
Reproducibility in Benchmarking Parallel Fast Fourier
Transform based Applications

Samar Aseeri
samar.aseeri@kaust.edu.sa

Extreme Computing Research Center,
King Abdullah University of Science

and Technology
Thuwal, Kingdom of Saudi Arabia

Benson K. Muite
benson.muite@ut.ee

Arvutiteaduse Instituut, Tartu Ülikool
Tartu, Estonia

Daisuke Takahashi
daisuke@cs.tsukuba.ac.jp

Center for Computational Sciences,
University of Tsukuba

Tsukuba, Japan

ABSTRACT
An overview of concerns observed in allowing for reproducibility
in parallel applications that heavily depend on the three dimen-
sional distributed memory fast Fourier transform are summarized.
Suggestions for reproducibility categories for benchmark results
are given.

CCS CONCEPTS
•Mathematics of computing→Computation of transforms;
• Theory of computation → Massively parallel algorithms;
• Software and its engineering → Software performance; •
Hardware → Testing with distributed and parallel systems.

KEYWORDS
Fast Fourier Transform, Benchmarks, Reproducibility

ACM Reference Format:
Samar Aseeri, Benson K. Muite, and Daisuke Takahashi. 2019. Reproducibil-
ity in Benchmarking Parallel Fast Fourier Transform based Applications. In
Tenth ACM/SPEC International Conference on Performance Engineering (ICPE
’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
The fast Fourier transform (FFT) is used in a large number of ap-
plications. It is difficult to make it work well on distributed mem-
ory parallel computers because of communication that requires a
high bandwidth low latency network. There are many different
implementations of the FFT, and several suggested benchmarking
strategies. This note describes the procedure used in benchmarking
the Klein Gordon equation on thirteen different computers[2] and
benchmarking FFT based programs on a further four additional su-
percomputers. The main contributions are suggestions for concrete
reproducibility classes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

2 BACKGROUND
Reproducibility here is taken to mean either reproducible computa-
tional results and/or reproducible execution time measurements. A
number of reproducibility initiatives have been proposed[16, 19, 29,
31]. These range from, a general algorithm description, making the
code available, making an input deck and execution environment
available, to documenting the entire workflow. In many parallel
programs, bitwise reproducibility of the computational results (in
particular with floating point arithmetic) is challenging because
even the same program run on the same computer twice can have
different orders of execution of arithmetic operations. Furthermore,
simulations done on supercomputers may use supercomputing re-
sources others cannot access to check results. Finally, on many
computers, the network is a shared resource that can affect other
running programs. These all make full bitwise reproducibility chal-
lenging, and in many cases do not detract from the scientific results
which may still be obtained to within reasonable accuracy. Never-
theless, there are still applications such as cryptography, dynamical
systems and number theory where bitwise reproducibility is re-
quired, though it may be possible to use integer arithmetic which
alleviates some of the reproducibility challenges created by floating
point arithmetic.

3 METHOD
In the original study[2], an open source Fourier pseudospectral
code was used in a benchmark for the Klein Gordon equation[3].
The code uses MPI and is primarily written in Fortran. It makes
heavy use of the library 2DECOMP&FFT[21, 22] to perform the
three dimensional distributed memory fast Fourier transform. The
user has a choice of underlying one dimensional fast Fourier trans-
form engines, some of which are closed source vendor provided
libraries. The library 2DECOMP&FFT uses auto tuning to choose
the best domain decomposition for the distributed memory FFT at
runtime. In performing the study, on each supercomputer used in
the study, program output and the one dimensional FFT engine used
were recorded. In addition, makefiles which were used for compi-
lation of the programs were kept. Unfortunately, the exact system
configuration (name and version of operating system, version of
one dimensional FFT engine used in 2DECOMP&FFT, and if open
source and compiled by the user or the supercomputing center, their
configuration and compilation options) were not recorded. Upon
publication, the exact source code version of the program used
in the study was made available on arXiv[2], with a very similar
program available on Github[4].

