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Motivation: Epigenome-wide studies are often performed using
heterogeneous methylation samples, especially when there is no
prior information as to which cell-types are disease associated.
While much work has been done in ascertaining cell-type frac-
tions and removing cell-type heterogeneity variation, relatively
little work has been done in identifying cell-type specific varia-
tion in heterogeneous samples.
Results: In this paper, we present a Bayesian model-based ap-
proach for making cell-type specific inferences in heterogeneous
settings, by using a logit-Normal sampling distribution and in-
corporating a priori knowledge of cell-type lineage. The method
is applied to the detection of cell-type specific sex effects in
methylation, where cell-type information is present as an in-
dependent verification of the results. Panels derived from this
method contained more loci where CD8+T, CD19+B and Nat-
ural Killer cell-types were differentially methylated. The anal-
ysis suggests that an ensemble approach with this method in-
cluded could be used for discovering cell-type specific methyla-
tion changes.
Availability: https://github.com/danwkenn/Bayes_CDM
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Introduction
Epigenome-wide Association Studies (EWASs) have been

used extensively to find genomic loci where epigenetic

changes are associated with some phenotype of interest. Epi-

genetic changes are commonly identified by differences in

the DNA methylation levels of cells in accessible tissues such

as blood. DNA methylation is a biological process whereby a

methyl group (CH3) attaches to a Cytosine base which is pro-

ceeded by a Guanine base, referred to as a CpG locus. Methy-

lation is known to vary between cell-types (1), and to play a

role in cell differentiation (2) and normal cell function (3).

Reinius et al. (1) were able to recover the haematopoietic lin-

eage of whole blood immune cell-types using the methylation

profiles of cell-sorted samples, indicating there are distinct

cell-type and cell-type grouping methylation profiles.

The methylome has been found to have numerous associa-

tions with normal biological variation attributable to age (4)

and sex (5, 6), as well as autoimmune disorders including

multiple sclerosis (see Webb and de Arellano (7), Zulet et al.

(8) for recent reviews), diabetes (9), rheumatoid arthritis (10),

and many types of cancer (11, 12). Additionally, there are

known to be both phenotype- and disease-associated loci

which only show association for specific cell-types. White

et al. (13) used a Bayesian model selection approach to iden-

tify sets of panels with sex associations associated with cell-

types as a function of cell lineage. It has been demonstrated

that age has a measurably different effect on methylation for

different cell-subtypes and tissue (4, 14), and Multiple Scle-

rosis is known to be specifically associated with T-cell differ-

ential methylation (15).

Many EWASs are conducted using samples from mixed cell-

type tissues, such as Whole Blood or PBMC samples, be-

cause of (a) the prohibitive cost of obtaining cell-sorted sam-

ples, (b) the lack of a priori knowledge for which cell-types

are associated with the phenotype, and (c) the proliferation

of heterogeneous data in the public domain. Given mixed

cell samples are comprised of multiple constituent cell-types,

mixed cell methylation data exhibit a profile which is a con-

volution of the profiles from the constituent cell-types. This

gives rise to several issues when conducting an EWAS on

mixed cell tissue samples. Firstly, differences in methylation

between constituent cell-types introduce a large amount of

variation which is unrelated to the phenotype of interest (16).

Secondly, phenotype-related changes to the cell-type compo-

sition are manifested as methylation changes in mixed cell

profiles at cell-type associated loci, and could lead to false

associations at these loci. Thirdly, phenotype associations

with less prevalent cell-types are less likely to be detected

compared to that of more common cell-types.

Methylation data are often in the form of beta-values, each

of which can be viewed as a measure of the probability that

a strand of DNA in the sample is methylated at a given lo-

cus. Beta-values from mixed cell samples have been mod-

elled as a linear combination of the underlying cell-type spe-

cific methylation levels, weighted by the cell-type propor-

tions of the sample (17–19), an assumption referred to here as

the linear mixing process, a term used to describe the equiv-

alent process for gene expression data (20). While many

algorithms have been developed which account for and re-

move variation associated with cell-type heterogeneity (21–

23), there has been comparatively little research into find-

ing and estimating effects of a phenotype or disease state on

constituent cell-type methylation levels. This paper presents

a statistical model for detecting and estimating differential
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methylation on the cell-type level in mixed cell samples.

One method of predicting associations at the cell-type level

uses a priori known cell-type-specific regulatory informa-

tion to suggest which cell-types are likely to be differentially

methylated, given a set of phenotypically associated loci (24).

However, since the method does not make this determination

based on the data itself, it can only predict differential methy-

lation for a given cell-type at loci that are previously known

to be associated with that cell-type via regulatory informa-

tion. Therefore, there is merit in a method which uses only

the mixed-cell-derived data, with the greater potential of in-

ferring the direction and size of the phenotype effects in each

cell-type.

