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Abstract
This article investigates how workout trajectories from a mobile sports tracking application can be used to

provide automatic route suggestions for bicyclists. We apply a Hidden Markov Model (HMM)-based

method for matching cycling tracks to a “bicycle network” extracted from crowdsourced OpenStreetMap

(OSM) data, and evaluate its effective differences in terms of optimal routing compared with a simple geo-

metric point-to-curve method. OSM has quickly established itself as a popular resource for bicycle routing;

however, its high-level of detail presents challenges for its applicability to popularity-based routing. We

propose a solution where bikeways are prioritized in map-matching, achieving good performance; the

HMM-based method matched correctly on average 94% of the route length. In addition, we show that the

extremely biased nature of the trajectory dataset, which is typical of volunteered user-generated data, can

be of high importance in terms of popularity-based routing. Most computed routes diverged depending on

whether the number of users or number of tracks was used as an indicator of popularity, which may imply

varying preferences among different types of cyclists. Revising the number of tracks by diversity of users to

surmount local biases in the data had a more limited effect on routing.

1 Introduction

Smartphone-based mobility data has demonstrated its potential in the context of intelligent

vehicle routing by providing valuable information at a scale and price unattainable by conven-

tional monitoring methods, such as fixed sensors or non-consumer generated probe data (Batty

2013; Simontine 2012). We recognize the benefits of crowdsourcing for non-motorized traffic,

for example, in the form of more comfortable paths for walking (Quercia et al. 2014) and

cycling (Priedhorsky and Terveen 2008), and therefore investigate the problem of recommend-

ing popular cycling routes between two locations based on trajectory data from a mobile sports

tracking application.

1.1 Route Planning Services for Cyclists

Cyclists often prefer to ride longer distances rather than the shortest way, based on both subjec-

tive and non-subjective factors (e.g. Dill and Gliebe 2008; Ehrgott et al. 2012; Menghini et al.

2010; Sener et al. 2009). Commuter cyclists, or more frequent riders in general, have proven to
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be more sensitive to distance than other utilitarian cyclists (Broach et al. 2012; Dill and Gliebe

2008), whereas recreational and sports riders who do not share the same time pressure are

likely to place a higher value on other factors that make the route attractive. Traditionally,

cyclists’ route-finding has been a product of trial and error, and knowledge-sharing within the

cycling community (Reddy et al. 2010). However, during the on-going renaissance of cycling

as a mode of transportation as well as a popular sport and a recreational and tourist activity, a

cycling option has been introduced in many route planners. Potential cyclists’ lack of knowl-

edge about routes that would be short, safe, simple and attractive at the same time (see Hoch-

mair 2004) can hinder the transition from car to bike. Routing services are seen as a way to

improve the attractiveness of cycling within the existing infrastructure and to increase its modal

share as a sustainable means of transportation, which provides great benefits to the liveability

of a city and its population’s health (Dill et al. 2014; Su et al. 2010).

As cyclists’ route choice decisions are influenced by many factors, which are often conflict-

ing and context-dependent (e.g. Sener et al. 2009), existing route planners tend to offer the user

multiple choices based on different optimization criteria, such as total elevation gain, vegeta-

tion, turns, and intersection with traffic. Considering that the best cycling route is hardly ever

defined by any single route selection criterion but is rather a compromise between incommensu-

rable objectives, it has been suggested that the interface of the route planner should support a

trade-off between many preferred attributes (Hochmair 2004). Consequently, some routing

services have aggregated different criteria into generally desirable objectives, such as

“balanced” (cyclestreets.net), thereby easing the user’s task. In addition to the limited informa-

tion about the preferences of cyclists in different contexts (Lindsay et al. 2014), the availability

of suitable attribute data of the required accuracy is one reason why many routing services are

restricted to the local level. This applies to map data as well, as the cycling network is only

partly consistent with the network of car traffic. Crowdsourcing has become a promising alter-

native for creating maps with a better coverage of cycling infrastructure (Hochmair et al.

2012), and can also transform routing services (Neis and Zielstra 2014; Shekhar et al. 2012).

Cyclopath (cyclopath.org) is an example of a computational geowiki where cyclists can rate

road segments according to their “bikeability”, or add missing segments to the base map cover-

ing the area of Minnesota (Priedhorsky and Terveen 2008). Similarly, in Bikedistrict (bikedis-

trict.org), cyclists can rate segments in Milan on a three-stage scale from “I like it! Do it more

often” to “Don’t ever take this road”. A downside related to these implementations is that

cyclists are required to recall the impression of their past experience on each block and man-

ually add this to the service.