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

ICPE ’19 Companion, April 7–11, 2019, Mumbai, India Aseeri, Muite and Takahashi.

Further work has examined the performance of this code and a
Navier Stokes solver[9, 10] on the K computer, Hazelhen (a Cray XC
40 supercomputer), Kabuki (an NEC SX Ace supercomputer) and
Shaheen II (a Cray XC 40 supercomputer). Changing compilation
options and the one dimensional FFT engine used can lead to a
factor of 10 difference in performance, without hand tuned program
optimization. Kabuki is an NEC SX Ace computer, where porting of
2DECOMP&FFT is required to use the appropriate optimized Math
Keisan one dimensional FFT library. Both the K computer and NEC
SX Ace do not use x86 processors, which makes using packaging
and autobuilding systems challenging. They do have support for C,
C++ and Fortran compilers, which on a computer without many
community code developers are the most important tools to allow
for porting of existing high performance programs.

4 LESSONS LEARNED
The SPEC benchmarking process[15] makes build reproducibility
significantly better than what was done in this study[2]. Unfortu-
nately, it does not allow for tuning and code modifications that are
typically required on new computer architectures.

Repeating experiments multiple times has been suggested as a
means of verifying reproducibility in benchmarking[16]. Such a
methodology has been implemented in gearshifft, a heterogeneous
fast Fourier transform benchmark suite[30, 36]. Inmost cases experi-
ments were repeated several times, usually successively, with minor
differences between results. In cases where experiments have been
repeated on the same machine, between several hours or several
months apart or with a fresh installation, more significant differ-
ences have been found. These can be due to upgrades of system soft-
ware, changes in job placement policy or due to a different amount
of interference by other jobs on the system. Explaining and docu-
menting all of these may be rather difficult - in particular in cases
where a benchmark is run by a user interested in the application
rather than a computer scientist or system administrator[6, 37]. Fig-
ure 1 demonstrates runtime variability when running fast Fourier
Transform programs[9, 10] for solving the Navier-Stokes equations
on Hazelhen and Shaheen II. Both these computers use adaptive
routing and job placement to speed up job throughput[18], but
this can result in some run time variability, a subject of current
research[7, 28, 35, 38, 39].

Performance tuning can also result in code that is not portable
between systems, but is essential in obtaining results that depend on
the highest available computational performance[11]. In such cases,
a performance model, a clear description of the implementation and
a clear and correct reference code with which to compare results
may be more helpful in allowing for reproducibility.

Most scientific computing software does not automatically in-
clude error bounds for floating point calculations, for example using
interval analysis[24], and error bounds for the approximate numer-
ical methods utilized. Usually such bounds are very pessimistic,
hence are not reported. More work is needed in this area.

Automatic build systems canmake it easier to reproduce results[1,
5, 13–15]. Such systems are also helpful in benchmarking when
the end user will not do software performance optimizations for
the computer system they will run on. However, for most paral-
lel benchmarks it seems likely that hand optimization by an end

Figure 1: Performance variability for 20 timesteps of 0.005
of a 5123 discretization on Kabuki, Hazelhen and Shaheen
II when using Carpenter-Kennedy (abbreviated to CK in the
legend)[10] and Implicit Midpoint rule timestepping (abbre-
viated to IMR in the legend) [9]. The error bars represent
fastest and slowest execution times. On Hazelhen and Sha-
heen II, FFTW3[12] was used as the one dimensional FFT
engine in 2DECOMP&FFT[21, 22], while on Kabuki Math-
keisan FFT was used as the one dimensional FFT engine
in 2DECOMP&FFT. Compilation and execution scripts are
available on request.

benchmarker will be required to obtain the highest performance
on the computer system of interest.

