
Case-based Argumentation
Infrastructure for Agent Societies

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen
Digital

Universitat Politècnica de València

Author:
Jaume Jordán Prunera

Supervisor:
Dr. Vicente Julián Inglada

September, 2011

2

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Objectives . 10

1.3 Structure of the document . 11

2 State of the Art 13

2.1 Introduction . 13

2.2 Open Multi-Agent Systems . 14

2.2.1 THOMAS . 16

2.2.2 Magentix2 . 16

2.3 Knowledge Interchange . 18

2.4 Case-based Reasoning . 19

2.5 Current Applications of Argumentation in AI 20

3 Argumentation Framework 25

3.1 Agent society . 25

3.2 Knowledge Resources, Argument Types and Support Set 26

3.3 Position generation and selection . 28

3.4 Argumentation Protocol . 31

3.5 Remarks . 35

4 Infrastructure 37

4.1 Introduction . 37

4.2 Argumentative agents . 39

4.2.1 Domain CBR . 40

4.2.2 Argumentation CBR . 43

4.2.3 Argument Management Process . 47

4.3 Commitment Store . 51

4.4 Knowledge interchange mechanism . 51

3

4 CONTENTS

5 Call Centre Example 55

5.1 Customer support application . 55

5.2 Evaluation . 58

5.2.1 Unitary Tests . 59

5.2.2 Percentage of problems that were solved with respect to the knowledge

of the agents . 61

5.2.3 Prediction error with respect to the knowledge of the agents 62

5.2.4 Learning of the Domain CBR and the Argumentation CBR 63

5.2.5 Generated locutions in the dialogues 65

6 Conclusions 67

6.1 Contributions . 67

6.2 Future work . 68

6.3 Related publications . 69

List of Figures

3.1 Argumentation state machine of the agents 33

4.1 Infrastructure . 38

4.2 Structure of the Domain-case . 41

4.3 Structure of the Argument-case . 43

4.4 Messages interchange between an argumentative agent and the Commitment

Store . 52

5.1 Data-flow for the argumentation process of the helpdesk application 57

5.2 Solved problems . 61

5.3 Solved problems with 6 operators and 1 expert 62

5.4 Prediction error . 63

5.5 Prediction error with 6 operators and 1 expert 64

5.6 Learning of Domain CBR and Argumentation CBR with respect to time . . . 65

5.7 Mean locutions generated per dialogue and prediction error 65

5

6 LIST OF FIGURES

Agräıments

A la meua famı́lia, pel seu suport incondicional, paciència, ànims i comprensió. Per haver-

se esforçat sempre en donar-me l’oportunitat de poder arribar fins aćı, en tots els sentits.

Als amics, amigues, companys i companyes, pels bons moments d’humor, de compartir

experiències, sentiments i suport mutu.

Als companys i companyes del GTI-IA, per ajudar-me sempre que ho he necessitat i pel

bon ambient de treball.

A Stella, per haver compartit els seus coneixements i les seues investigacions amb mi.

Pels llargs dies de treball i discussions on he aprés molt. I per la seua inestimable ajuda en

tot el meu treball. A Vicente, per confiar en mi i donar-me l’oportunitat de treballar amb

ell. Per compartir la seua experiència i dirigir-me correctament. Pel seu suport, comprensió

i ajuda en aquest i altres treballs.

Moltes gràcies a tots, sense vosaltres res no tindria sentit.

Chapter 1

Introduction

1.1 Motivation

Argumentation theory has produced important benefits on many AI research areas, from its

first uses as an alternative to formal logic for reasoning with incomplete and uncertain infor-

mation to its applications in Multi-Agent Systems (MAS) [Bench-Capon and Dunne, 2007]

[Rahwan and Simari, 2009]. Currently, the study of argumentation in this area has gained a

growing interest. The reason behind is that having argumentation skills increases the agents’

autonomy and provides them with a more intelligent behaviour.

An autonomous agent should be able to act and reason as an individual entity on the basis

of its mental state (beliefs, desires, intentions, goals, etc.). As member of a MAS, an agent

interacts with other agents whose goals could come into conflict with those of the agent. In

addition, agents can have a social context that imposes dependency relations between them

and preference orders among a set of potential values to promote/demote. For instance, an

agent representing the manager of a company could prefer to promote the value of wealth (to

increase the economic benefits of the company) over the value of fairness (to preserve the

salaries of his employees). Therefore, agents must have the ability of reaching agreements

that harmonise their mental states and that solve their conflicts with other agents by taking

into account their social context. Argumentation is a natural way of reaching agreements

between several parties with opposing positions about a particular issue. The argumentation

techniques, hence, can be used to facilitate the agents’ autonomous reasoning and to specify

interaction protocols between them [Rahwan, 2006].

Recently, the ASPIC project1 [Amgoud et al., 2006] made an effort to consolidate the

work done in argumentation languages and protocols, argument visualisation and editing

tools and, generally, in argumentation frameworks for MAS. However, the argumentation

infrastructure proposed in this project does not offer support for agent societies and their

1European Union’s 6th Framework ASPIC Project (IST-002307), http://www.fri.uni-

lj.si/en/laboratories/ailab/136/project.html

9

10 CHAPTER 1. INTRODUCTION

agents’ social context. Also, it was not focused on proposing argumentation technologies

for open MAS. Nevertheless, it is important to include support for agent societies and their

agents’ social context because it allows to simulate different models of organizations and

societies to resolve problems taking into account the agents’ social context and the structure

of the organization.

In this work, we propose an infrastructure to develop and execute argumentative agents

in an open MAS. This infrastructure offers the necessary components to develop agents

with argumentation capabilities, including the communication skills and the argumentation

protocol, and it offers support for agent societies and their agents’ social context. The

main advantage of having this infrastructure is that it is possible to create agents with

argumentation capabilities to resolve a specified problem. We consider that this approach

could obtain better results than other distributed approaches due to the argumentation

process between agents and their reasoning skills, which allow them to reach to more efficient

solutions to problems and more satisfactory agreements. In the argumentation dialogue the

agents try to reach an agreement about the best solution to apply for each proposed problem.

1.2 Objectives

The main objective of this work is to create a new infrastructure that allows agents to

incorporate argumentative reasoning methods in an open MAS, taking into account the

agent societies where the agents are situated in and their social context. Furthermore, the

infrastructure must provide the necessary services and components to work as it is expected.

In order to arrive to the final goal, we propose several more specific objectives to achieve:

• Study of frameworks or infrastructures with CBR technology and argumentation. This

review of the state of the art will give a vision of the current frameworks and technologies

available.

• Detailed analysis of the argumentation framework chosen to develop the infrastructure.

The chosen framework must be studied to understand all the tools needed to design an

appropriate infrastructure. Therefore, the framework has been analysed and explained.

• Design of the infrastructure. Analyse the necessary components that the infrastructure

needs to work, and how each component must work. Design each component to fit the

needs of the infrastructure and its behaviour. This objective is divided in the following

points:

– To select an open MAS platform with support for agent societies and their agents’

social context.

1.3. STRUCTURE OF THE DOCUMENT 11

– To design the argumentation skills of the agents. This includes the agents’ logic

and the argumentation protocol to follow.

– To select and design the knowledge representation language.

– To design the knowledge interchange mechanism with the necessary communicative

locutions using the message mechanism of the selected agent platform.

– To design a CBR architecture with an efficient case-base indexing and a suitable

case retrieving.

– To design an efficient persistence of the case-bases that allows to reuse the data in

future argumentation processes.

• Development of the infrastructure. The infrastructure has to be correctly implemented

using the necessary components and modules to support the designs commented before.

• Validation and evaluation of the infrastructure with an example. Different tests will be

designed to validate the infrastructure and to evaluate its performance. To do this, an

example with real data has been used to perform the tests.

1.3 Structure of the document

This chapter has introduced the motivation and the objectives of this Master thesis. The

rest of the document is structured as follows.

Chapter 2 introduces the concepts of open Multi-Agent Systems, Case-Based Reasoning

and Knowledge Interchange with ontologies. It also reviews the current applications of

Argumentation in AI.

Chapter 3 describes the argumentation framework on which the infrastructure created in

this work is based.

Chapter 4 explains the infrastructure proposed and developed on this work. All defined

modules are described in detail.

Chapter 5 presents a real application developed with the infrastructure. This application

is a call centre where a group of operators must solve incidences reported by users. Here,

the infrastructure is empirically validated and evaluated testing its functionalities and its

performance.

Chapter 6 summarises the main contributions of this work and proposes future work on

this area. Finally, the bibliographical work published during the development of this research

is referenced.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

2.1 Introduction

The argumentation theory has produced important benefits on many AI research areas,

from its first uses as an alternative to formal logic for reasoning with incomplete

and uncertain information to its more recent applications in Multi-Agent Systems

(MAS) [Bench-Capon and Dunne, 2007, Rahwan and Simari, 2009]. Currently, the study of

argumentation in this area has gained a growing interest. The reason behind is that having

argumentation skills increases the agents’ autonomy and provides them with a more intelligent

behaviour.

An autonomous agent should be able to act and reason as an individual entity on the

basis of its mental state (beliefs, desires, intentions, goals, etc.). As member of a MAS,

an agent interacts with other agents whose goals could come into conflict with those of the

agent. Moreover, if a dynamic and open MAS is considered, the knowledge that an agent

has about the environment, its neighbours and its mental state can change in the course

of time. In addition, agents can have a social context that imposes dependency relations

between them and preference orders among a set of potential values to promote/demote.

Therefore, agents must have the ability of reaching agreements that harmonise their mental

states and that solve their conflicts with other agents by taking into account their social

context and values. Argumentation is a natural way of reaching agreements between several

parties with opposing positions about a particular issue. The argumentation techniques,

hence, can be used to facilitate the agents’ autonomous reasoning and to specify interaction

protocols between them [Rahwan, 2006].

Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994] is another research area where

the argumentation theory has produced a wide history of successful applications. According

to the CBR methodology, a new problem can be solved by searching in a case-base for similar

precedents and adapting their solutions to fit the current problem.This reasoning methodology

has a high resemblance with the way by which people argue about their positions, trying

13

14 CHAPTER 2. STATE OF THE ART

to justify them on the basis of past experiences. The argumentation theory concepts and

techniques have been successfully applied in a great number of CBR systems, specially in

those that work in legal domains, where a plaintiff and a defendant argue over their opposing

positions in court.

In this chapter, the most important research areas, where this work is involved, are

revised. Firstly, in Section 2.2 open MAS are described, including the THOMAS framework

and the Magentix2 platform, used in the proposed infrastructure. Section 2.4 describes the

CBR methodology due to its applications in argumentation and hence, to the argumentation

framework that uses the created infrastructure. In Section 2.3 we introduce the importance

of the knowledge interchange between agents by using ontologies. Therefore, all the main

concepts about ontologies and used tools are described. Finally, Section 2.5 makes a review

of the current applications of argumentation in AI that include the CBR methodology. With

the introduction of concepts and the review of applications of this Chapter, we pretend to

give the reader a general vision about case-based argumentation in open MAS.

2.2 Open Multi-Agent Systems

The concept of Multi-Agent Systems (MAS) evolved from Distributed Artificial Intelligence

[O’Hare and Jennings, 1996]. MAS are distributed systems but are not as traditional systems.

The main difference is that in a MAS, each agent pursues its own objectives. However, in

a classic distributed system all nodes are intended to achieve a common goal. Moreover, in

many cases the MAS are considered a part of Artificial Intelligence. The main reason of

that is because the AI wants to emulate human behaviour and reasoning, and MAS are the

platform to simulate societies by means of “intelligent” software agents.

Therefore, MAS can be viewed as a set of autonomous agents working together to solve

problems. These agents have some information and the ability to solve the problem at hand.

Therefore, the resolution must be done cooperatively by some form of communication. The

data tend to be decentralized and the computation is asynchronous. In addition, agents can

decide the tasks to be done and who should perform them.

It is necessary to clarify the concept of software agent, as it is the basis of any MAS.

However, there is no concise definition and widely accepted by the scientific community. One

of the first definitions is: “an agent is defined as an entity whose state is viewed as a set

of mental components such as beliefs, capabilities, choices and agreements” [Shoham, 1993].

Another of the most cited and more common is: “an agent is a computer system located in

an environment that is able to perform actions independently to achieve their design goals”

[Wooldridge, 2002]. These definitions are an example of the discussion about the concept

of agent. However, the following definition along with the above helps to understand the

meaning of a software agent, “The concept of software agent characterizes an entity with

2.2. OPEN MULTI-AGENT SYSTEMS 15

a robust architecture adaptable and it can work in different environments or computing

platforms and it is capable of reach different objectives in an intelligent and autonomous

way exchanging information with the environment, other human or computer agents”

[Garijo, 2002]. A more detailed discussion about the concept of agent can be found in

[Mas, 2005].

Despite the short history of MAS, currently there are multitude of applications in various

fields. Their use has been extensive in the industry, so, there are applications for control

and manufacturing planning, product design, air traffic control, power management, location

of containers, control of production lines, etc [Jennings and Wooldridge, 1998]. In addition,

there are also applications in other fields such as medicine, information retrieval, e-commerce

and telecommunications. This demonstrates the widespread interest in the use of MAS given

the advantages that they offer.

Currently, a new paradigm in the field of MAS has become more important. In this

paradigm, agents can enter or leave the system, interact and dynamically form groups (e.g.

agents’ coalitions or organisations) to solve problems. This kind of MAS are called open MAS.

Thus, open systems allow the entry of new components during the execution of the system

that may not have been considered in the design phase [Gonzalez-Palacios and Luck, 2007].

Therefore, agents that participate in a system of this type can use different protocols or

be developed with different languages or architectures. This provides great flexibility and

diversity to the system. However, regardless of the design or development that has had a

component, it will join the system by acquiring a certain role for which a set of rules are

established to control its behaviour.

Open MAS are appropriate in dynamic environments where agents can enter or leave the

system continuously [Zambonelli et al., 2003]. Thus, in the design phase can the number of

agents that will be present in the system can be unknown. Therefore, this dynamism and the

heterogeneity of different agents that can enter the organization must be considered in the

design of an open MAS. As a consequence, it is necessary to establish control and security

agents as they can get unreliable or conflicting objectives of the organization. Another very

complex part of open MAS is the development of open communications, mainly due to the

heterogeneity of the components that may enter the system.

Some open MAS application examples are e-commerce systems and information agent

systems [Dastani et al., 2003]. In these cases, agents adopt roles of buyer and seller

temporarily. There are also some works that address the problems of open systems using

internal agents representing the external agents that apply to participate in the organization

[Esteva et al., 2001]. Hence, the external agents are not involved directly in the organization

avoiding many problems of security and control.

The proposed infrastructure in this work needs an agent platform to run the agents. In

addition, the infrastructure has to manage the agent societies in an open MAS environment.

16 CHAPTER 2. STATE OF THE ART

These needs determine a concrete type of platform to use as the base of our infrastructure.

We have decided to use Magentix2 platform because it has all the characteristics that our

infrastructure needs. On the one hand, it is an open source agent platform to execute agents

and to perform communications. On the other hand, it integrates the THOMAS framework

to manage virtual organizations, agent societies, and services in open MAS. Following, we

explain the THOMAS framework and the Magentix2 platform.