1.2 Mining Popular Routes from Crowdsourced Data

Mining meaningful collective information from crowdsourced data for automatic routing pur-

poses has garnered increased interest in recent years. A number of studies have concentrated on

recommending popular and attractive travel routes for tourists who need guidance in unfami-

liar places. This work has been mainly based on other types of geo-referenced user-generated

content than GPS trajectories, such as check-in records (e.g. Foursquare) and geo-tagged photos

(e.g. Flickr) (e.g. Hao et al. 2010; Lu et al. 2010; Sun et al. 2015). If ordered by time, the afore-

mentioned digital footprints can also be represented as sparse trajectories, i.e. sequences of

time-stamped locations. Even with GPS trajectories, these methods have been more oriented

towards finding interesting locations by extracting stay points and travel sequences between

them than optimal routes in a road network (e.g. Yoon et al. 2012; Zheng et al. 2011).
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Recording outdoor workouts with GPS-enabled handheld devices has become popular

alongside the increasing number of location-based services which allow users to examine past

exercise tracks and share them with friends or within web communities. The resulting GPS

trace repositories of sports tracking applications provide a vast amount of local knowledge

(Priedhorsky and Terveen 2008) in a corresponding way to the experience-based hidden intelli-

gence of GPS-equipped commuters (Hendawi et al. 2013) or taxi drivers (Yuan et al. 2014),

which can in turn be used to enhance route guidance services. To provide turn-by-turn route

suggestions, we need either to mine a routable network from GPS trajectories (e.g. Chen et al.

2011) or, as in our case, to map trajectories to their equivalent road segments in a road net-

work. This is a non-trivial task due to the noisiness of smartphone GPS data and the incom-

pleteness and inaccuracy of road map data. The effect of matching accuracy has, however,

been largely ignored in studies related to mining optimal routes from a massive amount of

dense trajectory data (e.g. Chang et al. 2011; Hendawi et al. 2013). For an overview of map-

matching methods, typically classified into geometric, topological and advanced algorithms, we

refer the reader to Hashemi and Karimi (2014) or Quddus et al. (2007).

The nature of the crowd behind the data also requires more attention. Understanding how

datasets are created and by whom is a prerequisite for successful geo-applications (Mullen

et al. 2014). Analyses of human mobility based on crowdsourced trajectory datasets have been

criticized for their biased sampling resulting from socio-demographic (e.g. age, gender, wealth)

variation in, e.g. smartphone possession and usage (Yue et al. 2011), and for their focus on

single-source empirical data (Zhang et al. 2013). It is also known that in projects which rely on

volunteered user-generated content, contributions are typically very unevenly distributed (Ada-

mic and Huberman 2002; Priedhorsky et al. 2010), which is known as “participation inequal-

ity” or the “90-9-1 rule” (Neis et al. 2013; Nielsen 2006). However, how this might affect

routing, for example, has received little attention.

1.3 The Present Study

The tracking data provided by Sports Tracker (http://www.sports-tracker.com) has previously

been used to investigate city dynamics (Ferrari and Mamei 2013) and to create heat maps

which enable cyclists to compare potential routes by means of visual data mining (Oksanen et

al. 2015). The main objective of our study was to extend the aforementioned work by provid-

ing the user with automatic popularity-based routing in a street network, by combining

recorded workout trajectories with cycling-specific network data extracted from OpenStreet-

Map (OSM: openstreetmap.org). Previous studies where exact routes of cyclists have been

inferred (Broach et al. 2012; Dill and Gliebe 2008; Menghini et al. 2010) have relied mainly on

network data provided by local stakeholders, which has often been manually enhanced to

include all relevant links. However, as a result of the high costs of vector data maintenance and

the limited interest of authoritative and proprietary actors in mapping the infrastructure of

non-motorized transport modes, many routing applications for cyclists which have emerged

recently use the network data of OSM. The first national route planner for cyclists, OpenRou-

teService.org, was launched in April 2008, less than four years after the OSM project had been

introduced (Schmitz et al. 2008). In addition to its good coverage of cycling paths, the OSM

data is accessible to everyone and has a relatively homogeneous coding scheme for the whole

world (Hochmair et al. 2012; Loidl et al. 2014).

We compare the effective differences between a modified Hidden Markov Model (HMM)-

based algorithm, which calculates the most probable route using distance and topological data

of the network, and a geometric point-to-curve method that considers only the distance
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between each GPS track point and the road segments. Both matching methods are well-studied,

but how differences in their accuracy affect popularity-based routing has not been investigated

previously. After counting the number of tracks and users who have traversed each segment,

we use the weighted networks to find routes with maximum popularity given a source location

and a destination by Dijkstra’s shortest path algorithm. Another objective of this study was to

investigate whether alternative cost functions for calculating popularity indicators would affect

routing due to the biased nature of tracking data. The compared cost functions are based on:

(1) the number of users who have traversed each road segment; (2) the number of tracks on

each segment; and (3) a value that combines the latter with Simpson’s diversity index describ-

ing the distribution of tracks between different users.

Being sensitive to the variation in factors affecting route choices in different contexts and

based on worldwide network data, our solution could in principle be implemented globally (given

sufficient quality of OSM data and the availability of tracking data). Another tracking application,

Strava (strava.com), provides a service with similar aspirations, but information related to its

implementation does not cover issues related to the generation of the weighted network, calcula-

tion of popularity indicators, and their impact on routing (see Robb 2013). The remainder of the

article is organized as follows. Section 2 presents the datasets and their pre-processing, followed

by the methods used in the integration of map data and GPS trajectories resulting in a routable

weighted graph. Section 3 presents the results, while the limitations of both the approach and the

results are further discussed in Section 4. Conclusions are drawn in Section 5.