In this paper we propose a novel statistical model, which

combined with an optimisation fitting procedure we refer to

as Bayesian Cell-type level Differential Methylation (Bayes-

CDM). The model preserves the linear mixing process as-

sumption, but also implicitly enforces the boundary restric-

tions on the data and the parameters using a logit link func-

tion. Furthermore, this model incorporates prior informa-

tion concerning relatedness of cell-type methylation profiles,

based on the haematopoeitic lineage. It is known that methy-

lation plays a role in cell-type differentiation, so the param-

eters governing cell-type methylation can be made to reflect

this lineage via contrasts. None of the previous cell-type in-

ference methods leverage this information, but in our method

we establish a prior covariance structure to incorporate it.

We therefore propose an extension of EWAS to the cell-type

level, when only mixed cell samples are available.

The goal of an EWAS is to identify loci where there is an

association between the methylation data and an underlying

phenotype. The focus of this paper is to identify an asso-

ciation between the methylation level of a given cell-type’s

methylation level and an underlying phenotype when only

mixed cell data are available. Further, we assume that esti-

mates of the cell-type proportions in each sample are avail-

able.

A simulation of mixed cell data is conducted to demonstrate

the utility of the method in detecting cell-type level differ-

ential methylation. The method is then used for a combined

data set of methylation samples from male and female sub-

jects, with sex used as the phenotype to which related dif-

ferential methylation is identified. Given that corresponding

cell-sorted data was available, this provided a ground-truth

for comparison with the output of Bayes-CDM and several

competing methods.

Methods

Let I be the number of methylation samples. Methylation

data for a locus can be represented of an I-length vector y =
(y1, ...,yI)T

where yi corresponds to the beta-value of the ith

sample. Beta-values are constrained to the unit interval, that

is 0 ≤ yi ≤ 1 for i = 1, ..., I .

In this paper we consider a binary phenotype, whereby the

ith is assigned one of two possible phenotype levels, δi = 0,

or δi = 1. The goal is to infer whether there is a difference

in the methylation level between the two phenotype levels (0

and 1) for each constituent cell-type.

Given that the data are restricted to the unit interval, yi is

assumed to follow a logit-Normal distribution,

p(yi|μi,ρ) = logitNormal(yi;μi,ρ)

= ρ√
2πx(1−x)

exp
(

−ρ

2 (yi −μi)2
)

,

which is defined by the logit-median parameter μi ∈ R and

the precision parameter ρ ∈R+. The model is applied to each

locus individually, meaning that for I samples, the likelihood

is

p(y|μ1, ...,μI ,ρ) =
I∏

i=1
logitNormal(yi;μi,ρ).

Several previous methods (18, 21, 25) used a Normal dis-

tribution for the beta-value. The mean value was specified

as the linear combination of the underlying cell-type methy-

lation values, weighted by their respective cell-type propor-

tions. Since the mean and mode of the logit-Normal distri-

bution are not available in closed form, the median of yi was

used.

Let πik be the cell-type proportion estimate for sample i and

cell-type k, where i = 1, ..., I and k = 1, ...,K:

logit−1(μi) =
K∑

k=1

πikηik

The median of yi is therefore assumed to be the linear

combination of the underlying cell-type methylation levels

ηi1, ...,ηiK , where each ηik is constrained between 0 and 1.

The cell-type proportion values are constrained to be positive,

and values from each sample add to 1.

The linear predictor for each ηik is parametrised in terms of

a baseline θk and a shift φk for each cell-type.

logit(ηik) = θk + δiφk

Therefore, ηik can be thought of as the cell-type k methyla-

tion level in sample i. This parametrisation allows for the ef-

fect of phenotype on cell-type k methylation level to be esti-

mated from φk. When φk = 0, there is no difference between

the methylation levels of cell-type k for the two phenotype

levels. By having θk + δiφk equal the logit of the cell-type

methylation level, θk and φk do not need to be constrained in

order for ηk and thus μi to remain on the unit interval.

We adopted a Bayesian modelling approach to overcome the

issue of constrained data and parameters, and to incorpo-

rate cell-type lineage relationships as prior information. The

model has 2K free parameters specifying the mean methyla-

tion level, but typical methylation data sets tend to have small

sample sizes. Therefore, regularisation in the form of an in-

formative prior distribution was used for the θ and φ parame-

ters. A set of Normal shrinkage priors was placed on special

linear combinations which incorporate the haematopoeitic

lineage (see Figure 1). For the remainder of the paper we fo-
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Fig. 1. Cell-types and cell-type groupings as clustered by the haematopoietic lin-
eage, with nodes each given a number. The nodes relate to the columns of the
lineage matrix A while each of the cell-types relate to a row.

Parameter Mapping

θMonocyte ξ1 − 1/2ξ2 − 1/2ξ3
θNeutrophil ξ1 − 1/2ξ2 + 1/2ξ3
θCD19+B ξ1 + 1/2ξ2 − 1/2ξ4

θNatural Killer ξ1 + 1/2ξ2 + 1/2ξ4 − 1/2ξ5
θCD4+T ξ1 + 1/2ξ2 + 1/2ξ4 + 1/2ξ5 − 1/2ξ6
θCD8+T ξ1 + 1/2ξ2 + 1/2ξ4 + 1/2ξ5 + 1/2ξ6

φMonocyte ξ1 − 1/2ζ2 − 1/2ζ3
φNeutrophil ζ1 − 1/2ζ2 + 1/2ζ3
φCD19+B ζ1 + 1/2ζ2 − 1/2ζ4