2.2.1 THOMAS

THOMAS1 [Giret et al., 2009] [Carrascosa et al., 2009] [del Val et al., 2009] (MeTHods,

Techniques and Tools for Open Multi-Agent Systems) is an open multi-agent systems

framework based on web services and organizations. It has been developed by Grupo de

Tecnoloǵıa Informática - Inteligencia Artificial of the Departamento de Sistemas Informáticos

y Computación, from the Universitat Politècnica de València.

The THOMAS architecture basically consists of a set of modular services. Although

based on the FIPA architecture, THOMAS expands the capabilities of this architecture

to manage organizations. Therefore, a new module has been included to achieve this

objective, the redefinition of FIPA Directory Facilitator. Thus, it can handle the services by

following the guidelines for Service Oriented Architectures (SOA). The services are the most

important thing in THOMAS framework. Agents have a set of services in different modules

or components for access to the infrastructure. The main components of the THOMAS

framework are:

• Service Facilitator (SF). It offers simple and complex services for active agents and

organizations. Its basic functionality is to provide a yellow page search service and

another green page service for service descriptions.

• Organization Management System (OMS). It is responsible for the management of

organizations and their entities. Therefore, it allows to create and manage any

organization.

• Platform Kernel (PK). Responsible for the basic management of an agent platform.

2.2.2 Magentix2

Magentix22 is an agent platform for open multi-agent systems. It has been developed by

Grupo de Tecnoloǵıa Informática - Inteligencia Artificial of the Departamento de Sistemas

Informáticos y Computación, from the Universitat Politècnica de València. Its main objective

1http://www.gti-ia.upv.es/sma/tools/Thomas/index.php
2http://www.gti-ia.upv.es/sma/tools/magentix2/index.php

2.2. OPEN MULTI-AGENT SYSTEMS 17

is to bring the agent technology to real domains: business, industry, logistics, e-commerce,

health-care, etc.

The final goal of Magentix2 is to provide new services and tools that allow for the secure

and optimized management of open MAS. Magentix2 provides support at three levels:

• Organization level: technologies and techniques related to agent societies and virtual

organizations. The THOMAS framework allows to manage virtual organizations and

agent societies by means of different services and control mechanisms.

• Interaction level: technologies and techniques related to communications between

agents.

• Agent level: technologies and techniques related to individual agents (such as reasoning

and learning).

In order to offer these support levels, Magentix2 is formed by different building blocks,

and provides technologies to the development and execution of MAS.

The communication in Magentix2 is performed using AMQP3. This industry-grade

open standard is designed to support reliable, high-performance messaging over the

Internet. It facilitates the interoperability between heterogeneous entities. Magentix2

allows heterogeneous agents to interact with each other via FIPA-ACL4 messages, which

are exchanged over the AMQP standard.

An interesting feature of the Magentix2 platform is the Tracing Service Support. This

support allows to share information between the agents of the MAS in an indirect way

by means of trace events. It is based on the publish/subscribe software pattern, which

allows subscribers to filter events attending to some attributes (content-based filtering),

so that agents only receive the information they are interested in and only requested

information is transmitted. Magentix2 incorporates a Trace Manager (TM), which is in

charge of coordinating the process of event tracing, allowing agents to publish/unpublish, to

subscribe/unsubscribe, to trace information, or to look up available trace information at run

time.

The security is another important part that is taken into account in Magentix2. The

platform incorporates a security module which provides key features regarding security,

privacy, openness and interoperability not offered by other current Agent Platforms. This

module is based on open standards (AMQP, SSL,SASL, X.509 certificates, WS-Security,

FIPA-ACL) and open source technologies (Qpid, NSS, Axis2, Rampart). The security module

allows the development of not only secure but also open MAS in which previously unknown

agents can enter and leave the MAS at any moment. The main component of the security

3http://www.amqp.org/
4http://www.fipa.org/specs/fipa00061/SC00061G.html

18 CHAPTER 2. STATE OF THE ART

module is the Magentix2 Management Service (MMS), which is a WSSecurity compliant

secure web service that controls the creation of agent certificates for platform users.

An interesting feature of Magentix2 are the conversational agents (CAgents). CAgents

allow the automatic creation of simultaneous conversations based on interaction protocols.

CAgents can use pre-defined interaction protocols, define their own interaction protocols

and also dynamically change interaction protocols at runtime. CAgents are composed of

two main components: Conversation Factories (CFactories) and Conversation Processors

(CProcessors). A CFactory defines an interaction protocol as finite state machines by means

of nodes and arcs between them. CFactories are in charge of creating CProcessors that

will execute the defined interaction protocol. CFactories manage automatically incoming

messages, deciding if a message belongs to an ongoing CProcessor or if a new one has to

be created. Moreover, CFactories allow agents to maintain several conversations following

simultaneously the same interaction protocol and also manage concurrence aspects.

The THOMAS framework explained previously is also included in the Magentix2 platform.

This framework together with the Magentix2 platform permits to manage agent societies

in MAS. With THOMAS and Magentix2, a MAS can be built with support for virtual

organizations, agent societies, service execution and development of any kind of agent.

2.3 Knowledge Interchange

In an open MAS it is important to have a well established knowledge interchange mechanism.

Nowadays, the most applied way to perform the communication between heterogeneous agents

is to use ontologies to facilitate the understanding between agents.

An ontology represents knowledge as a set of concepts of a concrete domain taking

into account the relationship between those concepts and their properties. It is used as

a knowledge representation about the world or some part of it.

OWL 25 (Ontology Web Language) is an ontology language based on XML6. It is

developed as a follow-on from RDF7 and RDFS8. All its elements (classes, properties and

individuals) are defined as RDF resources, and identified by URIs. The main objective of

OWL 2 is to be an standard used over the World Wide Web.

The OWL API9 is a Java API and reference implementation for creating, manipulating

and serialising OWL Ontologies. In the infrastructure proposed in this work, the OWL API

has been used to create parsers to manage the data specified in OWL ontologies. With this

parsers, agents can manage and understand the shared data specified in OWL.

5http://www.w3.org/TR/owl2-overview/
6http://www.w3.org/XML/
7http://www.w3.org/RDF/
8http://www.w3.org/TR/rdf-schema/
9http://owlapi.sourceforge.net/

2.4. CASE-BASED REASONING 19

Another challenge that must be dealt with is how to communicate arguments between

the agents of a particular MAS or between the agents of different systems. When working

with open MAS, where the system dynamicity and the heterogeneity between agents is

assumed by default, this functionality is particularly challenging. The research in this

area has already been started by the ASPIC community10 [Amgoud et al., 2006], which

is developing its standardisation proposal for an argument interchange format (AIF)

[Chesñevar et al., 2006]. The format introduces an abstract formalism for representing

concepts about arguments, argument networks, communication and argumentation context

in MAS capable of argumentation-based reasoning. Since the AIF is being agreed upon

the argumentation and MAS expert research communities, it is likely to be adopted by many

researchers as an standard for argument communication. The AIF is used in our infrastructure

to interchange arguments between the agents involved in argumentation dialogues.

2.4 Case-based Reasoning

Case-Based Reasoning (CBR) [Kolodner, 1993, Aamodt and Plaza, 1994] methodology is

the process of solving a new problem using similar solutions applied in the past. In this

methodology, solved problems of past situations represented as cases are stored in a database

called case-base. In computer reasoning, the CBR methodology is formalized as a four-step

process:

1. Retrieve: In this step one or more cases stored in the case-base are retrieved. These

cases are similar to the current problem to solve. To retrieve the cases different types of

algorithms can be used to calculate the similarity between the problem to solve and the

cases stored in the case-base. Typically, a case is composed, at least, by the problem

that represents and its solution.

2. Reuse: Adapt the solution from the retrieved case to fit the current problem.

3. Revise: Test the solution in the real world (by simulation) and, if necessary, revise the

adaptation.

4. Retain: Store the last applied solution in form of a new case in the case-base.

The work done in the eighties about legal CBR fostered the argumentation research

in the AI community [Rissland et al., 2006]. From then on, the good results of CBR

systems in argumentation domains suggest that this type of reasoning is suitable to

manage argumentation processes. Nowadays, MAS research community is endeavouring to

broaden the applications of the paradigm to more real environments, where heterogeneous

10European Union’s 6th Framework ASPIC Project (IST-002307), http://www.fri.uni-

lj.si/en/laboratories/ailab/136/project.html

20 CHAPTER 2. STATE OF THE ART

agents could enter in (or leave) the system, form societies and interact with other agents

[Ossowski et al., 2007]. Also, MAS have been proposed as a suitable technology to implement

the new paradigm of computing as interaction [Luck and McBurney, 2008], where large

systems can be viewed or designed in terms of the services they offer and the entities that

interact to provide or consume these services. The high dynamism of these open MAS gives

rise to a greater need for a way of reaching and managing agreements that harmonise conflicts.

Moreover, this type of systems also poses other potential problems to overcome.

Common assumptions about the agents of most MAS, such as honesty, cooperativeness and

trustworthiness cannot be longer taken as valid hypothesis in open MAS. Therefore, there

is an obvious need for providing the agents of an open MAS with individual reasoning and

learning capabilities that make them more intelligent and autonomous and prevent them from

the potential attacks of interested agents.

2.5 Current Applications of Argumentation in AI

Nowadays, the argumentation research in AI is experiencing a new reactivation, mainly

motivated by recent and interesting contributions developed in MAS. On one hand, the

argumentation theory has been studied in MAS to manage the agent’s practical reasoning.

Practical reasoning is a well-known area in philosophy, but which historically has received

less attention in AI than the theoretical reasoning. This type of reasoning analyses which

specific action should be performed in a particular situation, instead of the theoretical

reasoning objective of deciding the truthfulness of beliefs. However, the theoretical

reasoning about the state of the world and the effects of the potential actions to perform

is also essential. Therefore, both types of reasoning must be considered in MAS. In

[Rahwan and Amgoud, 2006], an argumentation-based approach for practical reasoning has

been proposed. In this work, Dung’s abstract argumentation framework [Dung, 1995] is

instantiated to generate consistent desires and plans to achieve them. The works developed

by Atkinson in her thesis and hers subsequent research are also other important contributions

to the modelling of argumentation processes that allow the agents to reason about what is

the best action to execute [Atkinson, 2005].

The argumentation techniques have been successfully used to reach agreements that

ensure the coherence of the agents’ mental state and to structure their interaction in

disagreement situations. Parsons et al. [Parsons et al., 1998] proposed a seminal theoretical

framework that unifies argumentation-based reasoning and communication for negotiation

in MAS. More recently, Rahwan et al. [Rahwan et al., 2003] analyses this and other

argumentation-based negotiation frameworks. A wide review of the current situation

of the argumentation research in AI has also been published in the special issue on

argumentation of the journal Artificial Intelligence [Bench-Capon and Dunne, 2007] and

2.5. CURRENT APPLICATIONS OF ARGUMENTATION IN AI 21

in the book [Rahwan and Simari, 2009]. As it has been commented before, an effort to

consolidate the work done in argumentation languages and protocols, argument visualisation

and editing tools and, generally, in argumentation frameworks for MAS, was performed by

the ASPIC project [Amgoud et al., 2006]. As a result, the Argument Interchange Format

(AIF) has been proposed to serve as a convergence point for theoretical and practical work

in this area [Willmott et al., 2006]. All these advances show how the study of argumentation

in AI, and more concretely in MAS, is currently a research area that has a high activity and

a growing interest.

Argument management (generation, selection, evaluation etc. of the components

of arguments and the management of the dialogue itself) is a key issue to deal with

in argumentation-based dialogues in MAS. CBR is a suitable methodology to manage

argumentation processes in two-party disagreement situations as it has been reported in

the previous section. To date, few research has cope with the use of CBR methodology to

facilitate the argumentation between the agents of MAS. The current approaches are focused

on managing two types of dialogues between agents: argumentation-based negotiation and

collaborative deliberation. Following, some relevant approaches are described in an attempt

to show the promising advantages of using CBR to aid argumentation in open MAS:

• The PERSUADER system: This system acts as a mediator in the implementation

domain of labour management disputes between a company and its trade union

[Sycara, 1987, Sycara, 1989, Sycara, 1990]. This was a seminal framework that

integrated for the first time concepts of argumentation theory and CBR to create

a negotiation model in a MAS. PERSUADER uses a mediator agent that manages

the negotiations between two agents representing the company and the trade union.

The mediator dialogues with the parts trying to reach an agreement, which is a

contract that is accepted by both agents. A contract consists of a set of attributes

(e.g. salaries, pensions and holidays) whose value must be decided. PERSUADER

studied the argumentation in a non-cooperative domain, where each agent has its own

objectives and tries to derive its maximum own benefit from the negotiation. The main

objective of the mediator and hence, the objective of the dialogue in this framework,

is to negotiate with both agents and persuade them to collaborate. One of the CBR

objectives is to infer the model of beliefs and preferences of an unknown agent. In this

way, the mediator retrieves the information about past negotiations with similar agents

that was stored in precedent cases and adapts it to the current context. Another CBR

objective in PERSUADER is to retrieve past cases that act as arguments for persuading

an agent to accept a specific contract.

• CBR for Argumentation with Multiple Points of View: Nikos Karacapilidis et al.

developed a model that integrates CBR and argumentation for supporting decision

22 CHAPTER 2. STATE OF THE ART

making in discussion processes. This model was implemented in the Argument

Builder Tool (ABT) of the multi-agent framework for collaborative deliberation

HERMES [Karacapilidis and Papadias, 2001], [Karacapilidis et al., 1997]. This is an

Argumentation-based Decision Support System (ADSS) that helps a group of users

(human agents) to build sound arguments to defend their positions in favour or against

other alternative positions in a discussion. HERMES maps the argument process into

a discussion graph with tree structure and shows graphically the possible discourse acts

that the agents could instance. The system uses CBR to make the appropriate queries

to the (internal or external) databases that store information that support the positions

of the agents that participate in the argument and, thus, to generate discourse acts that

successfully show their interests and intentions. However, as it is only a support system,

afterwards the agents are free to adopt or not the ABT’s proposals. In this framework

is the system itself who manages the interaction between the agents, being the CBR

engine a reasoning component integrated in it. Therefore, the case-base is common for

all agents and belongs to the system. The cases are flexible entities that store a set of

argumentation elements that can be interpreted depending on the state of the discourse

and each agent’s point of view. Therefore, the main objective of the CBR methodology

in the system is to examine the current discussion and to suggest the participants the

best discourse acts to fire, according with their points of view and preferences. Thus,

the contents of the HERMES case-base represent past argumentation processes.

• Case-based Negotiation Model for Reflective Agents: Leen-Kiat Soh and Costas

Tsatsoulis designed a case-based negotiation model for reflective agents (agents

aware of their temporal and situational context). This model uses CBR to

plan/re-plan the negotiation strategy that allows the most effective negotiation on

the basis of past negotiations [Soh and Tsatsoulis, 2001a, Soh and Tsatsoulis, 2001b,

Soh and Tsatsoulis, 2005]. In this framework, a set of situated agents that control

certain sensors try to track several mobile targets. The aim of the agents is to coordinate

their activities and collaborate to track the path to as many targets as possible. The

agents’ sensors have limited power and coverage and each agent only controls a subset

of sensors. Although the cooperativeness is assumed, each agent has individual tasks to

fulfil. Therefore, when an agent has not enough coverage or power capabilities to track

a target, it needs to negotiate and persuade other agents and achieve that they leave

their tasks and help it to track the target. The agents of this model are autonomous

entities that own two separated and private case-bases. Each agent has a CBR manager

that allows it to learn to negotiate more effectively by using the knowledge of past

negotiations. The cases contents store descriptions that characterise the agents’ context

in a previous negotiation. The argumentation style of this framework views persuasion

as a negotiation protocol of information interchange between two agents that try to

2.5. CURRENT APPLICATIONS OF ARGUMENTATION IN AI 23

reach an agreement by using an argumentation process. An important contribution of

this framework was the introduction of learning capabilities for the agents by using the

CBR methodology.