2 Data and Methods

2.1 Sports Tracking GPS Trajectories

The study area of southern Helsinki (Figure 1a) encompassed a total of 29,958 publically view-

able cycling trajectories, of which approximately 80% had a valid timestamp. The data was

collected by the mobile application Sports Tracker users in the period from January 2010 to

June 2013. The following pre-processing steps were taken:

1. Data reduction. The original data was collected with a dense sampling interval of

approximately one second. This may, however, vary during a workout, e.g. because of

the poor availability of GPS signals in enclosed spaces or stopping at crossings (depend-

ing on the settings set by the application user, tracking can be paused automatically at

low speed). On average, in 1.7e-03% of the cases, the difference between two consecu-

tive track points was more than two seconds; in 2.5e-04% more than five seconds; and

in 8.9e-07% more than one minute. The size of the dataset was reduced to consist of

approximately equidistant points. Our empirical tests showed that points could be dis-

carded as long as the distance from a given point was under the threshold of 30 m. In

addition, trajectories of less than 20 points were discarded.

2. Filtering. In the beginning of each workout, the application user is asked to select a

type of activity and the trajectory is labelled accordingly. In this study, the transport

mode could therefore be taken as a given. Only tracks with valid timestamps were

included in the dataset. From the remaining tracks all consecutive points whose speed

exceeded 72 km/h (20 m/s) were discarded as noisy observations and, in addition, a

few tracks (e.g. high-speed exercise sessions in the velodrome) were filtered out by their

high average speed of over 40 km/h.
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3. Slicing for long gaps. If the distance between two consecutive track points exceeded the

chosen distance threshold of 200 m, inferring the taken route between them was consid-

ered uncertain in an urban environment, and hence the trajectory was divided into multi-

ple parts. Outages or “silent durations” may result from the unavailability of a GPS

signal due to environmental conditions, or forgetting to turn on the tracking application

after a break. Altogether almost 3,000 such outages were discovered in the filtered

dataset.

4. Interpolation for short gaps. If the outage was more than 70 m but less than the slicing

threshold (200 m), new points were interpolated along a straight line (to confirm the

approximate equidistance we used the interval of 30-40 m) connecting two consecutive

points following the method used by Thiagarajan et al. (2013). There were on average

1.3 short gaps in each track, i.e. altogether approximately 30,000.

The final dataset after all pre-processing steps encompassed a total of 23,290 tracks

recorded by 1,994 cyclists (Figure 1b). The distribution of the tracks between users (Figure

2a) was extremely skewed; a few active users have shared hundreds of tracks each, while

65% of users have recorded at most 10 tracks. Less than 5% of users have recorded 50% of

the tracks. The two-peaked diurnal distribution of the tracks (Figure 2b) indicates that the

dataset included a high proportion of commuters. The median length of the tracks (including

also the parts recorded outside the study area) was 13.5 km, whereas the mean length was

almost 21 km. In addition, we divided the tracks into two sets based on the distance between

their start and end points. When the distance exceeded a tenth of the length of the whole tra-

jectory, the track was classified as a route between two different locations (“A-to-B tracks”).

Otherwise, the track was classified as a circular route (“loop tracks”). Based on this simple

division, we found out that only one-fourth of the tracks in the urban study area were circu-

lar workouts.

Figure 1 (a) Study area of southern Helsinki. The area inside the small rectangle is enlarged in
Figure 3; and (b) Cycling trajectories within the study area drawn as lines with 5% opacity. The
orange circle points the place of the square in Figure 12
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2.2 Extraction of “OSM Bicycle Network”

To avoid routing along paths on which cycling is prohibited and to reduce the size of the data-

set, only segments that are accessible to cyclists were included in the network. For instance, all

motorways, footways, steps, and paths were excluded unless an additional tag was used indi-

cating that cycling is permitted. The selection queries are listed in Table 1 (for a more compre-

hensive introduction of OSM coding conventions, see Hochmair et al. 2012). All extracted

OSM features were line elements except for the pedestrian squares which are area features.

Figure 2 (a) The distribution of the recorded tracks between users. Users on the x-axis are
ordered according to their number of tracks; and (b) The diurnal distribution of the tracks accord-
ing to the starting time of the workout

Table 1 Queries of road segments where cycling is allowed (in Finland) were conducted over
the latest OSM export (August 28th 2014) provided by Geofabrik (http://download.geofabrik.de/).
In OSM, highway tag is used to describe the role of all kinds of passages in the road network.
The ones mentioned in the first column are included in the “OSM bicycle network” if the addi-
tional requirements are fulfilled

Highway type (key5highway)
Requirements related to additional
tags of access permissionsa

Cycleway No additional requirements
(all) Keep if Bicycle5yes |designated |official |lane
Primaryb, secondaryb, tertiaryb,
trunkb, residential, living_street,
unclassified, track

