct the 99 

vegetation bias in the original SRTM DEM and developed the first global Bare-Earth DEM. 100 

The Bare-Earth DEM showed great improvements in vertical accuracy of the vegetated areas 101 

and is openly available. In this study, we will first attempt to examine this utility of the Bare-102 

Earth DEM for flood inundation modeling in a natural basin outside of the Amazon Basin. 103 

In addition to the vegetation bias, SRTM DEM also contains various random errors, which are 104 

non-negligible for flood modeling. Random errors can be classified by their spatial scale into 105 

speckle noise, strip noise and absolute bias (Yamazaki et al., 2017). The presence of speckle 106 

noise is one common characteristic of SAR DEMs like SRTM (Zandbergen, 2008), mainly 107 

caused by variability of surface reflectance over flat terrain (Takaku et al., 2016). Speckle noise 108 

has the consequence of increasing slope estimates at short distances (Alsdorf et al. 2007; Falorni 109 

et al. 2005; Kielet al. 2006). Speckling generally has a negative effect on flood modeling, in 110 

particular, in areas of floodplain with low slopes. Stripe noise is a regular height undulation 111 

with a wavelength of 500 m to 100 km (Gallant and Read, 2009; Tarekegn and Sayama, 2013; 112 

Yamazaki et al., 2017). The stripe noise of the SRTM DEM is mainly caused by uncompensated 113 
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mast motion error (Walker et al., 2007), which can cause significant errors in simulating spatial 114 

flood extent (Tarekegn and Sayama, 2013). The absolute bias can be regarded as a departure in 115 

the average elevation over a large domain (typically >20 km scale) (Yamazaki et al., 2017), 116 

caused by long-wavelength random residual satellite motion errors (Rodriguez et al., 2006). 117 

The spatial pattern of absolute bias is not homogeneous because multiple data with different 118 

absolute biases were overlaid during the creation procedure of SRTM DEM. Thus it is highly 119 

necessary to eliminate multiple error components (including vegetation bias and three random 120 

errors) before integrating the SRTM DEM in flood modeling. However, treating multiple error 121 

components is not easy, because different error components could offset each other and thus 122 

difficult to accurately recognize and estimate error magnitude. Fortunately, Yamazaki et al. 123 

(2017) newly released the first global “Multi-Error-Removed Improved-Terrain DEM” by 124 

correcting all major error components in SRTM DEM, which shows better vertical accuracy 125 

than the original DEM. In this study, we will simultaneously examine this utility of the Bare-126 

Earth DEM and Multi-Error Removed DEM for flood inundation modeling. 127 

Besides the multiple height errors, the spatial resolution of global SRTM DEM (90 m) are not 128 

fine enough to represent the small-scale topographic features such as narrow river or channel 129 

networks. They are the key elements for reliable depiction of watershed hydrodynamics in 130 

hydraulic models, especially for the watersheds with complex terrain (Yamazaki et al., 2012; 131 

Schumann et al., 2014). Moreover, SRTM is influenced by surface artifacts such as artificial 132 

buildings, which may break flow connectivity along channel networks or between the river 133 

channel and hillslope systems (Callow et al. 2007; Sanders, 2007; Lehner et al., 2008). Thus, 134 

the DEM needs to be pre-processed to better represent hydrological characteristics, particularly 135 
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in places where the flow connectivity is lost.  136 

Various algorithms have been developed for hydrologically correcting DEMs. It is usually 137 

considered that one of the major challenges impeding flow connectivity is the “pit(s)”, i.e. one 138 

or more adjacent pixels with lower elevation values than its or their surrounded pixels. The 139 

“pit(s)” can unphysically block water and cause disconnected flow paths (Kenny et al., 2008; 140 

Lee et al., 2017). The common pit removal methods include lifting (Jenson & Domingue, 1988), 141 

carving (Martz & Garbrecht, 1999), and the combination of lifting and carving (Soille, 2004). 142 

These pits removal algorithms are useful for improving flow connectivity in DEMs with high 143 

spatial resolution, such as airborne LiDAR DEMs. However, they are not effective for the 144 

SRTM DEM because the elevation values of sub-pixel scale hydrology features may be also 145 

lifted by surrounding objects, such as bridge and building, etc. (Yamazaki et al., 2012). In the 146 

aforementioned algorithms, these pits are treated equally without considering whether they are 147 

“real” or spurious. Thus the “corrected” DEMs may not well represent the realistic terrains. 148 

Other related pre-processing methods include stream burning (e.g. Lehner et al., 2008) and 149 

ridge fencing (e.g. Masutomi et al., 2009), etc. But they also suffer from the same issue and 150 

create “corrected” DEMs that may not represent the realistic terrains. Yamazaki et al. (2012) 151 

proposed an alternative method that treated the river networks from the HydroSHEDS datasets 152 

(Lehner et al., 2008) as given information, and then removed the pits of the river networks to 153 

ensure flow connectivity along the rivers. Lehner et al. (2008) developed the river network 154 

dataset using mainly standard GIS techniques. The process of deriving river networks through 155 

pit filling is automated and simple in ESRI's ArcGIS software, but it cannot ensure the DEM-156 

derived river networks resembling the known networks (Kenny et al., 2008), especially in those 157 
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flat areas (Pan et al., 2012). Moreover, when removing the pits in the river networks, the 158 

parameters of the adopted weighting function for deciding the level of modification were 159 

obtained by trial and error and needed manual adjustment; and they did not account for the 160 

terrain harmony between the networks and hillslopes.  161 

To overcome the shortcomings of the existing DEM-correction methods for application of 162 

SRTM DEM in flood modeling, there is therby a need to develop an approach to generate new 163 

hydraulically corrected DEM to support 2-D hydraulic simulation. On the basis of Multi-Error 164 

Removed DEM (Yamazaki et al. 2017), we proposed a new Hydraulic Correction Method 165 