• Argument-based selection Model (ProCLAIM): Pancho Tolchinsky et al. extended the

architecture of the decision support MAS for the organ donation process CARREL+

[Vázquez-Salceda et al., 2003] with ProCLAIM, a new selection model based on argu-

mentation [Tolchinsky et al., 2006a, Tolchinsky et al., 2006c, Tolchinsky et al., 2006b].

In CARREL+, a donor agent (DA) and a set of recipient agents (RAs) argue about

the viability of the organ transplant to some recipient. If an agreement is not reached,

the organ is discarded. ProCLAIM includes a mediator agent (MA) that controls the

collaborative deliberation dialogue and uses a CBR engine to evaluate the arguments

about organ viability that the agents submit. The final decision must fulfil several

guidelines that, in ProCLAIM case, are the human organs acceptability criteria that

CARREL stores in the Acceptability Criteria Knowledge Base (ACKB). The mediator

agent uses a case-base to store all relevant information about past donation processes.

• Argumentation-based Multi-Agent Learning (AMAL): Santiago Ontañón and Enric

Plaza developed the Argumentation Based Multi-Agent Learning (AMAL) framework

[Ontañón and Plaza, 2006, Ontañón and Plaza, 2007]. The agents of this framework

are autonomous entities able to independently solve classification problems and to learn

by experience, storing the knowledge acquired during the solving process in their private

case-bases. The set of possible classification classes is predefined in the framework.

The aim of the interaction between the agents is to increase the solution quality by

aggregating the knowledge of a group of expert agents. Therefore, they engage in a

collaborative deliberation dialogue. The AMAL framework is a newly contribution

to the study of argumentation-based learning models for MAS whose agents have

individual learning capabilities. This model also differs from many other argumentation

frameworks on its dynamic computation of the relation preference between arguments.

In addition, the argumentation style is completely case-based.

The implementation domain differs almost on each framework, being HERMES and

ProCLAIM the ones that somehow share a common purpose: to provide decision

support for a group decision-making. In addition, among other applications, both have

been implemented and tested in the medical domain [Karacapilidis and Papadias, 2001],

[Tolchinsky et al., 2006c]. In this aspect, the main difference between them is that HERMES

helps agents to select the best argument to instantiate in a particular context and hence,

to win the discussion, while in ProCLAIM the system assists the mediator agent (and not

the donor agents) to decide which agent has posed the best argument and should be the

winner of the discussion. Therefore, although working in a similar domain, these systems are

24 CHAPTER 2. STATE OF THE ART

aimed at solving different subproblems inside the more general problem of supporting group

decision-making.

Similarly, although HERMES, ProCLAIM and also the AMAL framework share the same

dialogue type (deliberation), the final objective of the interaction between the agents of these

systems is quite different: HERMES is mainly centred on the argument diagramming and

its graphical representation, helping agents to follow the discussion and supporting them

with tools to pose better arguments; ProCLAIM deals with the internal deliberation of

the mediator agent, supporting only this agent to make the best decision among the set of

potential winners and finally; in the AMAL framework all agents have the common objective

of deciding the best classification tag for a specific object and act as a group of experts

that cooperate by aggregating their knowledge in the deliberation process. In the same way,

PERSUADER and Soh’s frameworks also share the dialogue type (negotiation), but from a

different perspective. Thus, while in PERSUADER the mediator agent completely centralises

the negotiation process and the company and the trade union do not keep a direct interaction,

in Soh’s framework all agents are autonomous and able to play an initiator role that starts

and manages a direct dialogue with other agents.

With respect to the CBR objective, in all frameworks the CBR methodology has been

mostly used to generate, select or evaluate arguments on the face of previous similar

experiences. Consequently, as in any CBR system, the contents of the case-base in each

framework consist of a set of elements that describe these previous experiences.

Some approaches using CBR and argumentation to persuade, negotiate or to reach

agreements have been described in this section. The intention of this study and the whole

Chapter is to give to the reader a view of the current state of the art before explaining

the Argumentation framework of the next chapter. This framework is used to create the

case-based argumentation infrastructure for agent societies of this work.

Chapter 3

Argumentation Framework

In this chapter we explain a computational framework, proposed in [Heras et al., 2011c],

for supporting argumentation MAS in which the participating software agents are able

to manage and exchange arguments between themselves, taking into account the agents’

social context. First, we explain a formal definition for an agent society. After that, we

introduce the knowledge resources that agents can use to generate, select and propose their

positions (solution proposals) and arguments to support them. The knowledge resources

used are the domain-cases of a database. These cases represent previous problems and their

solutions. Furthermore, we present the argument types of the framework (support and attack

arguments) and their support set, that is a set of elements that supports the argument.

Finally, the argumentation protocol that agents follow to engage in argumentation processes

is shown. This protocol is the mechanism to manage arguments and define the argumentation

dialogue that agents follow.

3.1 Agent society

In the framework, an agent society is defined in terms of a set of agents that play a set

of roles, observe a set of norms and a set of dependency relations between roles and use a

communication language to collaborate and reach the global objectives of the group. This

definition, based on the approach of [Dignum, 2003] and [Artikis et al., 2009], can be adapted

to any open MAS where there are norms that regulate the behaviour of agents, roles that

agents play, a common language that allow agents to interact defining a set of permitted

locutions and a formal semantics for each of these elements.

However, the values that individual agents or groups want to promote or demote

and preference orders over them have also a crucial importance in the definition of an

argumentation framework for agent societies. These values could explain the reasons that an

agent has to give preference to certain beliefs, objectives, actions, etc. Thus, they represent

the motivation of agents to act in a specific way. For instance, an agent representing the

25

26 CHAPTER 3. ARGUMENTATION FRAMEWORK

manager of a company could prefer to promote the value of wealth (to increase the economic

benefits of the company) over the value of fairness (to preserve the salaries of his employees).

Also, dependency relations between roles could imply that an agent must change or violate

its value preference order. For instance, a manager could impose their values to an expert or

a base operator could have to adopt a certain preference order over values to be accepted in

a group. Therefore, the framework uses the view of [Bench-Capon and Atkinson, 2009], who

stress the importance of the audience in determining whether an argument is persuasive or

not for accepting or rejecting someone else’s objectives. Thus, it has been included in the

definition of agent society the notion of values and preference orders among them. Definition

1 provides a formal specification for the model of society:

Definition 1 (Agent Society). An Agent society in a certain time t is defined as a tuple St

= < Ag, Rl, D, G, N, V, Roles, Dependency, Group, val, V alprefQ > where:

• Ag = {ag1, ag2, ..., agI} is a finite set of I agents members of St in a certain time t.

• Rl = {rl1, rl2, ..., rlJ} is a finite set of J roles that have been defined in St.

• D = {d1, d2, ..., dK} is a finite set of K possible dependency relations among roles

defined in St.

• G = {g1, g2, ..., gL} is a finite set of groups that the agents of St form, where each

gi, 1 ≤ i ≤ L, gi ∈ G consist of a set of agents ai ∈ Ag of St.

• N is a finite set of norms that affect the roles that the agents play in St.

• V = {v1, v2, ..., vP } is a finite set of P values predefined in St.

• Roles : Ag → 2Rl is a function that assigns an agent its roles in St.

• DependencySt : ∀d ∈ D,<St
D⊆ Rl × Rl defines a reflexive, symmetric and transitive

partial order relation over roles.

• Group : Ag → 2G is a function that assigns an agent its groups in St.

• val : Ag → V is a function that assigns an agent the set of values that it has.

• V alprefQ : ∀q ∈ Ag
⋃
G,<St

q ⊆ V × V defines a reflexive, symmetric and transitive

partial order relation over the values of an agent or a group.

3.2 Knowledge Resources, Argument Types and Support Set

In open multi-agent argumentation systems the arguments that an agent generates to support

its position can conflict with arguments of other agents and these conflicts are solved by means

3.2. KNOWLEDGE RESOURCES, ARGUMENT TYPES AND SUPPORT SET 27

of argumentation dialogues between them. In the framework there is a domain-cases database,

with cases that represent previous problems and their solutions. The domain-cases are used

to generate positions (solutions) to defend and arguments to support them or attack other

positions. The structure of these cases is domain-dependent and consist of a set of features

that describe the problem to solve and the solution applied. The framework also have an

argument-cases case-base. The argument-cases represent past argumentation experiences and

their final outcome. The argument-cases are used in the framework to select the best position

to propose in view of the social context and current problem to solve taking into account

past argumentation experiences.

Arguments that agents interchange are defined as tuples of the form:

Argument

Arg = {φ, v,< S >} (3.1)

where φ is the conclusion of the argument, v is the value (e.g. economy, quality, solving

speed) that the agent wants to promote with it and < S > is a set of elements that support

the argument (support set).

Support Set

S =< {premises}, {domainCases}, {argumentCases},

{distinguishingPremises}, {counterExamples} >
(3.2)

A support set is formed by the following elements:

• Premises: which are features that match with some features of the problem description.

These are the features that characterise the problem and that the agent has used to

retrieve similar domain-cases from its case-base. Note that the premises used might be

all features of the problem description or a sub-set.

• Domain cases: which are cases that represent previous problems and their solutions

whose features match with some features of the problem description.

• Argument cases: which are cases that represent past argumentation experiences with

their final outcome. These cases are used to select the best position to propose in view

of the current context of the problem and the argumentation experience of the agent.

• Distinguishing premises: which are premises that can invalidate the application of a

knowledge resource to generate a valid conclusion for an argument. These premises

are extracted from a domain-case that propose a different solution to the argument to

attack. They consist of features of the problem description that where not considered

to draw the conclusion of the argument to attack.

28 CHAPTER 3. ARGUMENTATION FRAMEWORK

• Counter-examples: which are cases that are similar to a case (their descriptions match

with some or all features of the problem description) but have different conclusions.

Agents generate arguments when they are asked to provide evidence to support a position

(support arguments) or when they want to attack others’ positions or arguments (attack

arguments).

The first case happens because, by default, agents are not committed to show evidences

to justify their positions. Therefore, an opponent has to ask a proponent for an argument

that justifies its position before attacking it. Then, if the proponent is willing to offer

support evidences, it can generate a support argument which support set is the set of features

(premises) that describe the problem and match the knowledge resources (domain-cases) that

it has used to generate and select its position. Note that the set of premises could be a subset

of the features that describe the problem to solve (e.g. when a position has been generated

from a domain-case that has a subset of features of the problem in addition to other different

features).

The second case happens when the proponent of a position generates an argument to

justify it and an opponent wants to attack the position or more generally, when an opponent

wants to attack the argument of a proponent. Arguments in the framework can be attacked

by putting forward distinguishing premises and counter-examples. The attack arguments

that the opponent can generate depend on the elements of the support set that justifies the

conclusion of the argument of the proponent:

• If the justification for the conclusion of the argument is a set of premises, the opponent

can generate an attack argument with a distinguishing premise that it knows. It can

do it, for instance, if it is in a privileged situation and knows extra information about

the problem or if it is implicit in a case that it used to generate its own position, which

matches the problem specification. In the latter, the opponent could generate an attack

argument with this case as counter-example.

• If the justification is a domain-case or an argument-case, then the opponent can check

its case-base of domain-cases and try to find counter-examples to generate an attack

argument with them. Alternatively, it can also try to generate an attack argument with

a distinguishing premise from its own known premises and cases that invalidates the

proponent’s justification.

3.3 Position generation and selection

To generate a position that defends the application of a concrete solution to the current

problem to solve, the agent retrieves from its domain case-base those cases that match with

the specification of the current problem. With the solutions that were applied in these

3.3. POSITION GENERATION AND SELECTION 29

cases, the agent generates a potential solution for the problem at hand, which represents

its position with respect to the problem. Note that the set of retrieved cases could provide

different solutions for the same problem. The matching of the extracted domain-cases with

the current problem is specified by a similarity degree that is computed by different distance

algorithms.

With the generated positions or solutions to apply to the current problem to solve, the

agents must select the most suitable position in view of its similarity to the problem and

the acceptance that had in the past in other argumentation dialogues (stored as argument-

cases). On the one hand, the similarity degree between the problem and the set of available

positions is computed in the position generation. On the other hand, the acceptance that

had in the past a similar position is calculated by using a Suitability Factor (SF) from the

argumentation point of view. To compute this SF, the following elements are considered.

Actually, what the agent does is to decide which argument-case (and thus, which position)

is most suitable in view of its past experience. The parameters shown in the following formulas

are considered as criteria for making such decision. In the formulas, argC is the number of

argument-cases in arg with the same conclusion than the current argument-case, argAccC

are those in argC that were deemed acceptable, argAccCAtt are those in argAccC that were

attacked, minAtt and maxAtt are the minimum and maximum number of attacks received

by any position generated, minS and maxS are the minimum and maximum number of steps

from any retrieved argument-case to the last node of its dialogue graph and minKr and

maxKr are the minimum and maximum number of knowledge resources used to generate any

position.

• Persuasiveness Degree (PD): is a value that represents the expected persuasive power

of a position by checking how persuasive an argument-case with the same problem

description and conclusion that the position associated argument-case was in the past.

To compute this degree, the number argAccC of argument-cases that were deemed

acceptable out of the total number of argument-cases argC with the same problem

description and conclusion retrieved is calculated:

PD =

{
0, if argC = ∅

argAccC
argC , otherwise

(3.3)

with argAccC, argC ∈ N and PD ∈ [0, 1], from less to more persuasive power. Note

that the persuasiveness degree of a position is not decreased if positions with the same

problem description and different conclusions are found in the argument-base, since

this difference does not necessarily implies that the current position is wrong or less

persuasive. In fact, there are many possible reasons for having different conclusions for

the same problem description (e.g. different background knowledge, different reasoning

30 CHAPTER 3. ARGUMENTATION FRAMEWORK

algorithms to generate positions or even a domain admitting several solutions for the

same problem).

• Support Degree (SD): is a value that provides an estimation of the probability that

the conclusion of the current argument-case was acceptable at the end of the dialogue.

It is based on the number of argument cases argAccC with the same problem description

and conclusion that where deemed acceptable out of the total number of argument-cases

arg retrieved.

SD =

{
0, if arg = ∅

argAccC
arg , otherwise

(3.4)

with argAccC, arg ∈ N and SD ∈ [0, 1] from less to more support degree.

• Risk Degree (RD): is a value that estimates the risk for a position to be attacked

in view of the attacks received for a position(s) with the same problem description

and conclusion in the past. It is based on the number of argument cases argAccCAtt

that were attacked out of the total number of argAccC argument cases with the same

problem description and conclusion retrieved that were deemed acceptable.

RD =

{
0, if argAccC = ∅

argAccCAtt
argAccC , otherwise

(3.5)

with argAccCAtt, argC ∈ N and RD ∈ [0, 1], from less to more risk of attack.