Drop if Bicycle5no or (tunnel5yes and
(access5no |private))c

Service Drop if Bicycle5no or access5private |no
or service5parking_aisle

a Key5value; if many possible values are related to the same key, they are separated by |
b Also with _link-tags
c The usage of additional tags access5private and access5no was very heterogeneous, and hence they
have not been excluded more comprehensively
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They were converted to single-line features to allow routing along their edges. Although

this does not exactly reflect routes in real life, it preserved the network topology critical for our

study. The resulting lines were split up at intersections and then grouped so that they formed

solid links between intersections. Short dead ends of less than 200 m were excluded and, in

addition, longer segments were split into shorter parts of equal length (at most 200 m; see

Robb 2013). One-way restrictions were included according to the dedicated attributes. The

final routable “bicycle network” (Figure 3b) included all passages where cycling is permitted,

covering both dedicated bikeways (Table 2) and driveways that are traversable by cyclists.

(Although cycling in driveways that have a parallel cycle track is in most cases prohibited by

Finnish law (Road Traffic Decree 18§), cycling on them is popular and, more importantly,

excluding them could have caused topological errors.)

2.3 Map-Matching

We compared two map-matching algorithms: a geometric point-to-curve method and an

advanced HMM-based algorithm. The geometric method considers only distance when match-

ing each point to the nearest segment, with a few exceptions. First, only road segments within a

distance of 30 m of each point were considered as candidates. Track points that were far from

Figure 3 An extract of the network data showing: (a) all OSM features with key5highway; and
(b) the extracted “OSM bicycle network”, where dedicated bikeways are in red and other streets
traversable by cyclists in blue

Table 2 Classification of bikeways in the study area based on OSM tagging

Highway type Requirements related to additional tagsa

Cycleway No additional requirements
(all) Cyclewayb5lane |shared_busway |opposite_lane,

bicycle5yes |designated |official

a Key5value; if many possible values are related to the same key, they are separated by |
b Including cycleway:left, cycleway:right, cycleway:both
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paths where cycling is permitted could therefore be discarded. Second, if there was at least one

bikeway (Table 2) available within 20 m, the track point was always matched to the nearest

bikeway. This means that if there was a cycle track running parallel to a driveway, the aim was

to match all cyclists who had been traversing either one of them to the bikeway, which we also

want to return as a result of a routing request. It can also be noted that according to the obser-

vations by Lindsey et al. (2013) the accuracy of handheld GPS receivers does not support their

usability in monitoring the use of bike lanes or other facilities.

HMM-based algorithms are in general the most accurate alternative for map-matching

(Wei et al. 2013), and have therefore attracted much interest (e.g. Goh et al. 2012, Newson

and Krumm 2009; Thiagarajan et al. 2013; Torre et al. 2009). The general idea of HMM is to

find the most probable path through many possible states, where some state transitions are

more likely than others. Individual road segments comprise the (hidden) states, whereas work-

out track points are the state measurements (visible observations) emitted by the states with a

particular probability (Figure 4). Knowing the resulting observations, the probability of a state

producing a certain observation (emission probability), and the probability of a state transition-

ing to another state (transition probability), the most likely sequence of states that could have

resulted in the observed sequence of GPS points is calculated (Torre et al. 2009) using a

dynamic programming technique called Viterbi decoding (see Forney 1973).

Emission probability was calculated for each observation-candidate state pair, based on

the Euclidean distance between a point and a segment modelled as a zero-mean, normally dis-

tributed random variable, as suggested by Hummel:

Emission probability 5
ffiffiffiffiffiffi
2p
p

r
� �21

exp 2d 2rð Þ21
� �

; (1)

where d is the Euclidean distance between the GPS point and road segment, and r is the stand-

ard error of GPS positioning. To direct all trajectories to the cycle track(s) running parallel and

next to a driveway, bikeways (Table 2) were favoured by multiplying their emission probability

by three. In addition, transitioning to a bikeway was defined as two times more likely than to

other road segments. We used a constant transition probability of 0.2 (bikeways 0.4) between

all connected segments, which gave good results when used with a standard deviation r54.

Figure 4 The idea of the HMM-based algorithm, illustrated as: (a) a schematic road network; and
(b) a corresponding trellis diagram representing the Viterbi algorithm. The number of candidate
segments is limited by the match radius. Based on the emission and transition probabilities,
Viterbi iteratively calculates the most probable path in the network
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The transition probability of staying on the same road segment is always one. The choice of

parameter values is further discussed in Section 3.

The problem of missing connections was handled by discarding the track point if no route

was found, i.e. if no road segments were available within the match radius, or the transition

probabilities to all road segments within the radius were zero. As the HMM was not originally

designed for large road networks, its computational efficiency was improved by calculating the

emission probabilities only for road segments within 60 m of each track point. The threshold

should be large enough to provide valid results while avoiding false routes, considering the

road density of the network.

2.4 Cost Functions

After being processed via map-matching, trajectories could be represented as sequences of road seg-

ments. When calculating the popularity indicators assigned to segments, each traversed segment

was counted at most once per trajectory, and the minimum number of users and tracks was set to

five. After all, there is no reason to completely avoid non-traversed segments in routing.