(HCM) to effectively correct the DEM and ensure flow connectivity along the river/channel 166 

networks. Meanwhile, the vegetation bias will be investigated using the Bare-Earth DEM 167 

developed from SRTM DEM by O'Loughlin et al. (2016), accounting for the spatial variability 168 

of both vegetation height and SRTM vegetation signal. The Multi-Error Removed DEM is also 169 

investigated to test its utility in flood inundation simulation. The purpose of the current study 170 

is to identify the limitations of SRTM DEM in 2-D watershed hydraulic simulation, and to 171 

improve its utility based on available auxiliary data and tools. 172 

2 METHODOLOGY 173 

2.1 New Hydraulic Correction Method (HCM) for the SRTM DEM 174 

In order to correct the SRTM DEM to better replicate the hydrology features of a watershed 175 

and improve hydraulic flood simulation results, the new Hydraulic Correction Method (HCM) 176 

is proposed as a) removing the vegetation bias and random errors; and b) ensuring flow 177 

connectivity (Figure 1). The Bare-Earth DEM developed is employed to account for the 178 
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vegetation bias in the SRTM DEM. The Multi-Error Removed DEM (Yamazaki et al. 2017) is 179 

adopted to investigate both the vegetation bias and random errors. In this sub-section, the 180 

approach to ensuring flow connectivity is introduced in detail.  181 

2.1.1 Generation of River Networks 182 

Analysis algorithms have become widely available to extract river networks from DEMs. River 183 

networks are routinely defined as pixels with drainage areas that are greater than a threshold 184 

value. In this study, the preliminary networks are automatically generated from the Hydrology 185 

Toolboxes in ArcGIS (e.g. the blue lines in Figure 2 and Figure 3). The preliminary networks, 186 

in certain places, are detected to ‘move’ away from their exact locations. The exact layout and 187 

location of river channels can be mapped from the high spatial resolution images (< 1 m) 188 

obtained from the Google Earth platform, which is accessible by the public. To achieve this, 189 

the preliminary networks generated from ArcGIS are converted into Keyhole Markup 190 

Language (KML) and then overlaid on Google Earth. The inexact parts are drawn manually on 191 

the virtual globe viewing window and then saved on a new KML file. The new KML is imported 192 

into ArcGIS and used to replace the inexact parts (i.e. the red lines in Figure 3).  193 

It should be noted that the optimum images displayed in Google Earth may come from 194 

different years. To ensure the networks reflecting the hydrological conditions of the specific 195 

year under consideration, the corrected networks will be further compared with and verified 196 

against the HJ-1A/B CCD images obtained at the same time. If the verification fails, the 197 

networks will be corrected or supplemented again in ArcGIS. 198 

2.1.2 Processing Approach for Flow Connectivity 199 

After obtaining the exact positions and layouts of the river networks, the river profiles are 200 
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extracted from the DEM. For each river/channel, its profile consists of a series of elevation 201 

values from the most upstream point to the outlet along the flow direction. An example is shown 202 

in Figure 4a and a number of obstacles impeding flow connectivity are detected in the selected 203 

river profile. The line segments containing the three most obvious obstacles are marked within 204 

the blue boxes and will be further analyzed in the virtue of Google Earth platform.  205 

For segment 1 (Figure 4b), the channel width is narrow (~ 15 m) in this reach. With a 206 

resolution of ~ 90 m, the center points of DEM pixel fall outside the river and pick up the higher 207 

elevation values in the surrounding locations. For example, the points with elevations of 426 208 

m, 425 m, 423 m and 420 m are all located in the riverbank; a few points with higher elevations 209 

of 444 m, 454 m, and 457 m are found on the vegetated mountain, as shown in Figure 4b. 210 

For segment 2 as shown in Figure 4c, the points have captured the elevation of a dam and the 211 

dam’s appendages, which are higher than the upstream points (383 m) and seriously hinder the 212 

reservoir outflow. For segment 3 as illustrated in Figure 4d, although the channel reach is wide 213 

enough to be captured by the DEM pixels, the center points of the pixels may not coincide with 214 

the central line of the river (generally has a lower elevation), which inevitably results in 215 

overestimation of channel elevation and subsequently reduces conveyance. Although there are 216 

pits in the river profile due to the white noise in the DEM, majority of the obstacles that impede 217 

flow connectivity have positive biases due to the surface objects or the offset of river central 218 

line in the DEM. Herein, we propose a new approach to remove the positive biases and rebuild 219 

flow connectivity for river networks. The positive biases are removed by caving the raised 220 

segment.  221 

To maintain a reasonable river slope and terrain harmony between the networks and hillslopes, 222 
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the corrected value for every raised river/channel is calculated by taking into account the slope 223 

between the nearest upstream pixel and the nearest downstream pixel outside the raised segment 224 

(Figure 5). The slope (S) and correction value (∆) are calculated by: 225 

 𝑆 =
𝑍𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑍𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑚

𝑁 + 1
                                                    (1) 226 

∆𝑖= 𝑆 ∗ 𝑖                                                                      (2) 227 

𝑍𝑐𝑜𝑟_𝑖 = 𝑍𝑖 − ∆𝑖                                                                 (3) 228 

where 𝑁  is the number of pixels contained in the raised segment under 229 

consideration,  𝑍𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚  and 𝑍𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑚  are the elevations of the nearest upstream and 230 

downstream pixels outside the raised segment, 𝑍𝑖 is the elevation of pixel 𝑖 before correction 231 

where i is the index of the pixels within the segment, 𝑍𝑐𝑜𝑟_𝑖  the corresponding corrected 232 

elevation, and ∆𝑖 is the value to be corrected for pixel 𝑖. 233 

In the previous studies, DEMs are mainly corrected using pit removal, which may excessively 234 

alter the elevations and destroy the realistic terrains without distinguishing true and false pits. 235 

The correction approach proposed in this work identifies the ‘real’ positive biases in the SRTM 236 