• Attack Degree (AD): is a value that provides an estimation of the number of attacks

att received by a similar position(s) in the past. To compute this degree, the set of

arguments with the same problem description that were deemed acceptable is retrieved.

Then, this set is separated in several subsets, one for each different conclusion. The sets

whose conclusion match with the conclusions of the positions to assess are considered,

while the other sets are discarded. Thus, we have a set of argument-cases for each

different position we want to evaluate. For each argument-case in each set, the number

of attacks received is computed (the number of distinguishing premises and counter-

examples received). Then, for each set of argument-cases, the average number of attacks

received is computed. The attack degree of each position is calculated by a linear

transformation:

AD =

{
0, if maxAtt=minAtt

att−minAtt
maxAtt−minAtt , otherwise

(3.6)

with minAtt,maxAtt, att ∈ N and AD ∈ [0, 1] from less to more degree of attack.

• Efficiency Degree (ED): is a value that provides an estimation of the number of

steps that took to reach an agreement posing a similar position(s) in the past. It is

based on the depth n from the node representing the argument-case of the similar

3.4. ARGUMENTATION PROTOCOL 31

position to the node representing the conclusion in the dialogue graphs associated to

the similar argument-cases retrieved. To compute this degree, the same process to

create the subsets of argument-cases than in the above degree is performed. Then, for

each argument-case in each subset, the number of dialogue steps from the node that

represents this argument-case to the end of dialogue is computed. Also, the average

number of steps per subset is calculated. Finally, the efficiency degree of each position

is calculated by a linear transformation:

ED =

{
0, if maxS=minS

1− n−minS
maxS−minS , otherwise

(3.7)

with minS,maxS, n ∈ N and ED ∈ [0, 1] from less to more efficiency.

• Explanatory Power (EP): is a value that represents the number of pieces of

information each position covers. It is based on the number kr of knowledge resources

were used to generate each position. To compute this number, the same process to

create the subsets of argument-cases than in the above degrees is performed. Then, for

each argument-case in each set, the number of knowledge resources in the justification

part is computed (the number of domain-cases and argument-cases). Then, for each set

of argument-cases, the average number of knowledge resources used is computed. The

explanatory power of each position is calculated by a linear transformation:

EP =

{
0, if maxKr=minKr

kr−minKr
maxKr−minKr , otherwise

(3.8)

with minKr,maxKr, kr ∈ N and EP ∈ [0, 1] from less to more explanatory power.

The Suitability Factor in terms of the acceptance that had in the past a similar position

in the argumentation dialogues is computed by the following formula:

SF = wPD∗PD+wSD∗SD+wRD∗(1−RD)+wAD∗(1−AD)+wED∗ED+wEP ∗EP (3.9)

Finally, with the similarity degree of the positions and the different degrees that represent

the suitability factor in terms of argumentation dialogues of the positions, the next formula

compute the final suitability of the positions generated:

Suitability = wsimD ∗ simD + wSF ∗ SF (3.10)

3.4 Argumentation Protocol

The agents of the framework need a mechanism to manage the arguments and perform

the argumentation dialogue. Therefore, an argumentation protocol has been defined

32 CHAPTER 3. ARGUMENTATION FRAMEWORK

[Heras et al., 2011a]. This protocol is represented by a set of locutions that the agents use

to communicate each other depending on their needs, and an state machine that defines the

behaviour of an agent in the argumentation dialogue.

The set of allowed locutions of our argumentation protocol are the following:

• open dialogue(as, φ), where φ is a problem q to solve in the system application domain.

With this locution an agent as opens the argumentation dialogue, asking other agents

to collaborate or negotiate to solve a problem that it has been presented with.

• enter dialogue(as, φ), where φ is a problem q to solve in the system application domain.

With this locution, an agent as engages in the argumentation dialogue to solve the

problem.

• withdraw dialogue(as, φ), where φ is a problem q to solve in the system application

domain. With this locution, an agent as leaves the argumentation dialogue to solve the

problem.

• propose(as, φ), where φ is a position p. With this locution, an agent as puts forward

the position p as its proposed solution to solve the problem under discussion in the

argumentation dialogue.

• why(as, ar, φ), where φ can be a position p or an argument arg. With this locution, an

agent as challenges the position p or the argument arg of an agent ar , asking it for a

support argument.

• no commit(as, φ), where φ is a position p. With this locution, an agent as withdraws its

position p as a solution for the problem under discussion in the argumentation dialogue.

• assert(as, ar, φ), where φ is an argument arg that supports a position. With this

locution, an agent as sends to an agent ar an argument that supports its position.

• accept(as, ar, φ), where φ can be an argument arg or a position p to solve a problem.

With this locution, an agent as accepts the argument arg or the position p of an agent

ar.

• attack(as, ar, φ), where φ is an argument arg. With this locution, an agent as challenges

the argument arg of an agent ar.

• retract(as, ar, φ), where φ is an argument arg. With this locution, an agent as informs

an agent ar that it withdraws the argument arg that it put forward in a previous step

of the argumentation dialogue.

Figure 3.1 shows the state machine that defines the behaviour of an agent in an

argumentation dialogue and the process that follows to propose positions, defend them and

3.4. ARGUMENTATION PROTOCOL 33

Figure 3.1: Argumentation state machine of the agents

attack others’ positions [Jordán et al., 2011a]. The transitions between states depend on the

locutions that the agent could use in each situation. The states of the argumentation state

machine are described as follows:

1. The first state is the initial state. When the agent is initialised it remains in this state

waiting for an open dialogue locution. Also, the agent will come back to this state when

the initiator agent communicates that the dialogue has finished. The open dialogue

locution inform the agent that a new dialogue to solve a problem (ticket) has started.

The agent will retrieve such cases of its case-base which features match the given ticket

with a similarity degree greater than a given threshold. Finally, if the agent has been

able to retrieve similar domain-cases and use their solutions to propose a solution for the

current problem, the agent will engage in the dialogue with the locution enter dialogue

and will go to the state 2. The agent only engages in the dialogue if it has solutions to

propose.

2. This is the proposing state. When the agent is in this state it has retrieved a list of

similar domain-cases to the current problem to propose a solution (position to defend).

If there are several solutions to propose, it will select the most similar to the problem

and go to state 3. Otherwise, the agent will use the withdraw dialogue locution and will

go to state 1.

3. This is a central state because the agent can try to attack other positions or defend

its position from the attacks of other agents. First, the agent checks if there is any

34 CHAPTER 3. ARGUMENTATION FRAMEWORK

why petition from other agent. This locution is used to ask other agents to justify its

position. The agent that received the why petition will assert a support argument to

the opponent if it can. This implies going to state 4. If the agent is not able to provide

a support argument to defend its position it will go to state 2 and try to propose

another position. If the agent has not received any why petition, it will ask an agent

(chosen randomly) that has a different position to justify it, using the why locution.

This implies going to state 6.

4. In this state, the agent that has put forward a support argument for its position waits for

an attack or an accept locution. After certain time has passed and nothing is received,

the agent will return to state 3. In the case that an attack is received, the agent will

try to reply with another attack. If it is not able to reply, it will retract its support

argument and go to state 3. Otherwise, if it replies with an attack it will go to state 5.

5. This state represents the situation where the agent is engaged in an attack phase

defending its position. When possible, every attack received will be replied with another

attack and the agent will remain in this state. When the agent cannot reply an attack

with other attack, it will retract its last attack and go to the state 4. In the case of

receiving an accept locution, it means that the attacking agent accepts the last given

attack. That implies to go to state 4 where the attacking agent must accept the support

argument and hence, the position of the proponent agent.

6. When the agent enters to this state it is waiting for an assert or a no commit locution.

When some waiting time has passed and nothing is received, the agent will return to

state 3. If the agent receives an assert locution and it is not able to attack the support

argument received with this locution, it will accept the other agent’s position and go to

state 3. However, if an attack argument can be generated, it will be send to the other

agent and change to state 7. In the case that a no commit locution is received it means

that the other agent retracts its position. Then, the agent will go to state 3.

7. This state represents when the agent is engaged in an attack phase attacking other

agent’s position. The agent will try to reply to any attack received for its attacking

arguments and remain in this state while it can reply. If an accept locution is received

the last attack argument has been accepted by the other agent, thus its position is

defeated and the agent will go to state 6 to wait another support argument or a

no commit locution. Nevertheless, if an attack of the other agent cannot be replied,

the agent has to accept the other agent’s attack argument, retracts its attack argument

and go to state 6. Then, it must go to state 3 after accepting the other agent’s position.

3.5. REMARKS 35

3.5 Remarks

In this Chapter, we have studied the argumentation framework proposed in [Heras et al., 2011c].

We have defined the concept of agent society and we have explained the different knowledge

resources and argument types. In addition, we have described the position generation and

selection. Finally, the argumentation protocol that the argumentative agents follow has been

explained.

After performing the review, we consider that this framework has all the necessary

components for our proposed infrastructure and specifies the knowledge resources of the

agents and the argumentation protocol to follow. Furthermore, we consider that this

framework is computationally tractable.

In the next Chapter, we propose an infrastructure that supports this argumentation

framework. Our infrastructure permits to develop argumentative agents taking into account

their social context, as it is specified in the argumentation framework. The infrastructure

also follows the reasoning and persistence mechanisms specified in the framework.

36 CHAPTER 3. ARGUMENTATION FRAMEWORK

Chapter 4

Infrastructure

4.1 Introduction

In this Chapter, the proposed infrastructure to support the argumentation framework of

Chapter 3 is described. We have developed an infrastructure to develop argumentative

agents in an open MAS. This infrastructure offers the necessary tools to develop agents

with argumentation capabilities, including the communication skills and the argumentation

protocol, and it offers support for agent societies and their agents’ social context. The

main advantage of having this infrastructure is that it is possible to create agents with

argumentation capabilities to resolve a specified problem. We consider that this approach

could obtain better results than other distributed approaches due to the argumentation

process between agents and their reasoning skills. In the argumentation dialogue the agents

try to reach an agreement about the best solution to apply for each proposed problem.

This infrastructure allows the users to create groups of argumentative agents to perform

argumentation dialogues to reach an agreement about a solution to the given problem. The

problem to solve has to be of a specified domain. Therefore, the training data has to be

prepared to store it as domain-cases. A domain-case is formed basically by a list of attributes

or premises with their features that specify the problem and the solution applied to solve it.

The argumentative agents will use these domain-cases to learn about the problem and solve

new problems by engaging in argumentation dialogues.

The components of the infrastructure and the interactions between them are represented

in Figure 4.1. The main components of our infrastructure explained in this Chapter are the

argumentative agents, the Commitment Store and the knowledge interchange mechanism.

As we can see in Figure 4.1, there are different organizations or groups composed by some

argumentative agents. Also, the Commitment Store interacts with all the argumentative

agents to store the positions and the arguments generated in the argumentation dialogue.

The knowledge interchange is made with concepts of a defined ontology that is used as a

language representation of the cases.

37

38 CHAPTER 4. INFRASTRUCTURE

Figure 4.1: Infrastructure

The agent platform used in the implemented infrastructure is Magentix21. As it has

been explained in Section 2.2, this is a platform that provides new services and tools that

allow for the secure and optimised management of open MAS. There are two modules of the

platform, concretely from THOMAS framework, represented in Figure 4.1, the Organization

Manager Service (OMS) and the Service Facilitator (SF). The OMS is in charge of managing

the organizations, groups, roles and norms of the system. The SF registers the different

services that can offer the agents and acts as yellow pages to find services. In our system,

this platform is used for the communication between the agents. A more detailed description

of the OMS and the SF can be found in [Argente et al., 2011]. The argumentative agents

and the Commitment Store agent are extensions of the Magentix2 BaseAgent2.

In this Chapter, we explain the following components of the infrastructure:

• Argumentative agents: which are the agents with argumentation capabilities to engage

in an argumentation dialogue to reach an agreement about the best solution to apply

to a problem. The main components of the argumentative agents are:

– Domain CBR: which is a CBR that stores domain knowledge of previous solved

problems. It is used by the argumentative agent to generate and select the position

(solution) to defend in an argumentation dialogue.

1http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/index.php
2http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/archivos/javadoc/

es/upv/dsic/gti ia/core/BaseAgent.html

4.2. ARGUMENTATIVE AGENTS 39

– Argumentation CBR: which is a CBR that stores past argumentation experiences.

It is used to select the best position to defend in the view of the acceptance that

had a similar position in the past.

– Argument management process: this includes how the positions, support

arguments and attack arguments are generated by the agents using their knowledge

resources and their domain and argumentation CBRs. It is also defined the

argumentation mechanism, which is the argumentation protocol followed by the

argumentative agents.

• Commitment Store: which is a resource of the argumentation framework developed

as an agent of the platform. This resource stores all the relevant information

of the argumentation dialogues. The argumentative agents communicate with the

Commitment Store to give or request information about the argumentation dialogue.

• Knowledge interchange mechanism: which is the mechanism that the argumentative

agents and the Commitment Store use to interchange knowledge. The agents of the

infrastructure interchange their knowledge using ontologies that allow the common

understanding between heterogeneous agents. They also interchange the knowledge by

their communication mechanism in form of FIPA-ACL3 messages.

The structure of packages and classes of the developed infrastructure is shown in Table 4.1

to see how the different components of the infrastructure are organized in the implementation.

4.2 Argumentative agents

The most important elements of the infrastructure are the argumentative agents. These

agents have all the components needed to engage in an argumentation dialogue and reach

an agreement with other agents about the best solution to apply for a problem. The

solution applied to solve a problem in the past and the information about the problem-

solving process can be reused to propose a solution to other similar problem. This solution

is previously stored in a memory of cases (case-base) and it can either be retrieved and

applied directly to the current problem, or revised and adapted to fit the new problem.

Case-Based Reasoning (CBR) systems have been widely applied to perform this task

[Acorn and Walden, 1992, Watson, 1997, Roth-Berghofer, 2004].

The implementation of the argumentative agents is an extension of the Magentix2

BaseAgent. The argumentative agents have two CBR based modules: Domain CBR and

Argumentation CBR. These modules are shown in Figure 4.1 and are described following.

3http://www.fipa.org/specs/fipa00061/SC00061G.html

40 CHAPTER 4. INFRASTRUCTURE

Package Classes

algorithms Metrics

SimilarityAlgorithms

argCBR ArgCBR

OWLArgCBRParser

configuration Configuration

database Access

ArgAgent

dialogueGame RandAgent

VotAgent

domainCBR DomainCBR

OWLDomainParser

knowledgeResources [See Table 4.2]

test ArgCBRTests

DomainCBRTests

Table 4.1: Structure of packages and classes in the infrastructure

4.2.1 Domain CBR

The argumentative agents have their own domain CBR. This CBR is prepared to store cases

of previous solved problems.

A domain-case is composed basically by a set of features or premises that describe the

problem that the case solved and a list of solutions applied with their promoted values as

shown in Figure 4.2. The cases in the case-base are organised by their features. A case is equal

to another if it has the same features with the same values in each feature. Thus, to retain

cases in the case-base the features are used as indexes to organise the cases. Also the features

are used to extract similar cases from the case-base in the retrieve phase. A summary of the

knowledge resources defined in the ontology of the infrastructure4 to interchange knowledge

is shown in Table 4.2. The knowledge resources of this Table also corresponds to the classes

of the package knowledgeResources of the infrastructure. The most important knowledge

resources are explained in this Chapter.