The following impedance values were computed for each segment:

1. normalized inverse User Count

niUC5
u

l

� �21
(2)

2. normalized inverse Track Count

niTC 5
t

l

� �21

(3)

3. normalized inverse Diversity-attentive track count

niDIV 5
t 12

X
p2

i

� �
l

0
@

1
A

21

(4)

where u is the number of distinct users, t the number of tracks, and l the length of the segment.

In the Simpson’s diversity index 12
P

p2
i

� �
, pi is the ith user’s proportion of tracks on the seg-

ment; in other words, the higher the diversity index, the more evenly tracks are distributed

between users (e.g. McDonald and Dimmick 2003).

The inverse is taken because, although the goal is to maximize the resulting route’s popu-

larity, we use a minimization algorithm, which finds the route with the lowest cost. Normaliz-

ing the popularity indicator by the length of the segment makes segments comparable and

allows us to avoid excessively long meandering routes. This is important considering that pref-

erable routes are always compromises between distance and popularity. Because popularity is

very unevenly distributed across the network, we also test how a logarithmic transformation of

the popularity indicators will affect routing.

3 Results

3.1 Performance of the Map-Matching Methods

To measure the performance of the map-matching methods, 50 randomly selected workout tra-

jectories were manually matched to the road network. Manual matching provided reasonable
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“ground truth”, as our aim was not to estimate the quality of the OSM network in the study

area, and because the correct road corridor could be visually inferred largely without problems

due to sufficient point density and accuracy. The reference data did not need to exactly corre-

spond to the route taken if the network was missing a connection. Instead, tracks were matched

as we aimed to match them automatically; e.g. in the case of parallel segments, the tracks were

matched to bikeways, when possible. In cases where it was difficult to determine the correct

side of the road, the track was mapped considering the cyclist’s previous and next turns.

The method used in OSM for modelling intersections with multiple short segments was

challenging for both matching methods. We therefore compared the fitted and manually

matched data by determining both the number and length of segments which they had in com-

mon (Table 3). The HMM-based method achieved better results than the point-to-curve, espe-

cially with respect to the number of correctly matched segments (i.e. true positives). However,

when comparing the length of the “correctly” matched route, the methods performed almost

equally well, both catching over 90% of the length of the reference data. In other words, both

methods do well with long segments, whereas the point-to-curve method misses short ones.

The percentage of matched segments that have not been traversed according to the reference

data (i.e. false positives) was clearly higher with the point-to-curve method, which can be seen

as a higher popularity value of small intersecting roads (Figure 5).

Prioritizing bikeways significantly improved the performance of both matching methods

(Table 3); e.g. with the HMM-based method, the fraction of the length of correctly matched

routes increased from 0.85 to 0.94. When examining the effect of changing each parameter at a

time while keeping all others constant, the sensitivity of the HMM-based method is less

obvious when routes are considered for their entire length (Figures 6a-f). However, matching is

sensitive to parameters in places with parallel ways, which can be seen in Figure 6g where the

parameter combination used in this study resulted in a route matched along bikeways. The

effect of r is clear; values above four lead to a steady decrease in performance as less emphasis

is placed on the distance between GPS points and road segments, whereas from two to four the

ratio of false positives decreases faster than the ratio of true positives (Figures 6a and 6d). The

other two parameters describe to what extent bikeways are favoured. Three-fold emission

probability gives the highest ratio of true positives, and although the performance stays on a

high level statistically with larger values (Figures 6b and 6e), visual inspection of matched

Table 3 Performance of the map-matching algorithms: (a) with; and (b) without preference of
bikeways

TRUE POSITIVES FALSE POSITIVES

HMM Point-to-curve HMM Point-to-curve

(a) Mean hit ratio (with bike pref.)
Number of segments of matched route 0.90 0.70 0.11 0.29
Length of matched route 0.94 0.91 0.09 0.31

(b) Mean hit ratio (without bike pref.)
Number of segments of matched route 0.78 0.61 0.20 0.43
Length of matched route 0.85 0.84 0.16 0.48
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routes confirmed that favouring bikeways too much will result in false matches. The effect of

increasing the transition probability of bikeways increases until 0.6, but so does the ratio of

false positives (Figures 6c and 6f). Obviously, searching for an appropriate combination of

parameters that would conform to all diverse situations is difficult. Point-to-curve had two

parameters: the matching radius (30 m), and the radius within which bikeways were favoured

(20 m). Increasing the latter parameter enhanced the method’s robustness to GPS errors, but at

the same time increased the probability of matching points to bikeways along incorrect roads.