On new hardware or on systems without a large number of
users, only a limited amount of software will have been or will be
ported to the system. On a system such as Kabuki, the build system
Cmake[17, 23] requires significant effort to port. Cmake is an essen-
tial component of gearshifft, hence rather than using Cmake and
gearshifft, it was easier to re-write the one dimensional FFT speed
test in FFTE 6.0[32–34] to produce the results in Fig. 2. Benchmarks
which do not allow for flexibility in re-writing code will stifle in-
novation by making it difficult to compare new approaches with
established ones.

Figure 2 demonstrates that for small FFTs, Kabuki is less per-
formant than either Hazelhen or Shaheen II, but for FFTs above a
size of 512 points, Kabuki is significantly more performant than
either Hazelhen or Shaheen II. Vector computers and graphics pro-
cessing units typically have higher memory bandwidth but also
higher latency than typical CPUS found, thus similar results for
one dimensional FFT performance are also reported in [30], where
for small FFTs, CPU performance is best, but for large FFTs, GPU
performance is better. There are many parallel scientific comput-
ing programs that have modeling assumptions built into them (for
example in computational fluid mechanics, materials science and
chemistry). The typical user may not be able to check all these
modeling assumptions, and even if the code is open source, check-
ing the code in general (let alone the executable produced to run
on the users system) can be quite time consuming. Comparisons
of computational results obtained for the same input data (ideally

Reproducibility in Benchmarking FFTs ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Size (power of 2)

104

Sp
ee
d
(M
flo
ps
)

Kabuki FFTE
Hazelhen FFTE
Hazelhen FFTW
Shaheen FFTE
Shaheen FFTW

Figure 2: Performance of 1D FFT on Kabuki, Hazelhen and
Shaheen II using the 1D speed test in FFTE, with either FFTE
6.0[32–34] or FFTW3[12]. The error bars represent standard
deviation in execution times, each test was repeated at least
twice. Compilation and execution scripts are available on re-
quest.

using different methods on different computational resources), can
be very helpful in giving confidence in the reported results[20, 27].

Finally, the choice of programming language is also a key con-
cern. Programming languages with a long lifetime, mature com-
pilers and stable feature set such as C and Fortran make portable
reproducibility on a wide variety of computers easier. Many current
computers however do not have architectures that closely map to
either C or Fortran[8].

Open source code is usually compiled and run on closed source
hardware with closed source compilers and closed source runtimes.
Thus, in some cases, users can only verify that the output is correct,
but might not be able to determine possible causes of errors.

5 SUGGESTIONS
Rather than a single reproducibility standard, reproducibility classes
should be used. The minimum amount of information for repro-
ducibility of a computation is a verifiable input and a verifiable
output. In the case of computer performance benchmarks, timing
measurements for program execution are also relevant. Further
characterization includes:

a) Closed source code
b) Open source code (optimized or reference) on closed source

hardware
c) Open source code (optimized or reference) on open source

hardware
Error characterizations include:

a) Bitwise reproducible
b) Numerical error bounds
c) Statistically reproducible

Workflow characterizations are also very helpful in enabling repro-
ducibility. Due to the wide variations in supercomputer environ-
ments, a workflow specification on one computational platform

will not be portable to all other relevant choices of computational
platforms, but may be useful for similar computational platforms.
Thus a workflow characterization should include

a) particular platforms for which it is suitable
b) whether the workflow execution contains elements outside

the users control that may give different results on each exe-
cution due to other factors (for example runtime autotuning,
shared network and input/output resources, etc)

Specifying such information would allow for appropriate docu-
mentation by researchers when doing their work and better allow
reviewers to evaluate the work. This would allow the use of spe-
cialized hardware (such as the Anton or MDM molecular dynamics
supercomputers[25, 26]), or using portable software that has been
performance optimized. Commercial requirements imply that not
all technology (software or hardware), will be available as open
source, and many scientists will likely use some closed source com-
ponent in their workflow. Compile and run, install and run or just
run (for scripts or pre-installed software) may form a large part of
the computing that is being done today, in particular in the tail end
of high performance computing but it is unlikely to be the only
model in high performance computing. A means of describing re-
producibility requirements for the range of situations encountered
in high performance computing would be very helpful. Further
elaboration on these reproducibility classes will be done while ex-
ploring performance of the FFT and applications which utilize the
FFT.