Different algorithms based on the normalized Euclidean distance, normalized Tversky

distance and weighted Euclidean distance can be used to measure the similarity degree

between different cases of the domain case-base. These algorithms are easy to implement

and they work well with different domains. Other algorithms could be used, but there is

not objective of this work to evaluate the different alternatives. To retrieve domain-cases of

4http://users.dsic.upv.es/∼vinglada/docs/

4.2. ARGUMENTATIVE AGENTS 41

the case-base, a set of features that describes the problem is given to calculate and obtain

the most similar domain-cases to the given problem description. Also, the list of similar

domain-cases returned is limited by a threshold of similarity degree, which can be specified

depending on the application domain.

Figure 4.2: Structure of the Domain-case

Case-base indexing

We use a hash table to store the domain-cases in the case-base. This data representation

allows to improve the efficiency of case extraction. However, the solution which has been

chosen is not completely optimal because it could create long lists that have to be used. In

any case, this strategy will always improve the simplest implementation of the base case, that

would be an unordered list.

As the domain CBR is a general implementation prepared to store cases of different

domains, the hash function of the hash table is not established a priori. The user can indicate

if there is one of the attributes or premises that can be used as an appropriate index to build

the hash function. When the data is loaded, if an index is not specified it will be used the

minor premise identifier of each case as an index. This design allows to have different lists in

the hash table. It is not the optimal way, but it is a good way to deal with a generic domain

CBR without a specified index.

Therefore, to make the extractions of domain-cases similar to the problem to solve, the

minor premise identifier of the entire premises is selected to extract the corresponding list

of domain-cases. If an index was specified, the extraction would be made using it. These

extraction will have constant cost O(1) and obtains a list of domain-cases that have the

premise. As expected, the list could be potentially large, depending on the times that the

premise appears in the domain-cases. However, a lot of cases without that premise can be

discarded. Then, the domain-cases of the list that match with the problem to solve will be

selected. This has a lineal cost O(n).

Retrieve

As it has been commented previously, to retrieve a domain-case of the case-base it is necessary

to use the specified index. If an index has not been specified, the extraction is made taking

42 CHAPTER 4. INFRASTRUCTURE

the minor premise identifier of the desired premises to extract the domain-cases that match

those premises.

There are two different methods in the domain CBR to retrieve domain-cases:

• retrieveAndRetain(DomainCase, threshold): This method returns a list of similar

domain-cases to the domain-case specified as parameter, with a similarity degree

greater than the specified threshold. This similarity degree is obtained with the

normalized Euclidean distance, normalized Tversky distance or weighted Euclidean

distance between the premises, depending on the specified in the configuration file

of the infrastructure. In addition, the domain-case specified as parameter is stored in

the case-base by using the method addCase.

• retrieve(premises, threshold): This method follows the same procedure that the last

one, but without retaining the domain-case. Furthermore, the first parameter is not a

complete domain-case, but a HashMap5 of premises.

Retention

It is very important to perform a retention phase in a CBR because it contributes to learn

new cases and adapt the system to new conditions.

In the domain CBR, two cases are considered equal only if they have the same premises

or attributes with the same values. If the case does not exist in the case-base it is stored. If

it exist, the associated solutions will be added to enrich the domain-case. This functionality

is implemented in the method addCase.

The retention of cases is normally made when the list of similar domain-cases are retrieved.

This is implemented in the retrieveAndRetain method explained before, that includes a call

to the method addCase. Furthermore, when the agent calls to the method doCache, it will

store all the case-base in a file that is specified.

Case-base persistence

The load and persistence of the domain case-base has been created by using ontologies.

Concretely, an ontology has been defined using the OWL 26 language, as commented before.

In this way, heterogeneous agents can use it as common language to interchange solutions

and arguments generated from the case-bases of the argumentation framework.

There is a method that loads the domain case-base of a file that is specified making a

call to the OWL 2 parser. Then, each domain-case read is added to the domain CBR. In

addition, there is another method that stores the domain case-base in a file that is specified.

5http://download.oracle.com/javase/1.4.2/docs/api/java/util/HashMap.html
6http://www.w3.org/TR/owl2-overview/

4.2. ARGUMENTATIVE AGENTS 43

This function makes a call to the OWL 2 parser and converts the domain-cases to the ontology

classes and stores the ontology in the file.

4.2.2 Argumentation CBR

The Argumentation CBR consists of a CBR module with argumentation data. This CBR

stores as argument-cases arguments previously used in argumentation dialogues as argument-

cases. The structure of the Argument-case is shown in Figure 4.3.

The argumentative agents have their own argumentation CBR. This module is used

to generate better arguments in the argumentation dialogues taking into account similar

previous argumentation experiences where similar solutions were proposed. Thus, the best

argument to propose in the current problem to solve will be selected in view of the acceptance

that had a similar argument in the past. Therefore, argument-cases store information related

to the domain and the social context where previous arguments (and their associated solution)

were used. The information about the domain consists of a set of features to compare cases

and information about the social context where the solution was applied (the agents that

participated in the dialogue, their roles or their value preferences). The latter information

can determine if certain arguments are more persuasive than others for particular social

contexts (their acceptability status was set to accepted at the end of the dialogue where the

argument was put forward) and hence, agents can select the best solution to propose and an

argument to support it.

ARGUMENT-CASE

Problem Solution

 Solution Applied

 Value Promoted

 Acceptability Status

 Received Attacks:

- Counter-examples

- Distinguishing premises
Domain Context

 Premises

Social Context

 Dependency Relation

Proponent

 ID

 Role

 Value Preference Relation

Opponent

 ID

 Role

 Value Preference Relation

Group

 ID

 Role

 Value Preference Relation

Figure 4.3: Structure of the Argument-case

44 CHAPTER 4. INFRASTRUCTURE

Case-base indexing

To store argument-cases in a case-base, we use a hash table to improve the efficiency of

extraction. The solution which has been chosen is the same as that used in the Domain

CBR, but always without any index. As explained before, this implementation is not optimal

but it improves the simplest approach.

The hash function of the hash table is based on the premises (or attributes) of the domain

context of the argument-case. Specifically, they are sorted based on the minor premise

identifier of the entire premises of the domain context. This design is appropriate because

the queries of the cases are based on the domain context. That is, extract the argument-case

that dealt with the specific domain context in the past.

Therefore, to extract an argument-case or a set of argument-cases, the minor premise

identifier of the entire premises is selected to extract the corresponding list of argument-

cases. This extraction will have constant cost O(1) and get a list of argument-cases that have

the premise. As expected, the list could be potentially large, depending on the times that the

premise appears in the argument-cases. However, a lot of cases without that premise can be

discarded. Then, the argument-cases of the list that match with the desired will be selected.

This has a lineal cost O(n).

The argument-cases of the case-base are composed by: ArgumentProblem, ArgumentSolu-

tion, ArgumentJustification and timesUsed. The first three attributes are instances of classes

that represent the problem, solution, and the justification of the case. Also, the attribute

timesUsed is the number of times that the case has been used. A summary of the knowledge

resources defined in the ontology of the infrastructure to interchange knowledge is shown in

Table 4.2. Following, we explain the three classes of the argument-case:

ArgumentProblem: It consists of the domain context and the social context of the

argument-case.

• DomainContext : Domain context of the argument-case. It is composed by:

– Premises: HashMap with the premises of a domain-case. Implemented on a

HashMap to improve the extraction having a constant cost O(1) and to facilitate

comparisons. Each element of the HashMap is formed by a pair<integer, premise>

where the integer is the identifier of the premise.

• SocialContext : Social context of the argument-case. It is composed by:

– Proponent : Proponent of the argument. It is an instance of SocialEntity class.

– Opponent : Opponent of the argument. It is an instance of SocialEntity class.

– Group: The proponent and the opponent belong to the Group. It is an instance

of Group class.

4.2. ARGUMENTATIVE AGENTS 45

– DependencyRelation: Dependency relation between the proponent and the

opponent. This dependency relation represents different types of hierarchies or

contracts between the roles of the agents. Can be one of the following three types:

∗ Power: when an agent has to accept a request from another agent because of

some pre-defined domination relationship between them.

∗ Authorisation: when an agent has committed itself to another agent for a

certain service and a request from the latter leads to an obligation when the

conditions are met.

∗ Charity: when an agent is willing to answer a request from another agent

without being obliged to do so.

ArgumentSolution: It contains different premises and cases associated to the solution of

the argument-case, as well as their type and acceptability status.

• ArgumentType: Argument type. It can be:

– Inductive: which uses the premises that describe the problem to solve.

– Presumptive: which uses similar argument-cases and/or domain-cases stored in

the case-bases of the system.

– Mixed : which uses premises and cases.

• AcceptabilityStatus: Acceptability status of the argument. It can be acceptable, when

the argument has been accepted; unacceptable, when the argument has been rejected;

and undecided, when the argument has not been accepted or rejected yet.

• Distinguising premises: List of distinguishing premises. These premises can invalidate

the application of a knowledge resource to generate a valid conclusion for an argument.

• Counter-examples: List of cases, domain-cases or argument-cases that represent

counter-examples. Counter-examples are cases similar to a case (their descriptions

match with some or all features of the problem description) but have different

conclusions.

ArgumentJustification: It is the justification of the argument-case:

• Cases: List of cases associated to the argument-case to justify its validity. They can

be domain-cases or argument-cases.

46 CHAPTER 4. INFRASTRUCTURE

Retrieve

In the argumentation CBR the argument-cases can be retrieved in different ways depending

on the interests of the agent that use it. This means that the agent can get cases that have

been attacked, accepted, and various combinations, depending on its interests. Nevertheless,

there is a common method used in all extraction recoveries. This extraction (method

getMostSimilarArgCases(ArgumentCase)) refers to obtaining the argument-cases that have

the same domain context and a similar social context. The similarity of the social context is

computed by some parameters and adjusted with some weights specified in the configuration

file of the infrastructure.

The following methods for obtaining lists of argument-cases that meet certain conditions

are used to calculate the suitability factor of the Equation 3.9:

• getSameProblemAcceptedArgCases(ArgumentCase): Get similar argument cases to the

given one with the same problem description and accepted.

• getSameProblemConclusionArgCases(ArgumentCase): Get similar argument cases to

the given one with the same problem description and conclusion.

• getSameProblemConclusionAcceptedArgCases(ArgumentCase): Get similar argument

cases to the given one with the same problem description, conclusion and accepted.

• getSameProblemConclusionAcceptedAttackedArgCases(ArgumentCase): Get similar

argument cases to the given one with the same problem description, conclusion, accepted

and with attacks.

• getAttackDegree(ArrayList<ArgumentCase>, ArrayList<Position>): Returns the

attack degree of each given position.

• getEfficiencyDegree(ArrayList<ArgumentCase>, ArrayList<Position>): Returns the

efficiency degree of each initial position.

• getExplanatoryPower(ArrayList<ArgumentCase>, ArrayList<Position>): Returns

the explanatory power of the given positions.

• getDegrees(ArgumentProblem, Solution, ArrayList<Position>, index): Returns a list

with the degrees (attack, efficiency, explanatory power, persuasiveness, support and

risk) of an argument problem.

The four first methods explained above are used to calculate the different degrees. The

next three methods obtain the commented degrees as their names indicate. And finally, the

last method is the one that uses the others to compute all the degrees: Persuasiveness Degree

(Equation 3.3), Support Degree (Equation 3.4), Risk Degree (Equation 3.5), Attack Degree

4.2. ARGUMENTATIVE AGENTS 47

(Equation 3.6), Efficiency Degree (Equation 3.7) and Explanatory Power (Equation 3.8).

This method is to be used by the agent to obtain the degrees and calculate the suitability

factor of the position, and then, its final suitability (Equation 3.10).

Retention

Two cases are considered equal only if they have the same domain context, social context,

conclusion and acceptability status. If a new case generated during the argumentation process

does not exist in the case-base it is stored. If it exist, the associated domain-cases and attacks

received will be added to enrich the argument-case. This functionality is implemented in the

method addCase.

The argument-case retention is made once the argumentation process has finished. Each

generated argument in the process is taken to call the method addCase. Therefore, the case

is added to the CBR, that is, in the case-base in memory. After, when the agent calls to the

method doCache, it will store all the case-base in a specified file.

Case-base persistence

As with by the domain CBR, the load and persistence of the argumentation case-base has been

created using ontologies. Concretely, an ontology has been defined using the OWL 2 language

as commented before. In this way, heterogeneous agents can use it as common language to

interchange solutions and arguments generated from the case-bases of the argumentation

framework.

To store the argument-cases case-base in a file that is specified we use the same approach

than with the domain CBR. A method loads the argument-cases making a call to the OWL

2 parser and taking the data from a file that is specified. Furthermore, another method

converts all the argument-cases to data in OWL 2 using the parser. Then, the OWL 2 data

is stored in a file that is specified.

4.2.3 Argument Management Process

The argument management process that the argumentative agents perform is described

below. The argument management process includes: position generation, support arguments

generation, attack arguments generation and argumentation mechanism.

Position generation

A position is a solution that defends an agent as the correct one to apply to the problem to

solve. The position generation is made in two steps. First, the agent searches in its domain

CBR the most similar domain-cases to the current problem to solve. With them, the agent

is able to propose its position. Then, the agent evaluates the suitability of each position

48 CHAPTER 4. INFRASTRUCTURE

using the argumentation CBR. To do that, such argument-cases that its features match with

the domain-cases extracted are retrieved. Then, each position is evaluated in function of

the chances of being well defended. As this evaluation is based on argument-cases, the best

position to propose in the current case to solve will be selected in view of the acceptance that

had a similar argument in the past.

To perform this evaluation, the argumentative agents use the similarity degree that the

domain CBR returned from the selected domain-case and the different degrees calculated by

the Argumentation CBR. Formula 3.9 obtains the Suitability Factor from the argumentation

point of view of positions with the different degrees explained in Section 3.3. Finally, Formula

3.10 computes the final suitability of a position, taking into account all the degrees and its

similarity to the problem to solve. In the framework, the weights of the formulas can be

established when the agent is created.

Algorithm 1 generatePositions

Require: ProblemDescription {The description of the problem to solve}
1: matchCases = ∅
2: solutions = ∅
3: positions = ∅
4: similarity = 0

5: SD = ∅
6: i = 0; j = 0; k = 0

7: for all c ∈ DomainCasesCB do

8: similarity = computeSimilarity(ProblemDescription, c)

9: if similarity > δ then

10: matchCases[i] = c {If the similarity exceeds certain threshold, the domain-case is

selected to generate the position}
11: SD[i] = similarity {The similarity degree of this domain-case is stored}
12: i++

13: end if

14: end for

15: solutions = generateSolutions(matchCases)

16: if lenght(solutions) ≥ 1 then

17: for [s = 0;s < lenght(solutions);s+ +] do

18: positions = addPosition(ProblemDescription, solutions[s], SD[i])

19: end for

20: end if

21: Return positions

The method that generates the positions is called generatePositions. It receives a problem

4.2. ARGUMENTATIVE AGENTS 49

description as parameter and return a list of positions to defend, ordered from more to less

suitable. The pseudocode of this method is shown in Algorithm 1.