Figure 5 Popularity of the network measured as number of users based on: (a) the point-to-
curve; and (b) HMM-based matching method. For clarity reasons, only segments with over 30
users are presented

Figure 6 The HMM-based method’s sensitivity to parameters measured by the change of the ratio of
(a-c) true positives and (d-f) false positives. In each case, only the parameter in question is changed
and all other parameters correspond to the values marked with a larger circle (r 5 4, emission multi-
plier5 3, transition probability of bikeways5 0.4, i.e., two-times the transition probability of other
ways). (g) The parameter sensitivity of the HMM-based method shows in places with parallel ways
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During the manual matching process, many issues that were not correctly resolved by the

HMM-based map-matching method could be identified. Most errors resulted from cycling on

footpaths (e.g. along a one-way street where contraflow cycling is not legal in Finland); incom-

pleteness of the OSM data; and changes in the road infrastructure during the study period. Fur-

thermore, because most cycle tracks in Helsinki are two-way and often exist on both sides of

the street, the algorithm can map the points to the cycle track on the wrong side due to inaccu-

rate GPS measurements in urban canyons. Similarly, tracks can be matched to either one of the

streets heading in the correct direction in places where a parallel residential street runs beside

an arterial road. The algorithm was also unable to completely avoid matching to redundant

side roads, and in a few places it tended to favour longer segments due to the transition proba-

bility. In addition, the selected threshold for reducing point density appeared to be too high in

one complex intersection, where tracks were therefore matched to a parallel way.

3.2 Effects on Routing

For qualitative and quantitative analysis of the differences of map-matching performance and

cost functions for routing, a set of 20 randomly generated origin-destination pairs was created

such that the Euclidean distance between the origin and destination was at least 2 km. We cal-

culated the share of the length where the routes follow exactly the same paths. The similarity

score was calculated by dividing the length of the common route (lcommon) with the average

length of the routes computed with the network based on HMM (lhmm) and point-to-curve

(lptc) as follows:

lcommon
1

2
lhmm1lptc

� �� �21

(5)

On average, the suggested routes followed identical paths 75% of their length irrespective

of the map-matching method (Figure 7a). In the case where the routes diverged most clearly

Figure 7 (a) Similarity of the routes computed with the point-to-curve-weighted network and
HMM-weighted network, with different cost functions; (b) Similarity of the routes computed with
the HMM-weighted network. For example, the values on the niUC-niTC axis represent similarity in
length between the routes based on cost functions niUC and niTC; and (c) Route suggestions in
case 9
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(ID 9; Figure 7c), the point-to-curve-weighted network produced routes that had proportion-

ally fewer short segments than the route computed using the HMM-weighted network. Based

on this, the differences in routing might be explained by the point-to-curve method’s inability

to catch short segments, which could have a significant impact on routing despite their length.

In general, the point-to-curve-weighted network routes were longer, but had fewer segments

than the HMM-based routes.

Figure 7b presents the similarity of routes with different cost functions in a corresponding

way. It is worth noting that routes based on the number of users diverge in most cases from

routes based on the number of tracks. It appears that selecting the number of users as an indica-

tor of popularity results in routes that are likely to be popular among utilitarian cyclists who

often ride shorter distances and choose the most direct way to their destination (workplace,

service, etc.), whereas the number of tracks returns routes also preferred by sports and other

recreational cyclists (Figures 8a-c). Figure 9 shows separately the number of tracks between

two locations (“A-to-B tracks”) and the number of circular routes (“loop tracks”). While many

paths are preferred by both groups, exercise riders are more clustered on routes along the coast-

line. The differences suggest that, unlike utilitarian cyclists riding mainly for purposes other

than recreation, cyclists who record their workouts more frequently to follow their perform-

ance prefer to take the indirect, scenic, and quieter route option.

Irrespective of the map-matching method, the two cost functions that use the number of

tracks (niTC, niDIV) give very similar results: in almost 90% of the cases, the routes follow

identical paths. This was not surprising, considering that the few small Simpson’s diversity

Figure 8 Routes in cases 11, 18 and 20 based on (a-c) cost functions presented in Section 2.4, and
(d-f) cost functions where the number of tracks (t) and the number of users (u) are replaced by
log(t) and log(u), respectively (VC OpenStreetMap contributors)
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indices are related to segments outside the main cycling routes (Figure 10a). Figure 10b, which

illustrates the spatial distribution of segments that have a small diversity index (i.e. tracks on

them are unevenly distributed between users) and a rather large number of tracks, supports the

two cases where multiplication by the diversity index impacts routing (Figures 11a and b). All

routes computed using the HMM-weighted network with different cost functions are on aver-

age 20% longer than the shortest routes. With niUC, the difference is on average 19.4%

(median 16.9%), and with niTC it is 20.9% (20.1%). Despite the inclusion of length in the

cost function, the popularity-based routes occur primarily on the main cycling paths (Figures

11c and 11d). A logarithmic transformation of the number of tracks and users equalised the

skewed distribution of popularity in the network, producing routes that were on average only

7% longer than the shortest paths (see Figures 8d-f, Figures 11c and d).