DEM, followed by caving the positive biases of the raised segment. The correction focuses on 237 

the key hydrology features (river/drainage networks) rather than the whole basin to avoid 238 

exaggerated modification. Meanwhile, compared with the pit removal method that required 239 

manual adjustment (Yamazaki et al., 2012), the current approach is reinforced by the slope 240 

condition of the topography in the Multi-Error Removed DEM, which may better represent the 241 

realistic terrains. 242 

For each river channel inside the watershed, the raised segments are corrected one by one 243 

using the proposed method, from upstream to downstream (Figure 4e). This river profile 244 
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correction procedure will be applied to every river and tributary until flow connectivity of the 245 

whole river network is guaranteed.  246 

2.2 Integrated Hydrologic–Hydraulic Modeling 247 

To simulate the watershed-scale flood evolution, a 2-D hydraulic model is adopted and applied 248 

in this study. However, most of the existing hydraulic models are not capable of representing 249 

certain key hydrological process, such as evapotranspiration, interception and infiltration. 250 

Herein an integrated hydrologic–hydraulic modeling approach is developed and used, in which 251 

the surface runoff generated from a rainstorm is generated by a hydrologic model and used as 252 

inputs to drive the hydraulic model and create flooding.  253 

2.2.1 Hydrologic Modeling 254 

The SCS-CN model is adopted in this work because of its simplicity, stability and success in 255 

previous studies for runoff generation (Mishra & Singh, 2007). The models consider most of 256 

key watershed characteristics related to runoff generation, including land use, soil type and 257 

antecedent moisture condition (Chen et al., 2016). Infiltration models, such as Horton and 258 

Green-Ampt methods have been also used together with hydraulic models to predict surface 259 

runoff from intense rainfall (Fernández-Pato et al., 2016). But these models commonly require 260 

substantial field data for model calibration and verification and are not suitable for the current 261 

study. 262 

The SCS-CN model is designed for predicting surface runoff (𝑆𝑅) of a specified rainstorm as 263 

follows (Mishra and Singh 1999; Woodward et al., 2002): 264 

𝑆𝑅 =
(𝑃 − 𝐼𝑎)2

(𝑃 − 𝐼𝑎) + 𝑆
                                                                (4) 265 

where 𝑃 is the precipitation depth; 𝑆 is the maximum potential retention; 𝐼𝑎 is the initial 266 
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abstraction defined as 𝐼𝑎 = λ𝑆 with λ taken as 0.2; and 𝑆 is a parameter related to the Curve 267 

Number (CN) as follows: 268 

𝑆 =
2540

𝐶𝑁
− 25.4                                                                   (5) 269 

CN is the only parameter in SCS-CN and its value, determined by the watershed characteristics, 270 

may be obtained from Section-4 of the National Engineering Handbook (SCS, 1956).  271 

It should be noted that SCS-CN was originally designed to compute the total runoff volume 272 

and is not a time-advancing method. In this study, in order to generate runoff volumes that are 273 

consistent with the spatial and temporal resolution of the 2-D hydraulic model, SCS-CN is 274 

performed at every time step and in every cell of the computational grid that decomposes the 275 

computational domain (i.e. the watershed under consideration). According to Caviedes-276 

Voullième et al. (2012), the cumulative surface runoff for a given time is computed from the 277 

cumulative precipitation from the beginning of the rainfall event to the specific time being 278 

considered; the surface runoff for a specific time step is the increment calculated by subtracting 279 

the cumulative runoff from the previous time step. 280 

Consistent with the spatial resolution of the available DEM, SCS-CN is implemented in every 281 

90 m × 90 m pixel inside the study area. The cumulative precipitation, antecedent soil moisture, 282 

land use and soil type for each pixel are provided or defined at each of the pixels. Herein, hourly 283 

cumulative precipitation that drives a simulation is estimated via interpolation from the four 284 

closest precipitation stations using the inverse distance squared weighting method. Antecedent 285 

soil moisture is determined from the precipitation five days before the flood. Land use data is 286 

available from the Global Land Cover Mapping (Chen et al., 2015) and soil type information is 287 

derived from the harmonized world soil database (Nachtergaele et al, 2012).  288 



16 
 

2.2.2 2-D Hydraulic Modeling 289 

A fully dynamic hydraulic model based on the 2-D depth-averaged shallow water equations is 290 

adopted in this work for flood simulations. The conservative form of the governing 2-D shallow 291 

water equations is expressed as follows: 292 

𝜕𝐪

𝜕𝑡
+

𝜕𝐟

𝜕𝑥
+

𝜕𝐠

𝜕𝑦
= 𝐬                             (6) 293 

where t is the time; x and y represent the Cartesian coordinates; q denotes the flow variable 294 

vector; f and g are the flux vectors in the x- and y-direction, respectively; and s is the source 295 

term vector. The vector terms are defined as: 296 

𝐪 = [

ℎ
𝑞𝑥

𝑞𝑦

]           𝐟 = [

𝑞𝑥

𝑢𝑞𝑥 +
1

2
𝑔ℎ2

𝑢𝑞𝑦

]      297 

𝐠 = [

𝑞𝑦

𝑣𝑞𝑥

𝑣𝑞𝑦 +
1

2
𝑔ℎ2

]          𝐬 =

[
 
 
 

0

−𝐶𝑓𝑢√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑥

−𝐶𝑓𝑣√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑥 ]
 
 
 

                 (7) 298 

where h is the water depth; qx = uh and qy = vh are the unit-width discharges in the x- and y- 299 

directions, respectively; u and v denote the depth-averaged velocities in two Cartesian 300 

directions; and zb is the bed elevation; and Cf is the bed roughness coefficient. 301 

The above governing equations are solved using a shock-capturing finite volume Godunov-302 

type scheme on uniform grids. Detailed description of the model can be found in Hou et al. 303 

(2014) and Xia et al. (2017). To substantially improve its computational efficiency for large-304 

scale flood simulations, the current model is implemented for parallelized computing on 305 

multiple GPUs using NVIDIA’s parallel computing architecture CUDA (compute unified 306 

device architecture). A GPU-accelerated model was reported to be 10s times computationally 307 

more efficient than its counterpart running on a CPU (Jarihani et al., 2015). 308 