φNatural Killer ζ1 + 1/2ζ2 + 1/2ζ4 − 1/2ζ5
φCD4+T ζ1 + 1/2ζ2 + 1/2ζ4 + 1/2ζ5 − 1/2ζ6
φCD8+T ζ1 + 1/2ζ2 + 1/2ζ4 + 1/2ζ5 + 1/2ζ6

Table 1. Mapping of contrast parameters ξ and ζ terms to the cell-type level
parameters θ and φ.

cus on the example of whole blood methylation data, which

is composed of 6 major cell-types; CD14+ Monocyte, CD56+

Natural Killer (henseforth abbreviated to Monocyte and Nat-

ural Killer respectively), Neutrophil, CD19+B, CD4+ and

CD8+T, however this method can be extended to any hetero-

geneous tissue.

By associating a parameter with the node of the lineage rather

than the cell-type, we can represent cell-type methylation as

successive contrasts between the two cell-type groupings dis-

tinguished after each node. The phenotype level-0 cell-type

methylation levels are parametrised by θ = (θ1, ...,θK)T
. Let

ξ = (ξ1, ..., ξK)T
be a set of contrast parameters associated

with each node, such that ξ and θ are related via a lineage

matrix A:

θ = Aξ

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 1/2 − 1/2 0 0 0
1 − 1/2 + 1/2 0 0 0
1 + 1/2 0 − 1/2 0 0
1 + 1/2 0 + 1/2 − 1/2 0
1 + 1/2 0 + 1/2 + 1/2 − 1/2

1 + 1/2 0 + 1/2 + 1/2 + 1/2

⎤
⎥⎥⎥⎥⎥⎥⎦

Each column relates to a node in the cell-type lineage, and

each row refers to a cell-type. The corresponding map-

ping of contrast parameters to cell-type level parameters is

given in Table 1. The parameters ξq differentiate between

the cell-type groupings formed by the associated node q.

For example, ξ2 acts as the contrast between Myeloid and

Lymphocyte-I types, as each Myeloid cell-type methylation

has a −1
2ξ2 term, and each Lymphocyte-I cell-type base-

line methylation has a +1
2ξ2 term. The subsequent ξ terms

describe later cell-type differentiations in the lineage such

as ξ6, which is the difference in baseline methylation be-

tween CD8+T and CD4+T. The exception is the first parame-

ter ξ1 acts as an intercept, since it appears as a component in

all constituent cell-types, and does not differentiate between

cell-type groupings.

The influence of cell-type lineage on the phenotype ef-

fect is also considered. In the same way as above, φ =
(φ1, ...,φK)T

can be described in terms of node contrasts

ζ = (ζ1, ..., ζK)T
.

φ = Aζ.

Here ζ1 acts as an overall shift in methylation level from phe-

notype level 0 to 1. The second parameter ζ2 is the differ-

ence in phenotype effect between Myeloid and Lymphocyte-I

types, and so on.

We placed Normal priors with mean 0 on the linear contrast

parameters, which have the effect of shrinking the posterior

distributions and parameter estimates towards 0, and shrink-

ing associated cell-type methylation level parameters (θ and

φ) of related cell-types together. The degree of shrinkage is

dependent on the precision of the prior distributions relative

to the informativeness of the data as expressed by the likeli-

hood. Therefore, as sample size and thus information from

data increases, bias incurred from shrinkage decreases. Thus

for q ∈ {2, ...,K},

p(ξq|λ1) = Normal(ξq;0,λ1),
p(ζq|λ2) = Normal(ζq;0,λ2).

The prior distributions for the two precision parameters λ1
and λ2 were Gamma distributed with a shape parameter α =
1 and the shrinkage parameter λ0,

p(λ1) = Gamma(λ1;1,λ0),
p(λ2) = Gamma(λ2;1,λ0).

The mean of p(λ1) and p(λ2) is 1/λ0, so the effect of in-

creasing λ0 is to decrease the prior mean of λ1 and λ2 and

thereby increase the amount of regularisation. The value

λ0 = 1 was chosen as a reasonable level of regularisation,

given the high noise-low data context of methylation studies.

It is straightforward to show that the marginal prior distri-

bution of the ξ and ζ parameters is a standard Student’s t
distribution with 2 degrees of freedom. For a simple empir-

ical justification and investigation of the prior distributions

of θ and φ parameters as a consequence of the above prior

specification of ξ and ζ refer the Supplementary Material.

A half-Cauchy prior was used for the precision parameter ρ:

p(ρ) = halfCauchy(ρ;0,5) = 2
5(1+x2/25)
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Since ξ1 and ζ1 are not cell-type related, we chose not to

shrink them and instead use a weakly informative Cauchy

distribution:

p(ξ0) = Cauchy(ξ0;0,10) = 1
10(1+x2/100) ,

p(ζ0) = Cauchy(ζ0;0,10) = 1
10(1+x2/100) .