4 Discussion

4.1 Quality of the Road Map as a Limitation

Our approach is dependent on the completeness of the underlying network, and therefore has

limited potential for worldwide implementation. The only available quality assessment con-

centrating on OSM cycling data, by Hochmair et al. (2012), has shown that the completeness

of cycling facilities was already at a very good level in the selected metropolitan areas of the

Figure 9 The most popular routes of: (a) cyclists riding from one location to another; and (b)
cyclists riding loops which start and end at the same location. For clarity reasons, the presented
network includes only the most popular one-third of the segments. Classification is based on
length, i.e. the first class includes the most popular 10% of the network length, the second class
the second most popular 10%, etc.
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US and Europe, outshining among others the cycling network of Google Maps. In addition,

assessments of pedestrian-only paths (Zielstra and Hochmair 2010, 2011) have demonstrated

similar results, emphasizing the potential of OSM in non-motorized routing. Several studies

(Canavosio-Zuzelski et al. 2013; Girres and Touya 2010; Haklay 2010; Helbich et al. 2012)

have suggested that the positional accuracy of OSM road features would be on average around

6 m or better. More attention has been paid to factors that are essential for routing applica-

tions, like topological correctness or the completeness of relevant attributes, such as turn or

one-way restrictions (Graser et al. 2013; Neis et al. 2012).

It is well known, however, that OSM data is not of uniform standard, as it is up to the

voluntary contributors to decide which areas and features are of interest to them and conse-

quently mapped (Haklay 2010; Siebritz et al. 2012). Many studies have concluded that the

OSM data is geographically heterogeneous and biased by remoteness (e.g. Girres and

Touya 2010; Gr€ochenig et al. 2014; Helbich et al. 2012; Zielstra and Hochmair 2010; Ziel-

stra and Zipf 2013) as well as by socioeconomic status (Haklay 2010), although exceptions

may occur, for example, due to data imports from public domain datasets where agricul-

tural areas may be more completely mapped than urban areas (Zielstra and Hochmair

2010; Zielstra et al. 2012). According to Ciepłuch et al. (2011), the lower the road class,

the wider the gap between urban and rural areas. However, considering that the focus of

our study was on finding popular routes that are used by many cyclists, we feel that it is

safe to assume that the relevant paths are more completely mapped and annotated than

small paths in general. An interesting option would be to use the HMM-based matching

algorithm as a basis for automatic refinement of the OSM network using the tracked trajec-

tories, as it can identify a situation where no connection is available (Torre et al. 2009;

Wang et al. 2012).

Figure 10 (a) The small Simpson’s diversity indexes are primarily associated with segments out-
side the main cycling routes with many tracks. The illustration includes only segments with more
than 100 tracks; and (b) The smallest Simpson’s diversity indices that could have an effect on rout-
ing in the study area. Black ellipses highlight two such areas which seem to have affected routing
in cases 15 and 17
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4.2 Richer Insight into the Data Through Multiple Popularity Indicators

As well as presenting a method for matching cycling tracks to the OSM network for routing

purposes, this study provides insight into the biased nature of the dataset and how it can influ-

ence route suggestions. Although the generalizability of user-generated datasets can be ques-

tionable in many ways, we concentrated on the “participation inequality” related to the

tracking activity of the application users.

The different types of route suggestions provided by the cost functions can indicate the dis-

tinctive preferences of cyclists with varying trip purposes, and thus show a pattern that corre-

sponds to previous studies which claimed that the determinants of route choices differ between

transportation and recreational cyclists (Broach et al. 2012; Dill and Gliebe 2008; Krizek et al.

2009; see also Heinen et al. 2010; Moudon et al. 2005; Stinson and Bhat 2005). Further insight

into this division could be acquired, e.g. by looking at temporal differences between the route

suggestions or at data related to land use and cycling facilities.

Zheng and Xie (2014) have argued that more experienced tourists should be given more

weight when extracting attractive travel sequences. The diversity-attentive popularity indicator

can therefore be compelling, because the inclusion of the number of tracks in the cost function

Figure 11 The Simpson’s diversity index affected routing in two cases: (a) 15; and (b) 17. Routes
in cases (c) 2, and (d) 5 before and after equalizing the popularity distribution (VC OpenStreetMap
contributors)
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can be interpreted as giving more weight to the tracks of frequent cyclists. Furthermore, it can

be questioned whether the effect of the diversity index would be greater in more peripheral

areas where the number of cyclists is smaller than in the urbanized study area.

4.3 Towards Better Route Suggestions for Cyclists

Many cyclists might find the “popular route” suggestion to be a desirable alternative. Consider-

ing the four generalized principles of a good cycling route: short, safe, attractive and simple

(Hochmair 2004), popularity can, in some way, provide all of them. It guarantees that the

route is generally attractive and safe, which is an important aspect of route choice for all

cyclists, but especially for those with less experience of cycling in the area, such as tourists.