The 2-D hydraulic model is set up using the available topographic and roughness data and 309 
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driven by the hourly surface runoff volumes calculated by SCS-CN at every computational 310 

pixel. The runoff is then automatically routed by the hydraulic model within the computational 311 

domain before confluence at the basin outlet. The topographic data used in this work include 312 

the original DEM, Bare-Earth DEM, Multi-Error DEM, and hydraulically corrected DEM. 313 

Roughness of the watershed is indicated by the Manning coefficient (n). Standard values of the 314 

Manning coefficient corresponding to different watershed characteristics may be found from a 315 

hydraulics textbook or report (e.g. Chow, 1959; Arcement & Schneider, 1984) and using these 316 

values in hydraulic modeling has become a common practice (e.g., Garrote et al., 2016). The 317 

Manning coefficients are specified according to different land use types as available from the 318 

Global Land Cover Mapping (Chen et al., 2015), 0.15 for forest, 0.035 for arable land, 0.03 for 319 

grassland, 0.027 for water surface and 0.016 for construction land. 320 

Simulation results from the integrated hydrologic-hydraulic model are validated against time 321 

histories of water depth measured at gauge stations and inundation extent derived from 322 

remotely sensed images. Water depths predicted on different DEMs are evaluated through 323 

comparison with gauge records. Predicted flood extents are compared with the flood footprints 324 

extracted from the HJ-1A/B imagery based on Normalized Difference Water Index (NDWI) 325 

(McFeeters, 1996) and Enhanced Vegetation Index (EVI) (Huete et al., 2002). NDWI can 326 

effectively distinguish water signal against most of the terrestrial and soil features, with NDWI 327 

classified into open water (NDWI > 0) and non-water (NDWI ≤ 0). However, the open water 328 

class may not all correspond to flood footprints, because certain places may quickly dry up after 329 

being flooded and do not contain open water. Therefore, these “temporally” flooded areas may 330 

be missed out by NDWI, leading to derivation of unreliable flood footprints. EVI is a widely-331 
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used proxy of vegetation greenness to evaluate the terrestrial photosynthetic activity (Shi et al., 332 

2017). The difference between the EVIs before and after a flood event reflects the degree of 333 

vegetation being damaged by flood and is a useful indicator for identifying inundated areas. In 334 

this work, NDWI and EVI are used to derive flood extents for evaluating simulation results. 335 

 The formulas for calculating NDWI and EVI are given as follows: 336 

𝑁𝐷𝑊𝐼 = (𝑅𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑁𝑖𝑟)/(𝑅𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑁𝑖𝑟)                      (8) 337 

𝐸𝑉𝐼 = 2.5 × (𝑅𝑁𝑖𝑟 − 𝑅𝑅𝑒𝑑)/(𝑅𝑁𝑖𝑟 + 6 × 𝑅𝑅𝑒𝑑 − 7.5 × 𝑅𝐵𝑙𝑢𝑒 + 1)          (9) 338 

where 𝑅𝑁𝑖𝑟, 𝑅𝑅𝑒𝑑 𝑅𝐺𝑟𝑒𝑒𝑛, and 𝑅𝐵𝑙𝑢𝑒 are referred as the reflectance of the near-infrared, red, 339 

green and blue bands of HJ-1A/B CCD images, respectively. 340 

3 RESULTS AND DISCUSSION 341 

3.1 Study Area and the Flood Event 342 

A 267 km reach of the Huifa River in the northeastern China (Figure 2) is selected as the case 343 

study. Approximately 33% of the total areas are covered by forests with clear spatial variation, 344 

making it an ideal site for investigating the influence of vegetation bias in the original SRTM 345 

DEM on flood modeling. The river networks are characterized by numerous tributaries and sub-346 

pixel sized channels and their representation is particularly sensitive to DEM quality and 347 

important for flood modeling, providing a desired case study to test the applicability of the 348 

hydraulically improved DEM for use in 2-D hydraulic flood modeling. Detailed 349 

hydrometeorological data are available for the study site, including rainfall records from 253 350 

precipitation stations and continuous water depth measurements from 8 hydrologic stations 351 

along the main channel reach. Meanwhile, HJ-1A/B CCD images are available to derive the 352 
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actual flooded areas. 353 

The Huifa River has a basin area of 14,896 km2 and is mainly located in Jilin Province, 354 

northeastern China. The local climate is dominated by continental monsoons. With an annual 355 

average of 720 mm, the rainfall has a clear seasonal variation. Rainfall occurs mostly during 356 

summer and autumn and 44.7 % of the annual total is recorded in July and August (Zhang et 357 

al., 2012). Corresponding to the seasonal rainfall variation, there is a clearly defined flood 358 

season from June to September and a dry period from October to the following May. According 359 

to gauge station records, during 1965-2015, the mean discharge of Huifa River is 83.70 m3/s 360 

and the maximum peak discharge is measured to be 3410 m3/s, occurring during the flood 361 

season in 2013. The 2013 extreme flood event will be further investigated in this study. 362 

In August 2013, an area average rainfall of 221 mm was recorded in the Huifa River Basin, 363 

leading to an extreme flood event with a 50-year return period (Jin et al., 2015). The flood 364 

caused disastrous consequences in all three Northeast provinces, i.e. Heilongjiang, Jilin and 365 