A. Model Inference. The posterior densities for the model

parameters were approximated using Laplace approxima-

tions. Maximum A Posteriori (MAP) estimates for the pa-

rameters
(

ξMAP,ζMAP,λMAP
1 ,λMAP

2 ,ρMAP
)

and an estimate

of the Hessian matrix were calculated using numerical op-

timisation implemented in the STAN (26) software R pack-

age. To calculate posterior standard deviations of φ and θ,

the standard deviation of the marginal distributions needed to

be calculated from the corresponding Hessian estimate.

Since the parameter φk determined the effect size of pheno-

type on the methylation level of cell-type k, it is the basis for

predicting if a given cell-type k is differentially methylated.

Since we used a Laplacian approximation to the posterior, the

probability

2Pr
(

Z >
∣∣φMAP

k

∣∣/ŜD(φk)
)

is a measure of the magnitude of the standardised effect size,

where Z ∼ Normal(0,1) and ŜD(φk) is the estimate of the

standard deviation of the posterior for φk. Consequently, we

used this value with cut-off value α as a decision boundary.

If this posterior probability for φk was less than α, then we

predict that cell-type k is differentially methylated.

B. Simulation study. We conducted a simulation study of

mixed cell data to investigate the ability of the method to de-

tect differential methylation in cell-types, in comparison to

a number of other potential methods. An underlying set of

cell-type methylation levels was constructed for four differ-

ent scenarios (see Suppl. Figure 1) to investigate behaviour

of detection methods over different profiles of differential

methylation. We presumed a reasonable number of samples

for a methylation study is I = 50, and precision parameter

ρ = 30.

The four simulation scenarios were designed to investigate

how varying the number of differentially methylated cell-

types and the effect sizes affected the probability of detection

(see Suppl. Figure 1 for visual depiction). Scenario 1 sim-

ulates a locus where the differential methylation is restricted

to cell-types of the myeloid lineage grouping (Monocyte and

Neutrophil), playing to the strength of Bayes-CDM, which

uses the prior covariance structure to shrink related cell-type

methylation levels together. Scenario 2 showed a similar situ-

ation, except the effect is much smaller. Scenario 3 showed a

situation where differential methylation is exhibited in three

cell-types, not all related. Finally, Scenario 4 showed a sit-

uation where only a single cell-type, the Monocyte, is dif-

ferentially methylated. The method and a set of alternatives,

described in Table 2, were used to predict if each cell-type

was differentially methylated in all four scenarios. This was

repeated for 100 simulations of each scenario to investigate

the methods in terms of specificity and sensitivity.

In all scenarios, there was a non-phenotypic difference in the

methylation levels between the Myeloid and Lymphocyte, as

well as a difference between CD19+B and the other Lym-

phocyte types. In terms of the model, this translates to differ-

ing θ-values between cell-types. The Fluorescence-Activated

Cell-Sorting (FACS) composition data from a mixed-sex data

set (GSE88824) was used to fit Dirichlet parameters (via

diri.est from the Compositional R package), and sim-

ulated composition data were drawn from this Dirichlet dis-

tribution.

Several alternative methods were used as a comparison for

Bayes-CDM and are described in table 2. The Orthogonal

Effects Linear Regression (OE-LR) method presented here

models the phenotype effect as non-specific to cell-type, and

as such should have a performance similar to methodologies

which correct for cell-type heterogeneity without allowing

for cell-types to have different phenotype effects. Some ex-

amples of this type of methodologies include (CITE,CITE,

CITE), which all use the proportion estimation method by

(27) to obtain proportion estimates. The Aggregated Linear

Regression (Agg-LR) method represents a suggested exten-

sion of the method used by (18) for more than two cell-types.

Here a separate model is fitted for each cell-type by aggregat-

ing other cell-type proportions together. Population-Specific

Expression Analysis (PSEA) (25) and an implementation of

the LASSO (28) represent the same, fully specified linear

model, with a separate effect for each cell-type. They differ

in that PSEA uses best-subset selection while LASSO uses

l1-regularisation to select the optimal parameter set. In the

case of the LASSO, the variable selection was limited to the

interaction effects between cell-type fraction and phenotype,

and 10-fold cross-validation was used to find the optimal tun-

ing parameter for the LASSO. To the best of our knowledge,

the LASSO has not been applied for this specific problem

in methylation data, however given the interest in regularisa-

tion techniques we wanted to investigate how such a method

would perform.

Since there are multiple cell-types; and therefore mul-

tiple possible cell-types with differential methylation, an

ideal method correctly detects all cell-types with differential

methylation. Consequently, the detection rate of differential

methylation in each cell-type was calculated, as well as the

rate of choosing five multi-cell-type measures described in

Table 3. These measures were designed to quantify the si-

multaneous predictive performance over multiple cell-types.