ACKNOWLEDGMENTS
We thank all the authors of [2] and those who have given a pre-
sentation on their use of the FFT in the ongoing discussion at
www.fft.report. We also thank Robert Henschel for an overview of
the SPEC benchmarking process at the benchmarking in the data
center workshop at HPC Asia 2019. We thank RIKEN for the use of
the K computer, HLRS for the use of Kabuki and Hazelhen, and the
KAUST Supercomputing Laboratory for the use of Shaheen II. B.K.
Muite was partially supported by HPC Europa 3 (INFRAIA-2016-1-
730897).

REFERENCES
[1] D. Alvarez, A. O’Cais, M. Geimer, and K. Hoste. 2016. Scientific Software Man-

agement in Real Life: Deployment of Easybuild on a Large Scale System. In
Proceedings of the Third International Workshop on HPC User Support Tools (HUST
’16). IEEE Press, Piscataway, NJ, USA, 31–40. https://doi.org/10.1109/HUST.2016.8

[2] S. Aseeri, O. Batrasev, M. Icardi, B. Leu, A. Liu, N. Li, B.K. Muite, E. Müller, B. Palen,
M. Quell, H. Servat, P. Sheth, R. Speck, M. Van Moer, and J. Vienne. 2015. Solving
the Klein-Gordon Equation Using Fourier Spectral Methods: A Benchmark Test
for Computer Performance. In Proceedings of the Symposium on High Performance
Computing (HPC ’15). Society for Computer Simulation International, San Diego,
CA, USA, 182–191. http://dl.acm.org/citation.cfm?id=2872599.2872622;https:
//arxiv.org/abs/1501.04552

[3] S. Balakrishanan, A.H. Bargash, G. Chen, B. Cloutier, N. Li, B.K. Muite, M. Quell,
P. Rigge, M. Solimani, A. Souza, A.S. Thiban, J. West, D. Malicke, M. Van Moer,
and D. San Roman Alerigi. 2018. Parallel Spectral Numerical Methods. (November
2018). http://en.wikibooks.org/w/index.php?title=Parallel_Spectral_Numerical_
Methods.

[4] S. Balakrishanan, A.H. Bargash, G. Chen, B. Cloutier, N. Li, B.K. Muite, M. Quell,
P. Rigge, M. Solimani, A. Souza, A.S. Thiban, J. West, D. Malicke, M. Van Moer,
and D. San Roman Alerigi. 2019. Parallel Spectral Numerical Methods. (January
2019).

[5] G. Becker, P. Scheibel, M. LeGendre, and T. Gamblin. 2016. Managing Combina-
torial Software Installations with Spack. In Proceedings of the Third International

www.fft.report
https://doi.org/10.1109/HUST.2016.8
http://dl.acm.org/citation.cfm?id=2872599.2872622;https://arxiv.org/abs/1501.04552
http://dl.acm.org/citation.cfm?id=2872599.2872622;https://arxiv.org/abs/1501.04552
http://en.wikibooks.org/w/index.php?title=Parallel_Spectral_Numerical_Methods
http://en.wikibooks.org/w/index.php?title=Parallel_Spectral_Numerical_Methods

ICPE ’19 Companion, April 7–11, 2019, Mumbai, India Aseeri, Muite and Takahashi.