Liaoning. According to the Ministry of Civil Affairs, approximately 5 million people were 366 

affected; 95 people were killed; 154,622 houses were damaged; and 1.59 million hectares of 367 

croplands were affected (Hong Kong Red Cross, 2013). 368 

3.2 Hydraulically Corrected SRTM DEM 369 

Using ArcGIS, Google Earth and HJ-1A/B CCD images, we acquire the ‘exact’ layout and 370 

locations of the river networks in the Huifa River basin (Figure 3). The river networks consist 371 

of a total of 312 tributaries, with length ranging from 0.5 kilometers to 267 kilometers. River 372 

networks may be quickly generated from a DEM using ArcGIS. However, the resulting 373 

networks may contain obvious inaccuracies in both location and layout, which may be easily 374 
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detected by overlaying the derived networks with Google Earth imagines. In flood modeling, 375 

flow connectivity of the river networks is a key factor affecting the simulation results. It is 376 

necessary to correct the river networks derived directly from a DEM to support more reliable 377 

flood predictions. The availability of Google Earth at high spatial resolution and HJ-1A/B CCD 378 

images has provided an opportunity to resolve the issue. By combining ArcGIS, Google Earth 379 

with the timely remote sensing images, we may now accurately position river networks and 380 

improve their flow connectivity in basins of different scales.  381 

Herein the proposed HCM is used to ensure flow connectivity of the river networks in the 382 

Huifa River basin. Among the 2349,401 pixels of the Multi-Error Removed DEM inside the 383 

basin, 37,032 pixels (1.6%) pixels are identified to form raised segments breaking the flow 384 

connectivity of the river networks. The amount of correction as required is less than 1 m at 385 

14,025 pixels (38%) and less than 2 m at 26,551 pixels (72%). In all of the modified pixels, 95% 386 

of them require correction of less than 4 m. The average amount of correction is only 46 mm 387 

for the whole basin. Supporting Material Figure S1 shows the 6 main channels (see in Figure 388 

2) in the study area. It is observed that the overall topographic features of all 6 channels are 389 

well maintained following flow connectivity reconstruction. Meanwhile, when the elevations 390 

of the channel pixels are adjusted to more reasonable values, the exchange of flow between 391 

hillslopes and river networks may be better depicted in 2-D hydraulic modeling. 392 

3.3 Validation of Simulation Results with in Suit Measured Water Depths 393 

To validate the flood simulation results on the four DEMs as considered in this work, the surface 394 

runoff generated from SCS-CN is compared with the discharge measured in the Wudaogou 395 

station near the basin outlet (see Supporting Material Figure S2); and the water depths 396 
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calculated by the 2-D hydraulic model are compared with the measurements available at the 397 

eight gauge stations within the model domain (see Figure 2). The eight gauge stations are 398 

located along the main tributaries, with contributing basin areas varying from 150 km2 to 2000 399 

km2 (Table 1). The predicted and measured hourly hydrographs of water depth are shown in 400 

Figure 6 for all eight stations. The calculated root mean square errors (RMSE) and the 401 

difference between the predicted and measured maximum water depths (DI) are summarized in 402 

Table 1.  403 

The total runoff volume computed from SCS-CN is 1.36×109 m3, the actual volume measured 404 

in the Wudaogou station is 1.52×109 m3. The error between the computed and measured is 405 

approximately 11%, which is acceptable. This also confirms that the adopted CN numbers 406 

(derived based on the watershed characteristics and previous research) are reasonable. The 407 

depth hydrographs calculated on the original DEM represented by the red lines in Figure 6 and 408 

the Bare-Earth DEM and Multi-Error Removed DEM represented by yellow lines and green 409 

lines respectively in Figure 6 are somehow similar, with peak water depth underestimated at 410 

almost all eight stations. At stations 1, 2, 5 and 8, the predicted depth hydrographs feature a 411 

correct rising-falling process. However, the magnitudes of the predicted depths are not 412 

consistent with the observations and the peak water depths predicted on the original DEM are 413 

approximately 0.3 m larger than those predicted on the Bare-Earth DEM. This may be because 414 

the Bare-Earth DEM has lower elevation values after removing vegetation bias (vegetation bias 415 

removal effectively makes the DEM values to become the same level as the surrounding 416 

topography), leading to more flood water detained on the hillslopes and less water discharged 417 

to stream outlets. The Multi-Error Removed DEM performs better in predicting the peak water 418 
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depths than the original DEM and the Bare-Earth DEM at stations 1, 5 and 8. At stations 3 and 419 

6, simulations on the original DEM, Bare-Earth DEM, and Multi-Error Removed DEM all 420 

predict a dry river with no water depth. The correct water depth hydrograph is not reproduced 421 

because the water flow cannot move from upstream to the gauge station as a result of blocked 422 

channel and broken flow connectivity. At stations 4 and 7, the water depth suddenly increases 423 

and then maintains at a constant depth. This suggests that the DEMs have turned both of the 424 

locations to become pits. As a result, the flood water maintains at a constant level after the pits 425 

are quickly filled. 426 

Comparing the depth hydrographs predicted on the hydraulically corrected DEM with those 427 

predicted on the other three DEMs shows that, at most of the stations, the corrected DEM 428 

performs better in predicting the rise-and-fall process of water depth and peak water depth. The 429 

results from the corrected DEM indicate that the model has succeeded in depicting the rising-430 

falling process of the water depth at all eight stations. Except for stations 7 and 8, the peak 431 

water depths predicted on the corrected DEM agree more closely with the observed values and 432 

higher than those predicted on the other three DEMs. This is because the predicted water flow 433 

successfully propagates from upstream to the outlet through the connecting networks, which 434 

are better represented in the corrected DEM via the correcting method outlined in the previous 435 

section. It needs to be noted that the simulation on the corrected DEM overestimates the peak 436 

water depth at station 8. The reason may be that the river channel becomes smoothed following 437 

the DEM correction process, leading to reduced retention volume. Another possible reason may 438 

be because the storage of reservoirs is not considered in the current study. The results 439 

demonstrate that improved 2-D flood modeling can be achieved by better depicting the 440 
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connected channels using the hydraulic correction method as proposed in this study to process 441 

a DEM. 442 

3.4 Validation of Simulation Results with Remote Sensing Images 443 

The inundation extent predicted by the 2-D hydraulic model is compared with the satellite 444 

observations of flood footprint obtained from the HJ-1A/B CCD images. Two HJ images are 445 

used. One was acquired during the flood period on 23 August 2013 and another was acquired 446 

before the flood event on 6 July 2013. Based on the NDWI (> 0) calculated from the image 447 

during flood period, the surface water area can be identified, including rivers, lakes and ponding 448 

areas. However, the surface water area may be significantly less than the actual inundation area 449 

because flood water can pass certain regions without forming open water (i.e. boundaries of 450 

inundated areas) (Mohammadi et al., 2017). So the vegetation response is also adopted to obtain 451 

the flood footprint by identifying the changes in EVI values. The ratio of EVIs after and before 452 

the flood event is calculated for every pixel. We then extract the pixels in which the vegetation 453 

has been negatively influenced by the flood event (EVIafter/ EVIbefore<0.35 and EVIbefore>0). The 454 