C. Case study: Finding Cell-type differential methy-
lation associated with sex. Two publicly available data

sets (GEO Accession Numbers: GSE35069 and GSE88824)

containing both mixed cell and cell-sorted data, as well as

Fluorescence Activated Cell Sorting (FACS) estimates of the

cell-type proportions (see Supplementary Material of Reinius

et al. (1)), were merged into a single combined data set. In to-

tal there were 5 female and 9 male subjects, which allowed us

to identify differential methylation associated with sex using
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C Case study: Finding Cell-type differential methylation associated with sex

Method Abbreviation Description

Orthogonal Effects Lin-

ear Regression (standard

heterogeneity-corrected

linear regression)

OE-LR Linear regression with cell-type proportion estimates included to account for cell-

type heterogeneity, and a single orthogonal effect of phenotype. Model:

yi = δiβ +
K∑

k=1

πikγk + εi

Aggregated Linear Re-

gression (extension of

(18))

Agg-LR Method is run once for each cell-type. For cell-type k, the proportions of the other

cell-types are aggregated together, and the following model is fitted:

yi = β0 +β1πik +β2δiπik +β3δi (1−πik)+ εi

The value of β2 determines if cell-type differential methylation occurs.

Population-Specific Ex-

pression Analysis (25)

PSEA Method uses a complete model with a phenotype effect for each cell-type:

yi = β0 +
K∑

k=1

πikβk +
K∑

k=1

πikδiγk + εi

The method then uses best subset selection based on the Akaike Information Crite-

rion to select a subset of the coefficients. We set the cut-off value as 1 if the effect

was not selected, and the standard F -test p-value from the OLS fit of the model if

selected.

Least Absolute Shrink-

age and Selection Opera-

tor (28)

LASSO Method is a complete model as with PSEA, but applies a regularising penalty func-

tion on the coefficients which acts to select variables by shrinking some to 0. We

only applied the shrinkage on the phenotype effect coefficients, and obtained a

cut-off by choosing the value of the shrinkage parameter where the coefficient was

shrunk to 0.

Table 2. Alternative methods for finding differential methylation in cell-type heterogeneous samples. These methods represent four possible alternative approaches to making
inferences; Orthogonal Effects Linear Regression (OE-LR); where only considering orthogonal effects to the cell-type proportion estimates; Aggregated Linear regression
(Agg-LR), where each cell-type’s differential methylation is inferred separately; Popoulation-Specific Expression Analysis (PSEA), which uses the full linear model and a
subset selection method; and LASSO, which also uses the full model but uses the sparsity property of the regularising function in contrast with the PSEA method.

Measure Description

Predicted DM Differential methylation detected in at-least one cell-type.

At least one true Differential methylation correctly predicted in at least one cell-type.

At least one true, no false Differential methylation correctly detected in at least one cell-type, without any incorrect

detections.

All true associations Differential methylation correctly detected for all cell-types with differential methylation.

Correct Subset Differential methylation correctly detected for all cell-types with differential methylation,

with no incorrect detections.

Table 3. Measures for the evaluating predictive performance over multiple cell-types.

both the mixed cell data and independently using the cell-

sorted data.

C.1. Obtaining a ground-truth differential methylation us-
ing cell-sorted data. In this case study, each of the meth-

ods described in the previous section were used to predict

which loci were differentially methylated for each cell-type

from mixed-cell data. The cell-sorted data available provided

an independent and accurate means of detecting differential

methylation, and in consequence the differential methylation

status detected via cell-sorted data were used as the ground-

truth against which the predictions from mixed-cell data were

compared.

For each cell-type and locus, the beta-values were grouped

into two classes based on sex, and an F test of difference of

means was performed. The resulting p-values were adjusted

using the Benjamini-Hochberg procedure (29) to control the

false discovery rate. Using the cut-off α, a cell-type was la-

belled as differentially methylated at a given site if the asso-

ciated adjusted p-value was less than α. In this case study we

used the value α = 1 × 10−4. While this implies a degree of

false positives and false negatives in this set, we considered

this to be a reasonable substitute for a perfect ground-truth,

especially since the false positive rate should be low given the

value of α, and that it is unlikely that whole blood methods

would detect cell-type differential methylation without it also

being detected in cell-sorted data.

C.2. Validation. When the actual locations of Cell-type dif-

ferential methylation for each cell-type are known, it is pos-
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sible to perform a Receiver-Operator Curve (ROC) analysis

for each cell-type, as well as for general differential methy-

lation prediction. The relationship between panel size and

False Discovery Rate (FDR) was explored and compared be-

tween methods, and panel sizes were chosen so the FDR was

10%±1%.

Results

D. Simulation Study. The marginal densities and tabulated

summary statistics for the proportion estimates on which the

simulated proportion values are based are given in Suppl. Ta-

ble 1.

As shown in Figure 2 The Orthogonal Effect-Linear Regres-

sion (OE-LR) predicted Differential Methylation for all sim-

ulation runs of Scenarios 1 and 3, but only 76% and 44% of

runs in Scenarios 2 and 4 respectively. OE-LR exhibited poor

performance in Scenario 4, indicating that when differential

methylation only occurs in a single uncommon cell-type, this

is difficult to detect as an orthogonal effect, since the apparent

orthogonal effect of a truly cell-type specific effect is propor-

tional to the average cell-type fraction.

The LASSO method predicted differential methylation at a

higher frequency than the other methods in all four scenar-

ios, except for Bayes-CDM at a cut-off value of 0.2. How-

ever, the LASSO displayed a tendency to incorrectly predict

differential methylation for cell-types where no differential

methylation was present. This resulted in a low rate of cor-

rect subset prediction. The LASSO performed comparatively

well for predicting differential methylation in Scenario 4, in-

dicating that it may be suitable where only a single cell-type

is differentially methylated.