Workshop on HPC User Support Tools (HUST ’16). IEEE Press, Piscataway, NJ, USA,
14–23. https://doi.org/10.1109/HUST.2016.6

[6] A. Bhatele, K. Mohror, S.H. Langer, and K.E. Isaacs. 2013. There Goes the
Neighborhood: Performance Degradation Due to Nearby Jobs. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 41, 12 pages.
https://doi.org/10.1145/2503210.2503247

[7] Ink Chinavinijkul, Jacob Newcomb, Lingzhi Xi, and David P. Bunde. 2018. Brief
Announcement: Coloring-based Task Mapping for Dragonfly Systems. In Proceed-
ings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA
’18). ACM, New York, NY, USA, 91–93. https://doi.org/10.1145/3210377.3210665

[8] D. Chisnall. 2018. C Is Not a Low-level Language. Queue 16, 2, Article 10 (April
2018), 13 pages. https://doi.org/10.1145/3212477.3212479

[9] B. Cloutier. 2014. MPI Fortran Carpenter-Kennedy Incompressible Navier Stokes
Solver. (2014). https://github.com/bcloutier/PSNM/blob/master/NavierStokes/
Programs/NavierStokes3dFortranMPI/navierstokes.f90.

[10] B. Cloutier. 2014. ‘MPI Fortran Implicit Midpoint Rule Incompressible
Navier Stokes Solver. (2014). https://github.com/bcloutier/PSNM/blob/master/
NavierStokes/Programs/NavierStokes3dFortranMPI/navierstokes_IMR.f90.

[11] M. Eleftheriou, B.G. Fitch, A. Rayshubskiy, T.J.C. Ward, P. Heidelberger, and
R.S. Germain. 2008. A Study of the Effects of Machine Geometry and Mapping
on Distributed Transpose Performance. In Proceedings of the 5th Conference on
Computing Frontiers (CF ’08). ACM, New York, NY, USA, 79–86. https://doi.org/
10.1145/1366230.1366243

[12] M. Frigo and S. G. Johnson. 2005. The Design and Implementation of FFTW3.
Proc. IEEE 93, 2 (Feb 2005), 216–231. https://doi.org/10.1109/JPROC.2004.840301

[13] T. Gamblin, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski,
and S. Futral. 2015. The Spack Package Manager: Bringing Order to HPC Soft-
ware Chaos. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA,
Article 40, 12 pages. https://doi.org/10.1145/2807591.2807623

[14] M. Geimer, K. Hoste, and R.McLay. 2014. Modern Scientific SoftwareManagement
Using EasyBuild and Lmod. In Proceedings of the First International Workshop
on HPC User Support Tools (HUST ’14). IEEE Press, Piscataway, NJ, USA, 41–51.
https://doi.org/10.1109/HUST.2014.8

[15] Standard Performance Evaluation Corporation High Performance Group. 2011.
SPEC MPI2007 Run and Reporting Rules. (August 2011).

[16] T. Hoefler and R. Belli. 2015. Scientific Benchmarking of Parallel Computing
Systems: Twelve Ways to Tell the Masses when Reporting Performance Results.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA, Article 73,
12 pages. https://doi.org/10.1145/2807591.2807644

[17] B. Hoffman and K. Martin. 2003. The CMake Build Manager. Dr. Dobbs Journal
(Jan. 2003). http://www.drdobbs.com/cpp/the-cmake-build-manager/184405251#

[18] N. Jain, A. Bhatele, X. Ni, N.J. Wright, and L.V. Kale. 2014. Maximizing Throughput
on a Dragonfly Network. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14). IEEE Press,
Piscataway, NJ, USA, 336–347. https://doi.org/10.1109/SC.2014.33

[19] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau. 2017. The popper convention: Making re-
producible systems evaluation practical. In Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International. IEEE, 1561–1570.