EVI ratio of 0.35 is taken to extract the pixels that are obviously influenced by flooding. The 455 

natural fluctuations (e.g. the EVI of crop may slightly decrease from before the flood event 456 

corresponding to peak growth stage to after the flood event corresponding to mature stage) are 457 

excluded to ensure that pure flood footprints are acquired. Considering the fact that certain 458 

flood footprints may not involve either water response or vegetation response, satellite 459 

observations of flood footprints from the HJ-1A/B CCD images cannot present all areas that 460 

are inundated by flood water. We therefore separately analyze the simulation performance to 461 

reflect the water response and vegetation response. 462 
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For the surface water area, the ratio of overlap areas (ROA) is used to assess simulation 463 

performance in predicting open water. ROA is defined as the ratio between the HJ and 464 

simulation overlapping area and the HJ surface water area. To evaluate the performance 465 

spatially, we compute ROA in every window containing 4x4 pixels (Figure 7b, 7c and 7d) and 466 

count ROA values within the 12 sub-basins (Figure 7a and Table 2). Similar results are obtained 467 

for the original DEM and Bare-Earth DEM simulations, thus the result drawing of Bare-Earth 468 

DEM is not shown in Figure 7 due to space limitation. In Huifa River Basin, vegetation removal 469 

(Bare-Earth DEM) shows no improvement in accuracy for predicting open water areas 470 

compared with the use of original DEM. Instead, the resulting simulation performance is 471 

observed to deteriorate in certain sub-basins, such as sub-basin 9 and 12. On the other hand, 472 

hydraulic flood simulation on the Multi-Error Removed DEM shows obvious improvement in 473 

almost all sub-basins. The overall accuracy of predicting surface water areas against the HJ 474 

image has been improved from a ROA of 0.67 (original DEM) and 0.65 (Bare-Earth DEM) to 475 

0.71 (Multi-Error Removed DEM). Among all the four DEMs, the hydraulically corrected 476 

DEM performs the best in predicting surface water areas in the whole basin and all sub-basins. 477 

The overall accuracy of predicting surface water areas against the HJ image rises to 0.79. 478 

Comparison between these predicted surface water areas visually shows that simulations on the 479 

original DEM and Bare-Earth DEM only correctly predict inundation in a few small areas in 480 

the midstream, including the corresponding main channel, and sub-basins 5, 6 and 11 (~ 40%), 481 

whereas the simulation on the Multi-Error Removed DEM and the corrected DEM show a 482 

marked improvement, and the corrected DEM accurately predicts most of the observed water 483 

surface areas (~ 70%). This implies that well-connected river networks ensure flow connectivity 484 
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and lead to improved flood prediction discharge of the water flow alongside the networks. 485 

To evaluate the performance of simulation results in terms of representing the vegetation 486 

response to the flood event, the predicted flood map is assessed through comparison with the 487 

areas with vegetation response. The pixels with vegetation response are typically located at the 488 

boundaries of open water areas, which are mainly covered by grain crops. According to Ganji 489 

et al. (2012), when the inundation depth is more than 0.2 m, crop yield will be obviously 490 

affected. So we count the percentage of the predicted maximum water depth more than 0.2 m 491 

in the areas with vegetation response (Table 3 and Figure 8). The percentage of water depth 492 

more than 0.2 m, increases from 44% predicted on the original DEM and 55% on the Multi-493 

Error Removed DEM to 61% on the corrected DEM for the whole basin. The evidently 494 

improved prediction of flooded areas are concentrated on the downstream, which indicates that 495 

better connected river networks can lead to better representation of overbank flows along the 496 

river channels.  497 

3.5 Discussions 498 

The results comparison, obtained from simulations on the original DEM and Bare-Earth DEM, 499 

shows that these DEMs give similar results. It means that vegetation removal does not bring 500 

obvious improvement for 2-D hydraulic modeling in Huifa River Basin. However, previous 501 

related studies in Amazon River basin indicated that SRTM vegetation removal could greatly 502 

improve the hydrodynamic modeling accuracy (Wilson et al., 2007; Baugh et al., 2013). A 503 

possible reason for the difference may be because our study area is a mountainous watershed 504 

with high vegetation, i.e. forest, is mainly distributed in areas with high slopes, thus vegetation 505 

removal does not cause any major change to the relative topographic conditions (e.g. the 506 
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average slope of basin only changes from 5.78°to 5.70°after vegetation removal). Subsequently 507 

vegetation removal does not impose significant change to the flow connectivity between 508 

hillslopes and river channels. This is the reason that we do not focus more on vegetation 509 

removal method in this study and just use a generated data set. Meanwhile, in comparison with 510 

the Amazon River basin, the current study area consists of relatively fragmented fields and this 511 

may also be another reason for the limited improvement in the simulation accuracy. The Bare-512 

Earth DEM (O'Loughlin et al., 2016) was obtained from the 250 m MODIS Vegetation 513 

Continuous Field product (DiMiceli et al., 2011) as a proxy of vegetation signal and the 1 km 514 

global vegetation height map (Simard et al., 2011). The resolution of these vegetation data may 515 

be capable of capturing the spatial heterogeneity of vegetation height in Amazon floodplain 516 

covered by more uniformly distributed rainforests, but is may be too coarse for the Huifa basin 517 

with smaller fields and different types of forests (Zhang et al., 2008). Therefore, the necessity 518 

of vegetation removal for SRTM DEM in 2-D hydraulic modeling should be considered 519 

together with the specific watershed conditions of the study area under consideration. More 520 

research case studies need to be done to examine the applicability and performance of Bare-521 