The Aggregating Linear Regression (Agg-LR) performed the

most poorly in terms of predicting differential methylation

and correct subset prediction (excluding OE-LR which is

not designed to predict the correct subset). While Agg-LR

rarely incorrectly predicted differential methylation, it lacked

the sensitivity to predict differential methylation in cell-types

where it was present. As a result, Agg-LR predicted the cor-

rect subset in 18% of simulation runs in Scenario 3 and ≤ 8%
for the other scenarios. The Agg-LR method was computa-

tionally efficient, so it may be useful as a first-pass analysis

when the signal is particularly large and from multiple cell-

types as in Scenario 1.

The PSEA method tended only to predict differential methy-

lation in a single cell-type if any, which reduced its perfor-

mance in the scenarios where more than one cell-type was

present (1,2, and 4). The method had a very low rate of pre-

dicting cell-type level differential methylation incorrectly.

The best method for correct subset prediction was Bayes-

CDM, however the optimal cut-off value differed between

scenarios. In Scenario 1, a cut-off value of 0.05 was optimal,

but in Scenario 4 the cut-off value 0.1 was optimal, and 0.15

was optimal for Scenario 2 and 3. While these values did not

correlate with the optimal values for prediction of differen-

tial methylation in each scenario, they tracked well with the

correct subset measure. This indicates that the prediction of

differential methylation increases with cut-off both because
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Fig. 2. Results for four scenarios with 100 simulation runs each. Bayes-CDM,
PSEA, Agg-LR and LASSO methods were used to detect cell-type differential
methylation in each of the 6 cell-types, as well as the four metrics. For Bayes-
CDM, several different cut-off values are given. Numbers indicate the proportion of
simulation runs where the Cell-type differential methylation was detected or multi-
cell-type metric was met. The rows are coloured blue or red , depending on
whether a large or small value should be seen, given which cell-types are differen-
tially methylated in each scenario.

of an increase in prediction of truly differentially methylated

cell-types, and a higher rate of incorrectly predicting differ-

ential methylation. As a result, the rate of correct subset

prediction increases as a result of correct prediction, but de-

creases as the rate of incorrect prediction increases.

For a single simulation run on each scenario, the model

in Bayes-CDM was fitted using Hamiltonian Monte Carlo

(HMC), and the posterior densities compared with the

Laplace approximations. While the true densities displayed

some skewness where the Laplace approximations did not,

the mean values were close and the overall shapes overlapped

well. Therefore we concluded that the Laplace approxima-

tions were a sufficiently accurate representation of the true

posterior densities ( see Suppl. Figure 2).

E. Case Study: Sex Associations. Based on the cell-

sorted data, it was determined that 5813 (1.3%) of CpG loci

exhibited differential methylation in at least one cell-type. Of

these loci, 2553 (43.9%) exhibited differential methylation in

all six cell-types, and were found to be almost all located on

the X and Y chromosomes (2538 and 14 respectively; one

exception on Chr 3). Of the DMLs with less than 6 differen-

tially methylated cell-types, most of these were also located

on the X and Y, although 27 (0.8%) were located on other

chromosomes.

A ROC analysis (Figure 3) showed that all methods except

for the Agg-LR showed very high discrimination (AUC >
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99%) between CpGs with and without differential methyla-

tion.

The FDR (Figure 3 B) for Agg-LR and LASSO methods

grew rapidly compared to the other methods as CpGs were

added to the panel, while the FDR for Bayes-CDM, OE-LR

and PSEA grew very slowly, indicating these methods were

better able to discriminate between differentially methylated

sites and non-differentially methylated loci.

Investigating these panels showed that almost all loci which

exhibited differential methylation in four or more cell-types

were contained within the panels, with the exception of the

Agg-LR panel. All panels tended to include fewer loci where

less than four cell-types were differential methylated. For all

methods, there was indication of a relationship between the

number of cell-types with differential methylation at a locus,

and the chance of predicting differential methylation at this

locus.

F. Cell-type-specific Differential Methylation Predic-
tion. The second task was to predict differential methylation

at loci for specific cell-types. The ROC analysis showed

that the Bayes-CDM performed quite consistently over all

cell-types. It was the top-performing method for the CD8+T

and CD19+B cell-types, while the OE-LR method performed

the best for the Monocyte and Neutrophil cell-types, which

tended to be differentially methylated together, resulting in a

large effect. For the Bayes-CDM and OE-LR methods, the

Neutrophil cell-type appeared to be the most difficult to de-

tect based on the AUC values, despite being the most com-

mon cell-type. The PSEA method showed very poor perfor-

mance for determining cell-type differential methylation for

any of the cell-types. The LASSO was generally a poor to

moderate performer for the all cell-types except CD4+T. The

Agg-LR method showed poor comparative performance ex-

cept for Neutrophil, where it outperformed the Bayes-CDM

method. For predicting differential methylation at specific

cell-types, the Bayes-CDM and OE-LR performances were

almost equal best, although the AUC indicated OE-LR was a

slightly better performer.