Support arguments generation

A support argument is an argument that justifies a position. The support set of this kind

of argument can be formed by argument-cases, domain-cases and premises. These cases

and premises justify the solution defended by the position since the features of the problem

match and they promote the same value and solution. To generate a support argument for

a position, the argumentative agents search for similar argument-cases that can justify the

current position. Also, they include the domain-case that was used to create the position

in the support set. Finally, a list of possible support arguments is generated with different

combinations of the available support elements in the support set. This list is ordered by

a suitability degree [Heras et al., 2011b] in terms of the acceptance that had the similar

argument-case in the past taking into account the domain and social contexts.

The argumentative agents use the method generateSupportArguments to create support

arguments for a position. This method receives as parameters the current position and the

opponent agent identifier to take into account the social context and the possible support

arguments. It returns a list of support arguments, ordered from more to less suitable.

Attack arguments generation

An attack argument is an argument that attacks a support argument or another attack

argument. The attack argument has a different solution to the argument attacked. To

generate the attack argument, the premises that has the argument to attack and the social

context (the relation with the other agent) are taken into account. With this information, the

argumentative agents extract the argument-cases that match with the current position and

have a similar social context. Then, if the dependency relation permits to attack the other

agent, the attack will be based on the most suitable argument-case extracted in terms of the

acceptance that had the argument-case in the past. The argumentative agents always try to

generate a counter-example attack in the first time, but a distinguishing premise attack will

be generated when all possible counter-example attacks had been used without success.

The argumentative agents have a method called generateAttackArgument that generates

and attack argument if it is possible. The pseudocode of this method is shown in Algorithm

2. It receives as parameters the argument to attack and the opponent agent identifier. The

method generateAttackArgument uses two different methods to generate the two types of

attacks:

• generateCEAttack(ArrayList<SimilarArgumentCase>, HashMap<Integer, Premise>,

DependencyRelation, opponentAgentID): this method generates a counter-example

50 CHAPTER 4. INFRASTRUCTURE

attack argument. The parameters are the list of argument-cases that match with the

domain and social context of the defended position, the premises of the opponent’s

position, the dependency relation between the agents, and the opponent agent identifier.

• generateDPAttack(ArrayList<SimilarArgumentCase>, HashMap<Integer, Premise>,

DependencyRelation, opponentAgentID): this method generates a distinguishing

premises attack argument. The parameters are the same as the generateCEAttack

method.

Algorithm 2 generateAttackArgument

Require: incArgument, DomainCasesCB, ArgumentCasesCB {The argument to attack and

the case-bases of domain-cases and argument-cases}
1: support = checkSupportSet(incArgument)

2: supportElement = selectElementToAttack(support)

3: if (supportElement = Domain-Case) or (supportElement = Argument-Case) then

4: CE=generateCounterExample(incArgument)

5: if CE 6= ∅ then

6: generateCEAttack(incArgument)

7: else

8: generateDPAttack(incArgument)

9: end if

10: end if

11: if supportElement = Premises then

12: generateDPAttack(incArgument)

13: end if

14: if support = ∅ then

15: generateCEAttack(incArgument)

16: end if

Argumentation mechanism

The agents of the infrastructure need a mechanism to manage the arguments and perform the

argumentation dialogue. Therefore, an argumentation protocol (Figure 3.1) has been defined

in [Jordán et al., 2011a], as explained in Section 3.4. This protocol is represented by a set

of locutions that the agents use to communicate each other depending on their needs, and a

state machine that defines the behaviour of an agent in the argumentation dialogue.

The state machine has been implemented inside a loop which has one case for each state.

Also, in each state the different locutions that can be received and generated are taken into

account to act in consequence following the argumentation protocol. Inside each state of

4.3. COMMITMENT STORE 51

the protocol, the corresponding actions are performed using the necessary calls to different

functions of the agent.

There are some states where the agent has to wait some time to receive messages. In

these states, the wait time is performed by sleeping the agent. The agents have a method

called listenAndReviseQueue that waits some specified time and then it revises the messages

queue to search if there is a message with the locution that the agent is waiting. Normally,

the strategy of waiting for a type of message consists on executing several times the method

listenAndReviseQueue with a short time to avoid checks if the message arrives soon.

4.3 Commitment Store

The Commitment Store is a resource of the argumentation framework that stores all the

information about the agents participating in the problem-solving process, argumentation

dialogues between them, positions and arguments. By making queries to this resource, every

agent can read the information of the dialogues that it is involved in. In the infrastructure,

the Commitment Store has been implemented as an agent to allow a good communication

with the other agents. Concretely, it is an extension of the Magentix2 SingleAgent7 that it

is also an extension of the Magentix2 BaseAgent, as the argumentative agents.

This agent has a method that makes a passive wait for messages. This means that the

agent is waiting for messages without consuming resources of the system. Therefore, when

the Commitment Store receives a message it obtains the locution of it and treat the data as

corresponds. It could be a message to store something about the dialogue (e.g. positions,

arguments, etc), or to give some information to an argumentative agent participating in a

dialogue. If it is the second case, the Commitment Store sends a message with the requested

information and the corresponding locution.

In Figure 4.4, an example of messages interchange between an argumentative agent and

the Commitment Store is shown. The argumentative agent of the example makes a request

to the Commitment Store to get the position of another argumentative agent (ArgAgent2).

Then, the Commitment Store responds to the request with a message that has attached (an

object of the defined ontology) the position requested by the argumentative agent.

4.4 Knowledge interchange mechanism

The case-bases of the domain CBR and the argumentation CBR are stored as OWL 28

data of an ontology9 that we have designed to act as language representation of the cases.

7http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/archivos/javadoc/

es/upv/dsic/gti ia/core/SingleAgent.html
8http://www.w3.org/TR/owl2-overview/
9http://users.dsic.upv.es/∼vinglada/docs/

52 CHAPTER 4. INFRASTRUCTURE

Figure 4.4: Messages interchange between an argumentative agent and the Commitment

Store

In this way, heterogeneous agents can use it as common language to interchange solutions

and arguments generated from the case-bases of the argumentation framework. The main

advantage of using ontologies is that the structures and features of the cases are well specified

and heterogeneous agents can easily understand them. The ontology parsers developed, by

using the OWL API10, provide an API to read and write data in the case-bases.

The agents of the infrastructure are extensions of the Magentix2 BaseAgent. Then, the

communication is performed with the mechanisms that the Magentix2 platform offers. The

Magentix2 BaseAgent has a method called onMessage that is executed when the agent

receives a FIPA-ACL message. Therefore, the agents of the infrastructure have a queue

of messages to store the messages that arrive at any time. When the onMessage method

is executed, the message that arrives is stored in the messages queue. Only when it is a

special message that indicates the end of the dialogue or the agent has to be killed a different

behaviour is performed and the message is not stored. In addition, there is another method

called sendMessage in the agents of the infrastructure that is used to send messages to other

agents. This method receives as parameters the name of the receiver agent, the locution of

the message, the dialogue identifier and the object to send (if necessary). The sendMessage

method creates the message to send and include all the corresponding information. Then, it

uses the send method of the Magentix2 BaseAgent to send the message to the receiver. Note

that the included object (if it is necessary) is an instance of a class that represents a concept

of the defined ontology. In this way, heterogeneous agents can understand each other.

10http://owlapi.sourceforge.net/

4.4. KNOWLEDGE INTERCHANGE MECHANISM 53

Class Description

Argument Argument of the argumentation process

ArgumentationScheme Argumentation scheme

ArgumentCase Argument case stored in the case-base

ArgumentJustification Justification of an argument-case

ArgumentNode Node of an argument in a dialogue graph

ArgumentProblem Problem that treat an argument-case

ArgumentSolution Solution of an argument-case

Author Author of an argument

Case Case. Specialized in domain-case or argument-case

CaseComponent Case Component. Empty class specialized in Justification, Problem and

Solution

Conclusion Conclusion or solution of a problem

Context Empty class specialized in DomainContext and SocialContext

DialogueGraph Dialogue graph

DomainCase Domain case

DomainContext Domain context

Group Group of agents. It has its preference value. It extends SocialEntity

Justification Justification of an argument-case. Counter-examples, premises...

Norm Norm of a SocialEntity

Premise Premise that belongs to a DomainCase or an ArgumentCase

Problem Problem represented in a DomainCase or an ArgumentCase

SimilarArgumentCase Argument case with a numeric attribute of similarity

SocialContext Social context where it is defined the relation between two SocialEntity

SocialEntity Social entity that has the data that represents an agent

Solution Solution of the problem that represents a DomainCase or an Argument-

Case

SupportSet Support set of an argument

ValPref Preference value and ordered list of the preference values

Value Value promoted by a Solution, SocialEntity or Group

ValueNode Value node

Table 4.2: Classes of the package knowledgeResources

54 CHAPTER 4. INFRASTRUCTURE

Chapter 5

Call Centre Example

In this chapter, we give an example of a call centre application that uses the implemented

infrastructure. This example is intended to validate the proposed infrastructure.

5.1 Customer support application

Nowadays, companies have to offer a good customer support to take an advantage over their

competitors. A good customer support depends, in many cases, on the experience and skills

of its operators. A quick and accurate response to the customers problems ensures their

satisfaction and a good reputation for the company and, therefore, it can increase its profits.

A common customer support system settled in a company consists of a network of

operators that must solve the incidences (also known as tickets) received in a Technology

Management Centre (TMC). TMCs are entities which control every process implicated in the

provision of technological and customer support services to private or public organizations. In

a TMC, there are a number of operators whose role is to provide the customers with technical

assistance. This help is commonly offered via a call centre. The call centre operators have

computers provided with a helpdesk software and phone terminals connected to a telephone

switchboard that balances the calls among operators. Commonly, the staff of a call centre

is divided into three levels: 1) Base operators, who receive customer queries and answer

those ones from which they have background training; 2) Expert operators, who are the

technicians in charge of solving new problems; 3) Managers, who are in charge of organising

working groups, of assigning problems to specific operators and of creating generic solutions.

The solution applied to each problem and the information about the problem-solving

process could be a suitable way to improve the customer support offered by the company.

The suitability of CBR systems in helpdesk applications to manage call centres has

been guaranteed for the success of some of these systems from the 90s to nowadays

[Acorn and Walden, 1992, Watson, 1997, Roth-Berghofer, 2004].

These approaches propose systems for human-machine interaction where the CBR

55

56 CHAPTER 5. CALL CENTRE EXAMPLE

functionality helps the operators to solve problems more efficiently by providing them with

potential solutions via the helpdesk software. We have applied the case-based argumentation

infrastructure for agent societies presented in this work to extend a previous work that

presented a CBR module that acts as a solution recommender for customer support

environments [Heras et al., 2009]. The CBR module is flexible and multi-domain. However,

to integrate the knowledge of all experts in a unique CBR module can be complex and

costly in terms of data mining (due to extra large case-bases with possible out-of-date cases).

Moreover, to have a unique but distributed CBR could be a solution, but to assume that all

operators are willing to share unselfishly their knowledge with other operators is not realistic.

In this case, the modelling of the system as a MAS will be adequate. Finally, several experts

could provide different solutions and hence, they need a mechanism to negotiate and reach

an agreement about the best solution to apply.

Now, we propose to automate the system by representing the operators by means of

software agents that can engage in an argumentation process to decide the best solution to

apply for each new incidence. The case-based argumentation infrastructure for agent societies

presented in this work has been applied to a prototype that provides support to the operators

and experts of a call centre via a helpdesk application.

In our prototype, the operators and experts of a call centre are represented by agents that

use an automated helpdesk and argue to solve an incidence. Every agent has individual CBR

resources and preferences over values (e.g. economy, quality, solving speed). A solution to a

problem promotes one value. Thus, each agent has its own preferences to choose a solution

to propose. Furthermore, agents can play two different roles: operator and expert. The main

difference between an operator and an expert is that the second one has more specific domain

knowledge to solve certain types of problems. Also, dependency relations between roles could

imply that an agent must change or violate its value preference order. For instance, an expert

could impose their values to an operator and the last could have to adopt a certain preference

order over values. Therefore, we endorse the view of [Bench-Capon and Atkinson, 2009], who

stress the importance of the audience in determining whether an argument is persuasive or

not for accepting or rejecting someone else’s proposals. The data-flow for the argumentation

process of the helpdesk application presented can be seen in [Jordán et al., 2011b].

In order to show how the prototype works, the data-flow for the problem-solving process

to solve each ticket is shown in Figure 5.1 and described below:

1. Some argumentative agents run in the platform and represent the operators of the call

centre. The manager of the group acts as the initiator of the dialogue. This agent has

a special behaviour to receive tickets to solve and create a new dialogue with the agents

of his group. The process begins when a ticket that represents an incidence to solve is

received by the initiator agent. Then, this agent sends the ticket to the agents of their

group.

5.1. CUSTOMER SUPPORT APPLICATION 57

MANAGER

OPERATOR 2

CS

OPERATORS

MAGENTIX2 PLATFORM

 DOMAIN-CBR

 ARG-CBR

DOMAIN

CASES

ARGUMENT

CASES

 DOMAIN-CBR

 ARG-CBR

DOMAIN

CASES

ARGUMENT

CASES

OPERATOR 1

OWL

PARSER

OWL

PARSER

OWL

PARSER

OWL

PARSER

6

2

1

1
5

5

1

5

4

2

2

4

2

4

3 3

6

6
6

3 5

4

Figure 5.1: Data-flow for the argumentation process of the helpdesk application

2. Each agent evaluates if it can engage in the dialogue offering a solution. To do that,

the agent makes a query to its domain CBR to obtain potential solutions to the ticket

based on solutions applied to similar tickets. If one or more valid solutions are retrieved,

the agent will be able to defend a position in the dialogue. A valid solution is any

solution derived from a domain-case of the domain CBR with one or more solutions

and with a similarity degree greater than a given threshold. Moreover, the agent makes

a query to its argumentation CBR for each possible position to defend. With these

queries a suitability degree of the positions is obtained. This degree represents if a

position will be easy to defend based on past similar argumentation experiences. Then,

all positions to defend are ordered and proposed from more to less suitability degree

[Heras et al., 2011b].

3. When agents have a position to defend (a proposed solution), these positions are stored

by the commitment store agent. Thus, other agents can check the positions of all

dialogue participants. Every agent tries to attack the positions that are different from

its position.

4. The argumentation process consists on a series of steps by which agents try to defend

their positions by generating counter-examples for the positions and arguments of other

agents. A counter-example for a case is generated by retrieving from the domain case-

base other case that matches the features of the former, but has a different conclusion.

If different counter-examples can be generated, agents select the best attack to rebut

the position of other agent by making a query to their arguments case-base, extending

each case with the current social context. In this way, agents can gain knowledge about

how each potential counter-example worked to attack the position of an agent in a past

58 CHAPTER 5. CALL CENTRE EXAMPLE

argumentation experience with a similar social context.

5. The dialogue finishes when certain time has passed without new positions or arguments

proposed. The initiator agent makes queries to the commitment store agent to

determine if the dialogue must finish. Then, this agent retrieves the active positions of

the participating agents and the most frequent will be the solution (or a random choice

in case of draw). The initiator agent communicates the solution to the participating

agents.

6. Finally, each agent updates its argumentation CBR with the new arguments produced

in dialogue and its domain CBR with the final solution applied.

5.2 Evaluation

In this Section, we make different evaluations of our prototype to validate the infrastructure.