Earth DEM in 2-D flood modeling. 522 

Although vegetation bias removal does not bring improvement for 2-D hydraulic modeling, 523 

the Multi-Error Removed DEM achieves obvious improvement in predicting inundation areas 524 

with water response and vegetation response. We find that the flatness of the topography in flat 525 

areas (floodplain) is recovered well to some extent. Moreover, some abnormal bulges and 526 

depressions in river stream have been removed and thus the flow connectivity of streams have 527 

been improved compared to the original DEM and the Bare-Earth DEM. Thus the flow 528 
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connectivity inside the floodplains and the river networks as key factors affecting the simulation 529 

results are depicted more realistically. Significant improvement is observed in simulating 530 

spatial flood extent. In addition, in predicting the water depths hydrographs of the river channel, 531 

both the Bare-Earth DEM and Multi-Error Removed DEM achieve poor performance. It is due 532 

to the spatial resolution of DEM itself, which is not fine enough to represent most of the 533 

hydrologic features in the study area.  534 

Reconstructing the flow connectivity of river channels on the Multi-Error Removed DEM 535 

increases the simulation accuracy of depth hydrographs and inundation areas with water 536 

response and vegetation response, comparing with the original DEM, the Bare-Earth DEM, and 537 

the Multi-Error Removed DEM. The improved model performance is a result of better 538 

representation of channel connectivity, leading to better simulation of overbank flows and flow 539 

propagation from upstream channels to the outlets. However, simulations on the corrected DEM 540 

have constantly led to overestimation of outflow volume, in comparison with the observations. 541 

This overestimation may result from the internal errors of SRTM DEM. For example, the SRTM 542 

DEM is not able to accurately capture the river and lake bathymetries below the water surface; 543 

the DEM only shows their corresponding water surface elevation, overestimating the bottom 544 

elevation of water bodies (Neal et al., 2012; Mersel et al., 2013; Alfieri et al., 2014). This 545 

essentially reduces the detention capacity of the water bodies and forces more water flowing to 546 

the outlets. Meanwhile, the hydraulic correction method proposed in this work for rebuilding 547 

flow connectivity may also contribute to overestimation of outflow volume.  548 

Due to the lack of detailed and accurate river bottom elevation, the river channels are 549 

processed according to the slope defined between the upstream point and the downstream point. 550 
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Thus the processed channels become smoother than the ‘original’ one. This, to certain extent, 551 

may result in less water intercepted in the river channels and consequently more outflow. In 552 

spite of the limitations, the proposed approach has great potential for application in watersheds 553 

where high-resolution DEMs and detailed channel cross-sections are not available. Since the 554 

SRTM DEM and Google Earth platform is (nearly) globally available and the reconnection 555 

process after getting the river stream map does not require manual adjustment, it provides a 556 

simple and effective approach to improve the applicability of SRTM DEM in 2-D hydraulic 557 

flood modeling. Even so, we must admit that when high-accuracy map of river streams is not 558 

available, manual corrections and additions of networks from high-resolution Google Earth 559 

imagery are time-consuming and not realistic to do globally. New methods are essential to be 560 

developed in the following studies to extract global high-precision streams and reduce the 561 

processing burden of correction. Fortunately, the previous studies, aimed at extracting large-562 

scale streams from remote sensing imagery not DEM data, may be helpful. For example, 563 

Orengo et al., (2017) and Isikdogan et al., (2015) proposed automated methods that extract 564 

streams from remote sensing imagery; Isikdogan et al., (2017) developed an automated river 565 

mapping engine, which enables the computation of large-scale streams from Landsat data. The 566 

streams from remote sensing imagery may be more accurate that the DEM-derived. It can help 567 

to reduce the processing burden of correction and then more easily improve the utility of SRTM 568 

DEM in global flood simulation. 569 

Besides DEMs, another crucial factor that may affect the performance of hydraulic model in 570 

modeling floods is related to the specification of the Manning’s roughness coefficient (Neal et 571 

al., 2015; Fernández et al., 2016). Optimizing Manning’s coefficient may further improve 572 
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model performance. Specifically, calibrating the Manning’s coefficient may have a great 573 

influence on flood arrival time and attenuation. To further investigate the role of Manning’s 574 

coefficient in 2-D hydraulic modeling, further simulations have been run, but only in the sub-575 

catchments of Huifa Basin in order to reduce computational cost. Simulation results suggest 576 

that the use of different Manning’s coefficient does not have a big effect on the conclusions 577 

related to the performance of the four DEMs in supporting 2-D hydraulic modeling, providing 578 

that the Manning’s coefficient is chosen from a reasonable range. Thus, in this study, the 579 

Manning’s coefficient used in the simulations is directly determined according to land cover 580 

types, basin characteristics and also previous studies. 581 

4 CONCLUSIONS 582 

A hydraulic correction method (HCM) is proposed in this study to overcome the limitations 583 

(vegetation bias, random errors, and insufficient spatial resolution) of the SRTM DEM in 2-D 584 

hydraulic modeling. A comparative analysis is performed to investigate the simulation accuracy 585 

obtained on the original DEM, Bare-Earth DEM, Multi-Error Removed DEM, and 586 

hydraulically corrected DEM. On the four DEMs, an extreme flood event occurred in the 14,896 587 

km2 Huifa River Basin has been systematically simulated and reproduced using the combined 588 

SCS-CN hydrological and 2-D hydraulic model developed in this work. The modeling results 589 

indicated that: 590 

(a) Vegetation removal does not bring any obvious improvement when comparing water depth 591 

hydrographs and inundation areas with water response and vegetation response obtained 592 

from different simulations; removal of height errors, including vegetation bias and random 593 
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errors brings obvious improvement in predicting inundation areas;  594 

(b) The hydraulically corrected DEM performs better in replicating the rising-falling process 595 

of the depth hydrographs and capturing the observed peak water depth than the original 596 