For panels of the same size the Bayes-CDM and OE-LR

methods generally had lower FDR values, and the relation-

ship between FDR and panel size was monotonic, with the

exception of Neutrophils where the minimum was at a panel

size around 2000. The FDR curve for the PSEA method was

not monotonic or smooth, and did not drop below 10% except

for Natural Killers.

Panels were selected for a 10 ± 1% FDR where possible.

This produced panels of varying size, including several cases

where the FDR was never close enough. Notably no method

could produce a panel of any size for Neutrophil with a FDR

near 10%. While panels from both Bayes-CDM and OE-LR

contained most loci with 5 or more other cell-types also ex-

hibiting differential methylation, Bayes-CDM tended to de-

tect more of the CpG loci with smaller subsets of cell-types

exhibiting DM for CD8T, NK, and CD19B, while OE-LR

was able to detect more of these loci in Monocytes.

Discussion
In this paper, we present a new method for predicting differ-

ential methylation in specific cell-types when only heteroge-

neous or mixed cell data are available. The method is based

on a Bayesian model which takes account of the inherent con-

straints on both methylation data and cell-type methylation

levels through logit link functions, whilst preserving the lin-

ear mixing process assumption. We also incorporate prior

knowledge of cell-type relatedness by specifying indepen-

dent Normal priors on a set of contrast parameters, which

act to shrink related cell-type methylation levels together.

The method performed relatively well at detecting differen-

tially methylated loci in comparison to other methods, and

demonstrated consistent performance in identifying differen-

tial methylation associated with phenotype for all cell-types.

Almost all methods for predicting differential methylation at

the cell-type level require a priori cell-type proportion in-

formation. The PSEA method (25) uses the mean values of

a priori known cell-type specific expression as a surrogate

for proportion estimates, while the method by Montaño et al.

(18) uses reference-based proportion estimate (27) as covari-

ate inputs. An exception is the recent unsupervised method

MeDeCom by Lutsik et al. (19), which applies non-negative

matrix factorisation in addition to a boundary-weighted reg-

ularisation penalty to estimate so-called latent methylation

components bounded between 0 and 1, and proportion es-

timates for each of these components. While this method

presents a useful procedure for estimating cell-type methyla-

tion level, it does not include phenotype covariate informa-

tion, and so it is not make clear how to use it for identifying

phenotype related differential methylation.

A significant hurdle in modelling the heterogeneous data is

that both the beta-value data and the cell-type methylation

levels are restricted to the unit interval. A general remedy to

the bounded methylation data is to apply a logit-transform,

the result being referred to as an M-value. The M-value is

unrestricted, thus allowing standard analysis tools with Nor-

mal assumptions to be used more effectively (30). However,

a critical issue in the case of mixed cell data is that if methy-

lation is characterized in terms of M-values, then the linear

mixing process assumption used in previous methods needs

to be redefined.

Methods which consider cell-type heterogeneity can model

phenotype effects either orthogonal to proportion estimates

such as RefFreeEWAS (21), or as interactions between phe-

notype and proportion, such as PSEA Kuhn et al. (25) and the

method by Montaño et al. (18). Kuhn et al. (25) and Mon-

taño et al. (18) give similar mathematical arguments for this

conclusion.

Previous methods have used a Normal distribution for beta-

values without any constraints (18) or used constrained opti-

misation (19). (30) showed empirically that standard statisti-

cal tests for differential methylation with normal distribution

assumptions were more powerful when the input data was the

M -value version rather than beta-value. This method uses a

logit-Normal model, which is equivalent to using a normal

distribution with M -value data, but the linear mixing pro-
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Bayes-CDM 99.2 95.4 95.8 95.2 92.1 80.8 94.0

OE-LR 99.4 94.6 96.2 93.1 95.9 84.9 94.6

LASSO 99.4 66.9 95.3 69.8 73.5 79.3 42.2

PSEA 99.3 51.7 48.7 47.1 47.7 53.1 75.10

Agg-LR 89.6 67.0 55.8 76.6 69.4 82.2 57.5

Fig. 3. (A) ROC curves for finding Differentially Methylated Loci, showing True Positive Rate (TPR) on the y-axis and False Positive Rate on the x-axis. Area Under the
Curve (AUC) metric given for each method in the legend. (B) False Discovery Rate for panels of predicted DMLs, as it changes with increasing panel size for all 5 methods,
calculated using the ground-truth from the cell-sorted data. (C) Frequencies of differentially methylated CpGs found in 10% FDR panels from the five different methods,
stratified by the number of cell-types differentially methylated. (D) ROC analysis of the five different methods’ ability to detect differential methylation for each of the six
cell-types. AUC (%) values are given in the table below the graph.
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Fig. 4. (A) False Discovery Rate (FDR) curve for each method as a function of panel size. Each method creates a different panel for each cell-type. (B) Distribution of CpGs in
10% FDR panels as a function of the number of cell-types with differential methylation. Values here are a proportion of the total number of CpGs with differential methylation
for the given cell-type.

cess assumption is still valid. Additionally, with the excep-

tion of White et al. (13), this is the first method to incorporate

prior information from the cell-type lineage to improve infer-

ence. Whereas White et al. (13) used the cell-type lineage

in a model selection context to identify a small set of candi-

date models based on lineage groupings, here we use a single

model and incorporate the lineage as informative prior distri-

butions.