Firstly, we explain the unitary tests performed to validate the correct operation of the different

modules of the infrastructure. Then, we evaluate the percentage of solved problems in respect

to the domain-cases case-bases of each agent. Similarly, we analyze the prediction error with

different combinations of operators, experts and policies. Also, we show the learning of the

CBRs with the increasing of their cases with the iterations. Finally, we analyze the generated

locutions in the argumentation dialogues to see how the agents argue in different conditions.

In the following tests shown, the domain-cases case-bases of each agent are populated

randomly by using some of the 48 cases of a case-base of computer problems, increasing the

number of cases from 5 to 45 cases in each round. Each problem is described by a set of

features (e.g. the type of problem, the log provided by the system, etc.) and the description

of the solution applied. To diminish the influence of random noise, all results report the

average of 48 simulation runs per round. In each round, an agent is selected randomly as

initiator of the process. This agent has access to the whole case-base of computer problems

and in each run takes the corresponding case to solve and sends it to the other agents. In this

way, the initiator knows which was the real solution applied to the problem and can compare

this value to the solution decided by the agreement process. To make the evaluation the tests

have been performed with the following decision policies:

• CBR-Random (CBR-R): which consists on choose randomly a solution of those

proposed by the agents by using its individual case-base. Each agent proposes a solution

if it is possible, but without any argumentation process.

• CBR-Majority (CBR-M): which consists on selecting the solution most frequently

proposed by the agents, again using a CBR methodology, and also without any

argumentation process.

5.2. EVALUATION 59

• CBR-Argumentation (CBR-A): where agents are provided with the proposed case-based

argumentation functionalities and perform an argumentation dialogue to select the best

solution of those proposed by the group.

In all decision policies, agents propose solutions using its own CBR. So, an agent will be

able to propose a solution if in its CBR there is a case that match with the ticket to solve.

In the performed tests, we use two different configurations: groups with different

combinations of operators; and groups with operators and experts. The main difference

between these two configurations is that in the second configuration, some agents have been

allowed to play the role of an expert, while the rest of agents play the role of operators. An

expert is an agent that has specific knowledge to solve certain types (categories) of problems

and has its case-base of domain-cases populated with cases that solve them. Thus, the

expert domain-cases case-base has as much knowledge as possible about the solution of past

problems of the same type. That is, if the expert is configured to have 5 domain-cases in

its domain-cases case-base, and there are enough suitable information in the original tickets

case-base, these cases represent instances of the same type of problems. In the case that the

tickets case-base has less than 5 cases representing such category of problems, 3 for instance,

the remaining two cases are of the same category (if possible).

In our case, the expert agent has an authorisation dependency relation over other

technicians. This dependency relation means that when an agent has committed itself to

other agent for a certain service, a request from the latter leads to an obligation when the

conditions are met. Therefore, if the expert agent is able to propose a solution for the ticket

requested, it can generate arguments that support its position and that will defeat other

operators’ arguments, due to the defeat relation among arguments. This relation assigns

more importance to the arguments of an agent that has an authorisation dependency relation

over other agents. However, in the CBR-Random and the CBR-Majority policies there is not

argumentation dialogue, so this dependency relation is not taking effect, but the proposals

of the expert have the same influence than other operators proposals in the final solution

selected.

5.2.1 Unitary Tests

Following, we explain the unitary tests performed to validate the correct operation of the

modules of the infrastructure.

Domain and Argumentation CBRs

Here we describe the unitary tests developed to verify the Domain and Argumentation Case-

Based Reasoning (CBR) modules of this project. The objective of these verification tests is

to check that the modules behave as expected and return the correct values. With this aim

60 CHAPTER 5. CALL CENTRE EXAMPLE

the non-existence of the following elements is verified:

• Inaccuracies: cases that used as queries do not match themselves.

• Duplications: duplicated cases in the case-base.

• Inconsistencies: identical queries that give rise to contradictory conclusions.

The verification tests are based on those proposed in [Althoff et al., 1995, Watson, 1997]. To

implement repeatable tests, the JUnit1 framework has been used. First, we use a class for

each CBR (Domain and Argumentation) that runs a suite with all domain verification tests

adapted to each CBR. In these classes, a function called setUp creates an instance of the

DomainCBR class or the ArgCBR class, which initialize the Domain CBR or the Argumentation

CBR and loads all default cases.

The tests are executed for each of the retrieval algorithms used (normalized Euclidean

similarity, normalized Tversky similarity and weighted Euclidean similarity).

Retrieval Accuracy: If you are using nearest-neighbour or inductive retrieval, a case

should exactly match itself. To perform this test the case-bases of the CBRs are loaded with

all default cases. Then, each case is used to query the CBR. As every case was loaded in

the case-base, these queries should retrieve a case for each query with 100% of similarity. If

a case does not retrieve itself or does not match exactly, there is something wrong with the

algorithms used in the retrieval step of the CBR cycle.

Retrieval Consistency: Using nearest-neighbour or inductive retrieval, if you perform the

same search twice it should retrieve the same cases from the case-base and with the same

degree of similarity. To perform this test the case-bases of the CBRs are loaded with all

default cases. Then, each case is used to query the CBR. For each query, the CBR should

retrieve the same cases with the same percentage of similarity. Otherwise, something is wrong

with the retrieval algorithms.

Case Duplication: A case should match itself, but it should not be identical to other case

in the case-base. Duplications do not make the system to provide incorrect answers, but

affect its performance and increases its response time. To perform this test the case-bases

of the CBRs are loaded with all default cases. Then, each case is used to query the CBR.

Finally, the list of similar cases is checked to ensure that there are no duplicates in the list.

The three explained tests have been executed with the Domain CBR and the

Argumentation CBR obtaining the expected results. Therefore, we can say that these modules

are implemented correctly to perform their functionalities.

1http://www.junit.org/

5.2. EVALUATION 61

5.2.2 Percentage of problems that were solved with respect to the

knowledge of the agents

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40 45

S
o
lv

e
d
 P

ro
b
le

m
s

Domain-Cases

CBR-R

CBR-M

CBR-A

(a) 3 operators

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40 45

S
o
lv

e
d
 P

ro
b
le

m
s

Domain-Cases

CBR-R

CBR-M

CBR-A

(b) 5 operators

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40 45

S
o
lv

e
d
 P

ro
b
le

m
s

Domain-Cases

CBR-R

CBR-M

CBR-A

(c) 7 operators

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40 45

S
o
lv

e
d
 P

ro
b
le

m
s

Domain-Cases

CBR-R

CBR-M

CBR-A

(d) 9 operators

Figure 5.2: Solved problems

In the tests shown in Figure 5.2, we make an evaluation of the percentage of solved

problems (agents provide a solution if possible, regardless of its level of suitability) with

respect to the size of the case-bases of domain-cases of the agents. In all cases, all policies

achieve the same results. As expected, the percentage of problems solved by the system

increases with the number of domain-cases. Also, as the number of operators grows, the

percentage of solved problems is higher. This is because with more operators there is more

knowledge, and it is more probable that one or more operators know the solution.

Figure 5.3 shows the percentage of solved problems of a group with 6 operators and an

expert. The main difference between these results and the previous is that the percentage of

solved problems is higher than with the other combinations of operators without an expert.

The reason of these results is that the expert contributes with more knowledge and hence, it

is more probable to give a solution to solve the problem.

62 CHAPTER 5. CALL CENTRE EXAMPLE

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40

S
o

lv
e

d
 P

ro
b

le
m

s

Domain-Cases

CBR-R

CBR-M

CBR-A

Figure 5.3: Solved problems with 6 operators and 1 expert

5.2.3 Prediction error with respect to the knowledge of the agents

For the tests shown in Figure 5.4, we evaluate the average error in the prediction of the best

solution to apply with regard to the size of the case-bases of domain-cases of the agents. As

we can expect, the prediction error of the system decreases as the number of domain-cases

grows. In addition, the prediction error of the CBR-Argumentation policy is always lower or

equal than the other policies. Argumentation allows agents to argue and hence, the solution

with more justification elements prevails. Thus, the best solution has more probability of

being proposed and the error decreases.

Obviously, if more agents participate in the problem solving process, the probability that

one or more of them have a suitable domain-case that can be used to provide a solution

for the current problem increases. The same happens if the number of domain-cases of

the agents case-base increases. This applies also in the case of the CBR-Random policy,

although this policy never achieves the 100% of correct solution predictions. Also, the results

achieved by the CBR-Argumentation policy improve those achieved by the other policies,

even when the domain-cases case-bases are populated with a small number of cases. These

results demonstrate that if agents have the ability of arguing, the agents whose solutions are

more supported by evidence have more possibilities of wining the argumentation dialogue

and hence, the quality of the final solution selected among all potential solution proposed by

the agents increases.

In the tests shown in Figure 5.5, an agent has been allowed to play the role of an expert,

while the rest of agents play the role of operators. As explained before, an expert is an

5.2. EVALUATION 63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45

E
rr

o
r

Domain-Cases

CBR-R

CBR-M

CBR-A

(a) 3 operators

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45

E
rr

o
r

Domain-Cases

CBR-R

CBR-M

CBR-A

(b) 5 operators

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45

E
rr

o
r

Domain-Cases

CBR-R

CBR-M

CBR-A

(c) 7 operators

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45

E
rr

o
r

Domain-Cases

CBR-R

CBR-M

CBR-A

(d) 9 operators

Figure 5.4: Prediction error

agent that has specific knowledge to solve certain types (categories) of problems and has its

case-base of domain-cases populated with cases that solve them. Thus, the expert domain-

cases case-base has as much knowledge as possible about the solution of past problems of

the same type. In our case, the expert agent has an authorisation dependency relation over

other technicians. In this tests, the general prediction error is lower than in the other group

without any expert. The reason of that improvement in the results is that the expert is

providing the best solution that it knows. In the CBR-R and CBR-M policies, is providing

more specialized knowledge. In the CBR-Argumentation policy, it is imposing its opinion

about which is the best solution to apply. As the expert has more specialized knowledge, the

probability of selecting the best solution increases.

5.2.4 Learning of the Domain CBR and the Argumentation CBR

In the next test, we evaluate the number of domain-cases and argument-cases that the agents

learn with respect to time. To perform this test, all agents follow the CBR-Argumentation

64 CHAPTER 5. CALL CENTRE EXAMPLE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40

E
rr

o
r

Domain-Cases

CBR-R

CBR-M

CBR-A

Figure 5.5: Prediction error with 6 operators and 1 expert

policy, with an initial number of 5 domain-cases in their domain-cases case-bases. The

argument-cases case-base of all agents are initially empty. In each iteration, the agents

use their CBR modules to propose and select positions and arguments and after this process,

each agent updates its case-bases with the knowledge acquired.

The knowledge acquired about past problem solving processes should increase with the

time until some threshold, where the learning process should stabilize (because the cases in

the case-bases of the agents cover most possible problems and arguments in the domain). To

perform this test, we have executed several rounds to simulate the use of the system over

certain period of time. For each repetition, we compute the average number of domain-cases

and argument-cases in the case-bases of the agents. Figure 5.6 shows the results obtained in

this test. The experiment has been repeated for 3, 5, 7 and 9 agents and the average number

of domain-cases (DC) and argument-cases (AC) that all agents learn in each iteration has

been computed. As expected, in all cases, the agents are able to learn the 48 domain-cases

of the tickets case-base. However, if more agents participate in the dialogue, the quantity

of domain knowledge that agents have available and interchange among them increases and

the domain-cases case-bases are more quickly populated. Also, the quantity of argument-

cases that agents are able to learn increases with the number of agents, since more potential

positions and arguments give rise to more complex argumentation dialogues. As shown in

the figure, the learning curve for the argument-cases is less soft than for the domain-cases,

presenting peaks at some points. This is due to the fact that at some points of the dialogue,

the agents can learn a specific domain-case that change its opinion about the best solution

5.2. EVALUATION 65

to apply for a specific category of problem. Therefore, the outcome of subsequent dialogues

differ from the outcome that could be expected taking into account past similar dialogues

and the argument-cases learning rate of the agents in those situations notably increases.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
d
o
m

a
in

-c
a
s
e
s

Iterations

3 operators
5 operators
7 operators
9 operators

(a) Domain CBR learning

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
a
rg

u
m

e
n
t-

c
a
s
e
s

Iterations

3 operators
5 operators
7 operators
9 operators

(b) Argumentation CBR learning

Figure 5.6: Learning of Domain CBR and Argumentation CBR with respect to time

5.2.5 Generated locutions in the dialogues

In order to see how the agents argue, we show the generated locutions in the dialogues. As

explained before, a locution is a conversational particle which an argumentative agent express

something. For example, ask about someone’s position, propose positions, attack positions

or arguments, retract positions or arguments, and so on. Therefore, the locutions generated

in the dialogues are an interesting way to measure the complexity of the dialogues.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45

M
e
a
n
 l
o
c
u
ti
o
n
s
 p

e
r

d
ia

lo
g
u
e

Domain-Cases

3 operators
7 operators

11 operators
15 operators
19 operators

(a) Locutions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45

E
rr

o
r

Domain-Cases

3 operators
7 operators

11 operators
15 operators
19 operators

(b) Error

Figure 5.7: Mean locutions generated per dialogue and prediction error

Figure 5.7a represents the mean of generated locutions per dialogue of 48 different

dialogues for each value of domain-cases in the case-bases of the argumentative agents, from 5

66 CHAPTER 5. CALL CENTRE EXAMPLE

to 45. The policy applied is CBR-Argumentation since it performs argumentation dialogues.

As expected, with more agents there are more generated locutions in the dialogues. This

is because the agents must talk with each other while not defending the same position.

Furthermore, with more talking and more generated locutions the dialogue is longer, so it

lasts more time and this could be a problem if we care about the solving speed. However,

as we can see in the Figure 5.7b, it is not necessary to involve too many agents in the same

dialogue. An optimal number of agents achieves a low prediction error and it does not produce

many locutions and hence, the dialogue is shorter.

With the tests performed before and the results shown in Figure 5.7, we can conclude

that a number between 7 and 11 agents can be the best in this situation. With this number of

agents, the domain-cases are distributed between the agents and they arrive to an agreement

applying the correct solution. If there are less agents, they do not have all the necessary

knowledge to achieve the best results. However, if there are more agents all the knowledge

is distributed and the prediction error is 0, but the dialogues are longer. Furthermore, this

number of agents depends on the initial domain-cases that can be distributed among agents.

Therefore, in other domains with more or less knowledge, the recommended agents to achieve

the best results will be different.

Chapter 6

Conclusions

This chapter summarises the main contributions of this research and identifies future work

to extend these contributions. The Chapter also presents the list of publications related to

this work.

6.1 Contributions

The main contributions of this Master thesis are the design and implementation of an

infrastructure to develop and execute argumentative agents. This includes all the necessary

tools and components needed in a MAS platform to support the argumentation capabilities

and the representation of the agents’ social context. This infrastructure allows to solve

problems of a specified domain using argumentation and taking into account the social context

of the argumentative agents. An argumentation process is performed to reach an agreement

about the best solution to apply to a new problem using past knowledge of the domain and

argumentation experiences.

This infrastructure has been validated with a real example and it has been evaluated ob-

taining, with argumentation strategies, better performance than other reasoning approaches

without argumentation. We can conclude that the infrastructure is very useful for problem-

solving and as a recommender system.

Moreover, this work has produced the following contributions:

• Review of the state of the art of argumentation frameworks and infrastructures with

CBR technology and argumentation.