Results on how much longer cyclists are willing to ride compared with the shortest path are

varying (e.g. Broach et al. 2012; Dill et al. 2008) and cannot be generalized due to their contex-

tual nature and dependency on, for example, the availability of cycling facilities. More impor-

tantly, although the suggested travel distance could be limited by including length in the cost

function, the routes were heavily inclined to follow the most popular cycling paths. Through

equalizing the popularity in the network, we are more likely to avoid excessive detours, but

simultaneously may compromise other desired factors. Because the method is based on local

segment-level inferences, it is not possible to consider route-level factors, such as continuity of

bicycle facilities, delays in difficult left-turns, or total travel time. In addition, although the

effect of hills can be controversial, especially in the context of sports cycling, the direction of

the trajectories ought to be considered. The Markov model-based routing algorithm by Chen

et al. (2011) has computational efficiency comparable with the standard shortest path algo-

rithms and could be considered as an enhancement.

Combining historical trajectories with the current network caused matching errors as the

network is not static, but changing continuously. Because new connections affect the popular-

ity of the old network, more recent tracks could be emphasized. Similarly, all links were seen as

homogeneous, which may initially hide the popularity of new connections unless tracks are

weighted according to their “age”. Another topic that deserves attention in the future is the

extraction of cycling events from the data.

4.4 Enhancing the HMM-Based Map-Matching Method

Overall, the HMM-based algorithm achieved good results despite the combination of two user-

generated datasets. The method is robust regarding positional inaccuracies and therefore well

suited for crowdsourced network data. However, it assumes that the network topology is cor-

rectly mapped. The main algorithmic problem was related to the preference of routes with

fewer segments, which in some cases turned out to be a trade-off for prioritizing topological

connectivity of the network by inclusion of the boundaries of cycleable squares. Favouring

routes with fewer segments could potentially be avoided by determining the transition proba-

bility based on the difference between the great circle distance of the observations and the driv-

ing distance along the road network as suggested by Newson and Krumm (2009). This would,

however, require using a computationally demanding shortest path algorithm (see also Wei

et al. 2013). Our results support the need to find novel solutions to routing across polygon fea-

tures which is a recognized shortcoming in existing pedestrian and bicycle route planners

(Bauer et al. 2014). As the popularity of OSM-based routing services increases, it can well be

that the routes of main cycling flows across squares will become more comprehensively mapped

although there would be no visible, designated path (Figure 12). While reflecting the movement
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patterns in reality, this could in most cases be an adequate solution to popularity-based

routing.

Systematic testing of all pre-processing parameters for the trajectory and network data in

varying circumstances was beyond the scope of this study. However, the urban study area

allowed us to recognize possible problems related to the chosen values, and a few points can be

raised related to their effect on the performance of matching. First, the HMM-based method is

sensitive to sampling interval, especially when combined to a road map represented at a high

level of detail. Denser point interval would, especially in more rural areas, unduly increase the

computation time, whereas in urban areas, sufficient density is difficult to determine before-

hand. Rather, we could consider using a denser sampling only around intersections or a

dynamic matching radius in HMM. Second, without the interpolation of new points, inferring

routes would have been impossible if outages exceeded a certain distance. Obviously, the lon-

ger the slicing threshold, and thus the upper limit of interpolation, the more false routes could

be inferred depending on the network’s road density. Third, splitting road segments into

shorter parts of at most 200 m allows more truthful popularity indicators along long roads,

and does not, otherwise, affect the performance of map-matching, as long as the sampling den-

sity is higher.

5 Conclusions

OpenStreetMap is an attractive data repository for the cycling community. Crowdsourced

workout data recorded with mobile applications, such as Sports Tracker, has also provoked a

lot of interest due to the general lack of cycling data. Regardless of their incompleteness or

problems related to generalizability, such volunteered geographic datasets have great potential

value, for example in the implementation of new route-finding applications.

In this study we investigated the possibility of using sports tracking application data in pro-

viding bicycle-friendly routes based on their popularity. The advanced HMM-based algorithm,

which was modified to be suitable for the detailed mapping of the OSM network, achieved bet-

ter performance than the geometric method, and in many cases also resulted in partially differ-

ent route suggestions. When compared to the manually matched set of 50 tracks, the

Figure 12 (a) A square at the end of an important cycle track ‘Baana’ in Helsinki; (b) as it was
mapped in OSM during the data extraction in August 2014 (bikeways in green); and (c) in August
2015. During this period cycleways have been added in a skeleton-like fashion across the square
although in real life there are no visible paths restricting the movement of cyclists. Two cycleways
(highlighted with red arrows) are still missing connections across the square. The black ‘x’ shows
where the photo (a) was taken. The location of the square is shown in Figure 1b
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HMM-based algorithm was able to correctly match over 90% of the segments and approxi-

mately 94% of the route length. The biased nature of the tracking data also had an impact on

route suggestions depending on the cost function used. Cost functions based on the number of

users and tracks provided different route suggestions in most cases, possibly indicating the

varying route choices of utilitarian and recreational cyclists. In a few cases, revising the number

of tracks by Simpson’s diversity index provided further alternative routes where cycling is regu-

lar, but the paths are not dominated by only a few bikers. Including the length of each segment

in the cost functions produced routes that were on average 20% longer than the shortest paths.

Due to the skewed popularity distribution of the segments, the routes were heavily inclined to

follow the main cycling routes. Equalization of the distribution of popularity in the network

significantly reduced the length of the route suggestions.
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