The shrinkage parameter λ0 controls the informativeness of

the prior, and is analogous to the tuning parameter in ridge

regression or other penalized regression methods. Because

a hierarchical approach was used where λ0 is conditionally

separated from the parameters of interest by λ1 and λ2, this

should mean the inferences are somewhat sensitive to choice

of λ0. Nevertheless, the value could potentially be optimised

by cross-validation or via information criteria such as AIC or

BIC. However, these require multiple runs of the model for

different tuning values, which has a high computational bur-

den. An alternative could be the Empirical Bayesian Gibbs

Sampler proposed by Casella (31), which uses an EM al-

gorithm step before the Monte Carlo sampling algorithm to

optimise the hyperparameter. A related algorithm proposed

by Atchadé (32) uses stochastic approximation to optimise

the hyperparameter and draw MC samples in the same run.

These algorithms have subsequently been employed in sev-

eral Bayesian regularised regression methods, including the

Bayesian LASSO (33), the Bayesian elastic net (34), and the

Bayesian adaptive LASSO (35). These MCMC-based pro-

cedures are much slower than the optimisation method used,

and so present a significant computational challenge given

the large number of loci. Despite this, the problem remains

embarrassingly parallel.

From the results of our case study, it is evident that the abil-

ity of any method to predict differential methylation at a locus

depends on the number of differentially methylated cell-types

and the cell-type of interest. Among the compared methods
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Bayes-CDM was close to the best for finding differentially

methylated loci, but investigation of the 10% FDR panels

showed that Bayes-CDM was more likely to correctly pre-

dict differential methylation at loci with a single differentially

methylated cell-type for some cell-types. It is therefore rec-

ommended that orthogonal methods such as OE-LR or het-

erogeneity correction methods (e.g. RefFreeEWAS (21) or

ReFACTor (23)) are used alongside Bayes-CDM in finding

differentially methylated loci. Differentially methylated loci

found using the former could subsequently be investigated

with Bayes-CDM to predict cell-type differential methyla-

tion.

The simulation scenarios showed that Bayes-CDM was

broadly better at accurately detecting cell-type differential

methylation where differentially methylated cell-types were

contained in a lineage grouping. This indicates that the

Bayes-CDM model is more suited to loci where the under-

lying profile of cell-type methylation levels fits well within

lineage groupings. The cell-sorted data indicates that a large

portion of the methylome is significantly associated with cell-

type groupings (13), in comparison with the number associ-

ated with specific cell-types. Performance of Bayes-CDM at

detecting differential methylation restricted to a single cell-

type is limited for small sample size, but as the amount of

information from data increases, the bias in the posterior to-

ward cell-type groupings would decrease, resulting in more

precision for specific cell-types.

This model-based approach has a great deal of potential for

similar applications where the assumption of a linear mix-

ing process is appropriate. For instance, gene expression ar-

ray data from mixed cell samples is constrained to the pos-

itive real line and can be modelled as a linear combination

of underlying cell-type expression profiles (25). A similar

model to Bayes-CDM using a log-transform rather than a

logit-transform could be applied to detect cell-type specific

expression associated with a phenotype. Count-based data

from a mixed cell sample could be modelled in a similar way

with a binomial, beta-binomial, Poisson, or Poisson-Gamma

data distribution.

In the context of tissue for which there is no known level of

hierarchy, one could still apply a logit-function to enforce the

constraint on the cell-type methylation levels and the whole

blood methylation. Instead of applying informative priors on

contrast parameters, the priors could be applied to the cell-

type levels, with a common mean parameter, or another rep-

resentations based on known external information.

The future work is to expand the model to detect cell-type

level differential methylation in multiple neighbouring loci

rather than just on a locus-by-locus basis. This will allow in-

vestigation of differential methylation regions as well as sin-

gle loci.
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Method Advantages Limitations
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• implicit boundary constraints on data

• cell-type lineage information incorporated.

• consistent performance for identifying cell-

type differential methylation over different

cell-types.

• Optimal method for identifying DM in

CD8+T, and CD19+B.

• Slightly suboptimal for identifying differen-

tially methylated loci.

• necessary to set λ0 a priori.

Orthogonal

Effects

Linear

Regression

• Most powerful method for finding differen-

tially methylated loci.

• Optimal method for identifying DM in

CD14+ Monocyte, Neutrophil, CD4+T and

Natural Killer types.

• Doesn’t explicitly make cell-type level dif-

ferential methylation predictions.

Aggregating

Linear

Regression

• limited degrees of freedom means method is

unable to capture heterogeneity variation in

Whole Blood.

• Sub-optimal performance for predicting dif-

ferential methylation in all cell-types and

predicting differentially methylated loci.

LASSO

• Powerful method for identifying differen-

tially methylated loci.

• effective for predicting CD4+T differential

methylation.

• High rate of falsely predicting differential

methylation at the cell-type level.

PSEA
• Optimal method for predicting correctly a

single differentially methylated cell-type.

• Poor performance when number of differen-

tially methylated cell-types is greater than 1.
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