DEM, Bare-Earth DEM, and Multi-Error Removed DEM; 597 

(c) The corrected DEM ensures river networks to have better flow connectivity and 598 

continuous water flow (discharge) along the channels. This improves simulation accuracy. 599 

The simulated surface water areas are better consistent with the HJ imagery, with the 600 

overlap ratio increasing from 0.67 (original DEM), 0.65 (Bare-Earth DEM), and 0.71 601 

(Multi-Error Removed DEM) to 0.79 (hydraulically corrected DEM);  602 

(d) Overbank flow is more reliably simulated and represented on the corrected DEM with 603 

well-connected river networks. The percent of the simulated water depth (> 0.2 m) in the 604 

areas with vegetation response from flood has increased from 44% (original DEM) 42% 605 

(Bare-Earth DEM), and 55% (Multi-Error Removed DEM) to 61% (hydraulically 606 

corrected DEM).  607 
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Figure Captions 

Fig. 1. Hydraulic correction method for SRTM DEM in flood inundation modeling. 

Fig. 2. The study area. 

Fig. 3. The river networks of Huifa River Basin. 

Fig. 4. DEM correction method to reconstruct flow connectivity. 

Fig. 5. Example of DEM correction method to reconstruct flow connectivity. 

Fig. 6. Comparing the simulated time series of water depth obtained on four different DEMs 

with measurements at 8 gauge stations. 

Fig. 7. Comparing modeled water surface area with HJ imagery. 

Fig. 8. Comparing simulated water depths in areas with vegetation response from the flood. 
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Table 1. The root mean square errors (RMSE) and the difference of maximum (DI) of water depth variation  

Number Station name 
Contributing 

area (km2) 

RMSE DI 

Original 

DEM 

Bare-

Earth 

DEM  

Multi-Error-

Removed 

DEM 

Hydraulicall

y corrected 

DEM 

Original 

DEM 

Bare-

Earth 

DEM 

Multi-Error-

Removed 

DEM 

Hydraulically 

corrected 

DEM 

Station 1 Meihekou 1638 1.40  1.52  1.25  0.60  -3.16  -3.51  -2.49  -0.84  

Station 2 Meihekoumei 442 1.14  1.21  1.01  0.51  -2.67  -2.94  -2.72  -0.51  

Station 3 Dongfeng 481 1.59  1.59  1.60  1.39  -4.86  -4.86  -4.86  -0.55  

Station 4 Liuhe 622 0.86  0.82  0.74  0.64  -3.14  -3.01  -2.85  -1.42  

Station 5 Gushanzi 981 1.13  1.14  1.10  1.31  -2.23  -2.53  -1.70  -0.21  

Station 6 Yangzishao 1957 1.44  1.44  1.41  2.28  -3.94  -3.94  -3.94  0.55  

Station 7 Panshixi 151 1.10  1.39  0.84  1.05  -1.56  -0.83  -1.93  -2.39  

Station 8 Minli 1037 0.70  0.68  0.54  1.71  -0.14  -0.50  0.12  2.51  
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 Table 2. The overlap ratio between the model water surface area and HJ imagery observation 

River 

Number 
Original DEM 

Bare-Earth 

DEM 

Multi-Error-

Removed DEM 

Hydraulically 

corrected DEM 

1 0.67 0.65 0.71 0.79 

2 0.78 0.76 0.76 0.81 

3 0.87 0.87 0.87 0.87 

4 0.84 0.85 0.83 0.88 

5 0.55 0.55 0.60 0.73 

6 0.41 0.41 0.56 0.71 

7 0.78 0.77 0.80 0.85 

8 0.82 0.79 0.83 0.88 

9 0.70 0.65 0.75 0.81 

10 0.61 0.59 0.62 0.71 

11 0.37 0.37 0.45 0.63 

12 0.73 0.52 0.71 0.80 
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Table 3. The percentage of predicted water depths in areas with vegetation response from flood 

Area DEM 0 m 0 - 0.2 m > 0.2 m 

The whole 

basin 

Original  0.07 0.49 0.44 

Bare-Earth 0.08 0.50 0.42 

Multi-Error-Removed 0.05 0.41 0.55 

Hydraulically corrected 0.03 0.36 0.61 

 Upstream 

basin 

Original  0.03 0.38 0.59 

Bare-Earth 0.03 0.41 0.56 

Multi-Error-Removed 0.02 0.36 0.62 

Hydraulically corrected 0.02 0.35 0.63 

Downstream 

basin 

Original  0.11 0.60 0.29 

Bare-Earth 0.13 0.61 0.26 

Multi-Error-Removed 0.08 0.46 0.47 

Hydraulically corrected 0.05 0.36 0.59 
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Fig. 1. Hydraulic correction method for SRTM DEM in flood inundation modeling 
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Fig. 2. The study area 
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Fig. 3. The river networks of Huifa River Basin 
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Fig. 4. DEM correction method to reconstruct flow connectivity: (a) original elevation profile of main stream in Huifa 

River, (b) elevation value of segment 1 in (a), (c) elevation value of segment 2 in (a), (d) elevation value of segment 3 in (a), 

(e) elevation profile generation by DEM processing method  
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Fig. 5. Example of DEM correction method to reconstruct flow connectivity. 
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Fig. 6. Comparing the simulated time series of water depth obtained on four different DEMs with measurements at 8 

gauge stations 

 

 

Fig. 7. Comparing modeled water surface area with HJ imagery (a) the main streams, (b) the overlap ratio of water surface 

with original DEM in 4*4 pixels, (c) the overlap ratio of water surface with Bare-Earth DEM in 4*4 pixels, (d) the overlap 

ratio of water surface with hydraulically corrected DEM in 4*4 pixels 
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Fig. 8. Comparing simulated water depths in areas with vegetation response from the flood under (a) original SRTM 

DEM, (b) bare-earth SRTM DEM, (c) Multi-Error-Removed DEM, (d) Hydraulically corrected DEM 