• Design of the infrastructure and all the components needed.

– The agents’ logic and their argumentation protocol have been designed to achieve

the expected behaviour. This behaviour allows the argumentative agents to engage

in argumentation dialogues to reach an agreement about the best solution to apply

to a problem.

67

68 CHAPTER 6. CONCLUSIONS

– We have defined an ontology using OWL 2 to represent all the needed knowledge

in the infrastructure to facilitate the understanding between heterogeneous agents.

– A knowledge interchange mechanism has been designed using FIPA-ACL messages

to communicate the agents. The ontology defined for the knowledge representation

is also used as common language to interchange knowledge between agents.

– We have designed two different CBR architectures for the domain CBR and the

argumentation CBR. These designs include the case-bases indexing and the case

retrieving algorithms in an efficient approach that works well in the performed

tests.

• Development of the infrastructure including all the designed tools and components to

run argumentative agents and perform argumentation dialogues.

• Validation and evaluation of the infrastructure. The validation has shown the correct

operation of the proposed infrastructure. Furthermore, the evaluation shows the good

performance of the infrastructure and its application to real problems.

Therefore, we can say that all the objectives proposed in the beginning of this Master

thesis (Chapter 1) have been achieved.

6.2 Future work

The work done in this Master thesis leaves some open issues that can extend and improve

the proposed infrastructure. Therefore, we propose the following as future work:

• The presented example of application of this infrastructure is going to be applied to

real company due to the good performance obtained. This application will demonstrate

the utility of this infrastructure and its applicability in the real world.

• Design and development of an argumentation framework with adaptation capabilities

in agent societies. This framework should help to build consensus between different

parties, having the ability to adapt argumentation strategies depending on the

conditions of the agent society where the argumentation process is performed. This

work is complex and can be planned as the beginning of a possible PhD work. The

objectives to accomplish in this research project will be:

– Study of agent oriented adaptive systems for agent organizations and argumenta-

tion.

– Study of known models of organization, rules, adaptation and argumentation.

– Design of an argumentation framework with adaptation capabilities in agent

societies with the established model.

6.3. RELATED PUBLICATIONS 69

– Implementation and development of the designed argumentation framework with

adaptation capabilities in agent societies.

6.3 Related publications

• J. Jordán, S. Heras, and V. Julián, “A customer support application using

argumentation in multi-agent systems”. 14th International Conference on Information

Fusion, pages 772–778. IEEE. 2011. CORE C

• J. Jordán, S. Heras, S. Valero and V. Julián. “An Argumentation Framework

for Supporting Agreements in Agent Societies Applied to Customer Support”. 6th

International Conference on Hybrid Artificial Intelligence Systems (HAIS-11), volume

LNAI 6678, pages 396–403. Springer. 2011. CORE C

70 CHAPTER 6. CONCLUSIONS

Bibliography

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foun-

dational issues, methodological variations and system approaches. AI Communications, 7,

no. 1:39–59.

[Acorn and Walden, 1992] Acorn, T. and Walden, S. (1992). Smart: Support management

automated reasoning technology for compaq customer service. volume 4, pages 3–18.

[Althoff et al., 1995] Althoff, K.-D., Auriol, E., Barletta, R., and Manago, M. (1995). A

Review of Industrial Case-Based Reasoning Tools.

[Amgoud et al., 2006] Amgoud, L., Bodensta, L., Caminada, M., McBurney, P., Parsons,

S., Prakken, H., van Veenen, J., and Vreeswijk, G. (2006). Project N 002307 ASPIC,

Argumentation Service Platform with Integrated Components. Deliverable D2.6. Technical

report, ASPIC Consortium.

[Argente et al., 2011] Argente, E., Botti, V., Carrascosa, C., Giret, A., Julián, V., and

Rebollo, M. (2011). An Abstract Architecture for Virtual Organizations: The THOMAS

approach. Knowledge and Information Systems, pages 1–35.

[Artikis et al., 2009] Artikis, A., Sergot, M., and Pitt, J. (2009). Specifying norm-governed

computational societies. ACM Transactions on Computational Logic, 10(1).

[Atkinson, 2005] Atkinson, K. (2005). A dialogue game protocol for multi-agent argument

over proposals for action. Autonomous Agents and Multi-Agent Systems. Special issue on

Argumentation in Multi-Agent Systems, 11(2):153–171.

[Bench-Capon and Atkinson, 2009] Bench-Capon, T. and Atkinson, K. (2009). Argumenta-

tion in AI, chapter Abstract argumentation and values, pages 45–64.

[Bench-Capon and Dunne, 2007] Bench-Capon, T. and Dunne, P. (2007). Argumentation in

artificial intelligence. Artificial Intelligence, 171(10-15):619–938.

[Carrascosa et al., 2009] Carrascosa, C., Giret, A., Julián, V., Rebollo, M., Argente, E.,

and Botti, V. (2009). Service oriented multi-agent systems: An open architecture. In

Autonomous Agents and Multiagent Systems (AAMAS), pages 1–2.

71

72 BIBLIOGRAPHY

[Chesñevar et al., 2006] Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C.,

Simari, G., South, M., Vreeswijk, G., and Willmott, S. (2006). Towards an argument

interchange format. The Knowledge Engineering Review, 21(4):293–316.

[Dastani et al., 2003] Dastani, M., Dignum, V., and Dignum, F. (2003). Role-assignment in

open agent societies. In 2nd Int. Joint Conference on Autonomous Agents and Multi-agent

Systems, pages 489–496.

[del Val et al., 2009] del Val, E., Criado, N., Rebollo, M., Argente, E., and Julián, V. (2009).

Service-oriented framework for virtual organizations. In International Conference on

Artificial Intelligence (ICAI), volume 1, pages 108–114. CSREA Press.

[Dignum, 2003] Dignum, V. (2003). PhD Dissertation: A model for organizational

interaction: based on agents, founded in logic. PhD thesis.

[Dung, 1995] Dung, P. M. (1995). On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming, and n -person games. Artificial

Intelligence, 77:321–357.

[Esteva et al., 2001] Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., and Arcos, J. (2001).

On the formal specification of electronic institutions. In Agent Mediated Electronic

Commerce, volume 1991, pages 126–147.

[Garijo, 2002] Garijo, F. (2002). Tecnoloǵıa de agentes: Experiencias y perspectivas para el

desarrollo de nuevos servicios y aplicaciones. In Bole.tic, volume 24, pages 1–9.

[Giret et al., 2009] Giret, A., Julián, V., Rebollo, M., Argente, E., Carrascosa, C., and Botti,

V. (2009). An open architecture for service-oriented virtual organizations. In Seventh

international Workshop on Programming Multi-Agent Systems. PROMAS 2009, pages 23–

33.

[Gonzalez-Palacios and Luck, 2007] Gonzalez-Palacios, J. and Luck, M. (2007). Towards

compliance of agents in open multi-agent systems. In Software Engineering for Multi-

Agent Systems V, Lecture Notes in Computer Science. Springer.

[Heras et al., 2011a] Heras, S., Botti, V., and Julián, V. (2011a). Case-Based Argumentation

Framework. Dialogue Protocol. Technical report, Universitat Politècnica de València,

http://hdl.handle.net/10251/11096.

[Heras et al., 2011b] Heras, S., Botti, V., and Julián, V. (2011b). Case-Based Argumentation

Framework. Reasoning Process. Technical report, Universitat Politècnica de València,

http://hdl.handle.net/10251/11094.

BIBLIOGRAPHY 73

[Heras et al., 2011c] Heras, S., Botti, V., and Julián, V. (2011c). A Computational

Argumentation Framework for Agent Societies. Technical report, Universitat Politècnica

de València.

[Heras et al., 2009] Heras, S., Garćıa-Pardo, J. A., Ramos-Garijo, R., Palomares, A., Botti,

V., Rebollo, M., and Julián, V. (2009). Multi-domain case-based module for customer

support. Expert Systems with Applications, 36(3):6866–6873.

[Jennings and Wooldridge, 1998] Jennings, N. R. and Wooldridge, M. (1998). Applications

of intelligent agents, pages 3–28. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Jordán et al., 2011a] Jordán, J., Heras, S., and Julián, V. (2011a). A customer support

application using argumentation in multi-agent systems. In 14th International Conference

on Information Fusion, pages 772–778. IEEE.

[Jordán et al., 2011b] Jordán, J., Heras, S., Valero, S., and Julián, V. (2011b). An

argumentation framework for supporting agreements in agent societies applied to customer

support. In 6th International Conference on Hybrid Artificial Intelligence Systems (HAIS-

11), volume LNAI 6678, pages 396–403. Springer.

[Karacapilidis and Papadias, 2001] Karacapilidis, N. and Papadias, D. (2001). Computer

supported argumentation and collaborative decision-making: the hermes system. Infor-

mation Systems, 26(4):259–277.

[Karacapilidis et al., 1997] Karacapilidis, N., Trousse, B., and Papadias, D. (1997). Using

case-based reasoning for argumentation with multiple viewpoints. pages 541–552.

[Kolodner, 1993] Kolodner, J. (1993). Case-based Reasoning.

[Luck and McBurney, 2008] Luck, M. and McBurney, P. (2008). Computing as interaction:

agent and agreement technologies. In IEEE International Conference on Distributed

Human-Machine Systems.

[Mas, 2005] Mas, A. (2005). Agentes Software y Sistemas Multi-Agente. Conceptos,

Arquitecturas y Aplicaciones. Pearson. Prentice Hall.

[O’Hare and Jennings, 1996] O’Hare, G. M. P. and Jennings, N. R. (1996). Foundations of

Distributed Artificial Intelligence. John Wiley & Sons, Inc., New York, NY.

[Ontañón and Plaza, 2006] Ontañón, S. and Plaza, E. (2006). Arguments and counterexam-

ples in case-based joint deliberation.

[Ontañón and Plaza, 2007] Ontañón, S. and Plaza, E. (2007). Learning and joint deliberation

through argumentation in multi-agent systems.

74 BIBLIOGRAPHY

[Ossowski et al., 2007] Ossowski, S., Julian, V., Bajo, J., Billhardt, H., Botti, V., and

Corchado, J. M. (2007). Open issues in open mas: An abstract architecture proposal.

volume 2, pages 151–160.

[Parsons et al., 1998] Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason

and negotiate by arguing. Journal of Logic and Computation, 8(3):261–292.

[Rahwan, 2006] Rahwan, I. (2006). Argumentation in multi-agent systems. Autonomous

Agents and Multiagent Systems, Guest Editorial, 11(2):115–125.

[Rahwan and Amgoud, 2006] Rahwan, I. and Amgoud, L. (2006). An argumentation-based

approach for practical reasoning. pages 347–354.

[Rahwan et al., 2003] Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons,

S., and Sonenberg, L. (2003). Argumentation-based negotiation. The Knowledge

Engineering Review, 18(4):343–375.

[Rahwan and Simari, 2009] Rahwan, I. and Simari, G., editors (2009). Argumentation in

Artificial Intelligence. Springer.

[Rissland et al., 2006] Rissland, E. L., Ashley, K. D., and Branting, L. K. (2006). Case-based

reasoning and law. The Knowledge Engineering Review, 20(3):293–298.

[Roth-Berghofer, 2004] Roth-Berghofer, T. R. (2004). Learning from homer, a case-based

help-desk support system. pages 88–97.

[Shoham, 1993] Shoham, Y. (1993). Agent-oriented programming. In Artificial Intelligence,

volume 60(1), pages 51–92.

[Soh and Tsatsoulis, 2001a] Soh, L.-K. and Tsatsoulis, C. (2001a). Agent-based argumenta-

tive negotiations with case-based reasoning. pages 16–25.

[Soh and Tsatsoulis, 2001b] Soh, L.-K. and Tsatsoulis, C. (2001b). Reflective negotiating

agents for real-time multisensor target tracking. pages 1121–27.

[Soh and Tsatsoulis, 2005] Soh, L.-K. and Tsatsoulis, C. (2005). A real-time negotiation

model and a multi-agent sensor network implementation. Autonomous Agents and Multi-

Agent Systems, 11(3):215–271.

[Sycara, 1987] Sycara, K. (1987). Resolving Adversarial Conflicts: An Approach Integrating

Case-Based and Analytic Methods. PhD thesis.

[Sycara, 1989] Sycara, K. (1989). Argumentation: Planning other agents’ plans. volume 1,

pages 517–523.

BIBLIOGRAPHY 75

[Sycara, 1990] Sycara, K. (1990). Persuasive argumentation in negotiation. Theory and

Decision, 28:203–242.

[Tolchinsky et al., 2006a] Tolchinsky, P., Cortés, U., Modgil, S., Caballero, F., and López-

Navidad, A. (2006a). Increasing human-organ transplant availability: Argumentation-

based agent deliberation. IEEE Intelligent Systems, 21(6):30–37.

[Tolchinsky et al., 2006b] Tolchinsky, P., Modgil, S., and Cortés, U. (2006b). Argument

schemes and critical questions for heterogeneous agents to argue over the viability of a

human organ.

[Tolchinsky et al., 2006c] Tolchinsky, P., Modgil, S., Cortés, U., and Sànchez-Marrè, M.

(2006c). Cbr and argument schemes for collaborative decision making. volume 144, pages

71–82.

[Vázquez-Salceda et al., 2003] Vázquez-Salceda, J., Cortés, U., Padget, J., López-Navidad,

A., and Caballero, F. (2003). The organ allocation process: A natural extension of the

carrel agent-mediated electronic institution. AI Communications, 16(3):153–165.

[Watson, 1997] Watson, I. (1997). Applying case-based reasoning. Techniques for enterprise

systems. Morgan Kaufmann Pusblishers, Inc.

[Willmott et al., 2006] Willmott, S., Vreeswijk, G., Chesñevar, C., South, M., McGinnis, J.,

Modgil, S., Rahwan, I., Reed, C., and Simari, G. (2006). Towards an argument interchange

format for Multi-Agent Systems. In 3rd International Workshop on Argumentation in

Multi-Agent Systems, ArgMAS-06, pages 17–34.

[Wooldridge, 2002] Wooldridge, M. (2002). An introduction to Multiagent Systems. John

Wiley and Sons Ltd.

[Zambonelli et al., 2003] Zambonelli, F., Jennings, N., and Wooldridge, M. (2003). Devel-

oping multiagent systems: The gaia methodology. In ACM Transactions on Software

Engineering and Methodology, volume 12, pages 317–370.

	Introduction
	Motivation
	Objectives
	Structure of the document

	State of the Art
	Introduction
	Open Multi-Agent Systems
	THOMAS
	Magentix2

	Knowledge Interchange
	Case-based Reasoning
	Current Applications of Argumentation in AI

	Argumentation Framework
	Agent society
	Knowledge Resources, Argument Types and Support Set
	Position generation and selection
	Argumentation Protocol
	Remarks

	Infrastructure
	Introduction
	Argumentative agents
	Domain CBR
	Argumentation CBR
	Argument Management Process

	Commitment Store
	Knowledge interchange mechanism

	Call Centre Example
	Customer support application
	Evaluation
	Unitary Tests
	Percentage of problems that were solved with respect to the knowledge of the agents
	Prediction error with respect to the knowledge of the agents
	Learning of the Domain CBR and the Argumentation CBR
	Generated locutions in the dialogues

	Conclusions
	Contributions
	Future work
	Related publications