[20] A.M. Jokisaari, P.W. Voorhees, J.E. Guyer, J. Warren, and O.G. Heinonen. 2017.
Benchmark problems for numerical implementations of phase field models. Com-
putational Materials Science 126 (2017), 139 – 151. https://doi.org/10.1016/j.
commatsci.2016.09.022

[21] N. Li. 2019. 2DECOMP&FFT. http://www.2decomp.org/
[22] N. Li and S. Laizet. [n. d.]. 2DECOMP&FFT – A highly scalable 2D decomposition

library and FFT interface. In Cray User Group 2010 conference.
[23] K. Martin and B. Hoffman. 2007. An Open Source Approach to Developing

Software in a Small Organization. IEEE Software 24, 1 (Jan 2007), 46–53. https:
//doi.org/10.1109/MS.2007.5

[24] R. Moore, R. Kearfott, andM. Cloud. 2009. Introduction to Interval Analysis. Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717716
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898717716

[25] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa, A. Kawai, and T.
Ebisuzaki. 2000. 1.34 Tflops Molecular Dynamics Simulation for NaCl with a
Special-purpose Computer: MDM. In Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing (SC ’00). IEEE Computer Society, Washington, DC, USA,
Article 54. http://dl.acm.org/citation.cfm?id=370049.370465

[26] D.E. Shaw, J.P. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao,M.M. Deneroff,
R.O. Dror, A. Even, C.H. Fenton, A. Forte, J. Gagliardo, G. Gill, B. Greskamp,
C.R. Ho, D.J. Ierardi, L. Iserovich, J.S. Kuskin, R.H. Larson, T. Layman, L.-S. Lee,
A.K. Lerer, C. Li, D. Killebrew, K.M. Mackenzie, S.Y.-H. Mok, M.A. Moraes, R.
Mueller, L.J. Nociolo, J.L. Peticolas, T. Quan, D. Ramot, J.K. Salmon, D.P. Scarpazza,
U. Ben Schafer, N. Siddique, C.W. Snyder, J. Spengler, P.T.P. Tang, M. Theobald,
H. Toma, B. Towles, B. Vitale, S.C. Wang, and C. Young. 2014. Anton 2: Raising
the Bar for Performance and Programmability in a Special-purpose Molecular

Dynamics Supercomputer. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14). IEEE Press,
Piscataway, NJ, USA, 41–53. https://doi.org/10.1109/SC.2014.9

[27] M.R. Shirts, C. Klein, J.M. Swails, J. Yin, M.K. Gilson, D.L. Mobley, D.A. Case, and
E.D. Zhong. 2017. Lessons learned from comparing molecular dynamics engines
on the SAMPL5 dataset. Journal of Computer-Aided Molecular Design 31, 1 (01
Jan 2017), 147–161. https://doi.org/10.1007/s10822-016-9977-1

[28] S. Sreepathi, E. D’Azevedo, B. Philip, and P. Worley. 2016. Communication
Characterization and Optimization of Applications Using Topology-Aware Task
Mapping on Large Supercomputers. In Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering (ICPE ’16). ACM, New York,
NY, USA, 225–236. https://doi.org/10.1145/2851553.2851575

[29] P. Steinbach and M. Werner. 2017. gearshifft – The FFT Benchmark Suite for
Heterogeneous Platforms. InHigh Performance Computing, J.M. Kunkel, R. Yokota,
P. Balaji, and D. Keyes (Eds.). Springer International Publishing, Cham, 199–216.

[30] P. Steinbach and M. Werner. 2017. gearshifft – The FFT Benchmark Suite for
Heterogeneous Platforms. InHigh Performance Computing, J.M. Kunkel, R. Yokota,
P. Balaji, and D. Keyes (Eds.). Springer International Publishing, Cham, 199–216.

[31] V. Stodden, C. Hurlin, and C. PÃľrignon. 2012. RunMyCode.org: A novel dis-
semination and collaboration platform for executing published computational
results. In 2012 IEEE 8th International Conference on E-Science. 1–8. https:
//doi.org/10.1109/eScience.2012.6404455

[32] D. Takahashi. 2001. A Blocking Algorithm for FFT on Cache-Based Processors.
In High-Performance Computing and Networking, B. Hertzberger, A. Hoekstra,
and R. Williams (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 551–554.

[33] D. Takahashi. 2003. A parallel 1-D FFT algorithm for the Hitachi SR8000. Parallel
Comput. 29, 6 (2003), 679 – 690. https://doi.org/10.1016/S0167-8191(03)00039-5

[34] D. Takahashi. 2014. FFTE: A Fast Fourier Transform Package. http://ffte.jp/
[35] X. Wang, M. Mubarak, X. Yang, R. B. Ross, and Z. Lan. 2018. Trade-Off Study

of Localizing Communication and Balancing Network Traffic on a Dragonfly
System. In 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1113–1122. https://doi.org/10.1109/IPDPS.2018.00120

[36] M. Werner and P. Steinbach. 2019. mpicbg-scicomp/gearshifft: v0.4.0. https:
//doi.org/10.5281/zenodo.2555649

[37] L. Wu, X. Xu, Y. Wei, and X. Liu. 2017. A Survey About Quantitative Measurement
of Performance Variability in High Performance Computers. In Advanced Parallel
Processing Technologies, Y. Dou, H. Lin, G. Sun, J. Wu, D. Heras, and L. Bougé
(Eds.). Springer International Publishing, Cham, 76–86.

[38] P. Yébenes, J. Escudero-Sahuquillo, P.J. García, and F.J. Quiles. 2016. Straightfor-
ward solutions to reduce HoL blocking in different Dragonfly fully-connected
interconnection patterns. The Journal of Supercomputing 72, 12 (01 Dec 2016),
4497–4519. https://doi.org/10.1007/s11227-016-1756-1

[39] Y. Zhang, O. Tuncer, F. Kaplan, K. Olcoz, V. J. Leung, and A. K. Coskun. 2018.
Level-Spread: A New Job Allocation Policy for Dragonfly Networks. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 1123–1132.
https://doi.org/10.1109/IPDPS.2018.00121

https://doi.org/10.1109/HUST.2016.6
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1145/3210377.3210665
https://doi.org/10.1145/3212477.3212479
https://github.com/bcloutier/PSNM/blob/master/NavierStokes/Programs/NavierStokes3dFortranMPI/navierstokes.f90
https://github.com/bcloutier/PSNM/blob/master/NavierStokes/Programs/NavierStokes3dFortranMPI/navierstokes.f90
https://github.com/bcloutier/PSNM/blob/master/NavierStokes/Programs/NavierStokes3dFortranMPI/navierstokes_IMR.f90
https://github.com/bcloutier/PSNM/blob/master/NavierStokes/Programs/NavierStokes3dFortranMPI/navierstokes_IMR.f90
https://doi.org/10.1145/1366230.1366243
https://doi.org/10.1145/1366230.1366243
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/HUST.2014.8
https://doi.org/10.1145/2807591.2807644
http://www.drdobbs.com/cpp/the-cmake-build-manager/184405251#
https://doi.org/10.1109/SC.2014.33
https://doi.org/10.1016/j.commatsci.2016.09.022
https://doi.org/10.1016/j.commatsci.2016.09.022
http://www.2decomp.org/
https://doi.org/10.1109/MS.2007.5
https://doi.org/10.1109/MS.2007.5
https://doi.org/10.1137/1.9780898717716
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717716
http://dl.acm.org/citation.cfm?id=370049.370465
https://doi.org/10.1109/SC.2014.9
https://doi.org/10.1007/s10822-016-9977-1
https://doi.org/10.1145/2851553.2851575
https://doi.org/10.1109/eScience.2012.6404455
https://doi.org/10.1109/eScience.2012.6404455
https://doi.org/10.1016/S0167-8191(03)00039-5
http://ffte.jp/
https://doi.org/10.1109/IPDPS.2018.00120
https://doi.org/10.5281/zenodo.2555649
https://doi.org/10.5281/zenodo.2555649
https://doi.org/10.1007/s11227-016-1756-1
https://doi.org/10.1109/IPDPS.2018.00121

	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Lessons learned
	5 Suggestions
	Acknowledgments
	References

