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High-Speed Integrated Endoscopic Photoacoustic and
Ultrasound Imaging System

Yan Li®, Zhikai Zhu @, Joseph C. Jing ® Jason J. Chen®, Andrew Emon Heidari @, Youmin He @, Jiang Zhu 0,
Teng Ma, Mingyue Yu, Qifa Zhou, and Zhongping Chen @

Abstract—Endoscopic integrated photoacoustic and ultrasound
imaging has the potential for early detection of cancer in the gas-
trointestinal tract. Currently, a slow imaging speed is one of the
limitations for clinical translation. Here, we developed a high-speed
integrated endoscopic PA and US imaging system, which is able to
perform PA and US imaging simultaneously up to 50 frames per
second. Using this system, the architectural morphology and vas-
culature of the rectum wall were visualized from a Sprague Dawley
rat in vivo.

Index Terms—Photoacoustic, ultrasound, endoscopic imaging,
gastrointestinal.

1. INTRODUCTION

OLORECTAL cancer, the third most common type of
C cancer globally, has ~1.4 million new cases and 694,000
deaths annually [1]. Currently, gastroenterologists routinely uti-
lize visible light endoscopy to visualize the rectum wall for
diagnosing various diseases. Due to the lack of depth resolved
information and limited vascular lesion sensitivity, they are not
able to clearly visualize early epithelial dysplastic changes that
may lead to the development of cancer [2]. In recent decades,
there has been substantial development in endoscopic imaging
technologies [3]-[6] that are capable of visualizing the sub-
surface tissue morphology and vascular network to provide
necessary diagnostic information. For example, endoscopic ul-
trasound (US) imaging allows a clinician to obtain images of
the gastrointestinal (GI) tract and the surrounding tissue /organs
with a large penetration depth [5], [7]. Endoscopic optical coher-
ence tomography (OCT) is capable of providing high-resolution
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cross-sectional images [6], [8]-[10], which is often used to im-
age sub-layered architecture. Both OCT and US provide the
morphology of biological tissue but lack molecular informa-
tion, which is often insufficient for accurate diagnosis since
both structure and pattern of the vasculature are also highly rel-
evant to GI disease. Endoscopic photoacoustic (PA) imaging is
a non-invasive imaging modality that provides molecular con-
trast with depth resolved information [11]-[14]. Integrated with
ultrasound (US) imaging, this multimodal endoscopic PA/US
imaging technology is able to provide both structural and chemi-
cal compositions of colorectal walls for diagnosis of GI cancer at
an early stage. Several groups have reported different designs of
an integrated endoscopic PA/US imaging system [15]—[19] that
represent a significant step forward for the characterization of GI
cancer. However, these imaging systems are still not adequate
for in vivo clinical translation due to insufficient field-of-view,
large probe diameters, and slow imaging speed. For example,
the systems [18], [20] reported by Yuan et al. and Li et al. are
limited due to oversized probes which are incompatible with a
clinical endoscope. Yang et al. developed a series of endoscopic
photoacoustic imaging systems [16], [21] based on a distal scan-
ning method with much smaller catheters. However, only part of
the cross-sectional images could be obtained due to the partial
blocking of the view from the electric wires of the micro motor.
In addition, the probes were rigid and had slow imaging speeds
(<10 Frame/s), which limited the clinical applications.

In this study, we demonstrate an integrated endoscopic PA and
US imaging system. Utilizing a high repetition rate pulsed laser,
an optimized rotary joint, and a proximal scanning method, this
integrated imaging system is able to obtain morphological tissue
information and vasculature of the GI tract simultaneously at a
high imaging speed up to 50 frames/s (the fastest speed reported
to date). We conducted in vivo animal studies to demonstrate the
performance of our imaging system for evaluating the GI tract.

II. METHODS

One of the key determining factors of clinical translation is the
imaging speed. To acquire quality images for accurate disease
detection, high speed imaging is essential as it can minimize the
motion artifact caused by breathing and rectal peristalsis. In ad-
dition, increasing imaging speed, hence improving the imaging
area, helps physicians visualize larger sections of GI tract in a
shorter period of time. Currently, the imaging speed of an en-
doscopic PA/US system is what limits the translation to clinical
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ring, motor, and pull-back translation stage.

application. In this study, several improvements of an endo-
scopic PA/US imaging system were made to achieve a higher
imaging speed with good imaging quality. Most current endo-
scopic probes for GI application utilize distal scanning with a
micromotor, where a high rotation speed is difficult to achieve
in water [16], [21]. To address this issue, a proximal scanning
method utilizing a torque coil to transmit the torque from a ro-
tary motor was applied to drive the imaging probe, providing a
rotation speed up to 100 revolutions per second in water. A 10
W pulsed laser with a repetition rate up to 300 kHz was used
as the excitation source to perform photoacoustic imaging. In
consideration of the laser energy loss caused by high speed ro-
tation, we customized the optical rotary joint to maintain a high
transmission efficiency of laser energy for a rotation speed up to
50 revolutions per second. High speed rotation also generated a
higher noise level that degraded the sensitivity of the imaging
system; hence, the slip ring, the motor driver, and the motor were
covered by shielding foils to enhance electromagnetic shield-
ing. Additionally, instead of the conventional B-scan averaging
which greatly decreases the imaging speed, an algorithm was de-
veloped for residual electrical noise removal. Lastly, a gradient
index (GRIN) lens was used to collimate the illumination light,
providing improved image resolution and system sensitivity.
Fig. 1 illustrates the overall setup of the integrated endoscopic
PA/US imaging system (a), schematic (b), and photograph (c) of
our imaging probe. In the system, a 532-nm nanosecond laser
(DCH-532-10, Photonics Industries International Inc.) with a
repetition rate up to 300 kHz is utilized for PA signal exci-
tation. The output laser beam is focused by a condenser lens
into the multimode fiber (MMF) of the imaging probe to de-
liver the laser energy. A custom-made, single-element trans-
ducer (0.7 x 0.7 x 0.5 mm? with an active element area of
0.5 x 0.5 mm?, 45MHz center frequency) is used to detect
the photoacoustic and ultrasound signals from the biological
tissue. The trigger signal from the pulsed laser is used as the
main trigger to synchronize data acquisition and laser emis-

Setup of the integrated imaging system (a), schematic (b), and photograph (c) of the imaging probe. 3D scanner consists of fiber optic rotary joint, slip

sion. Simultaneously, the main trigger signal is delayed by 5
us to trigger the ultrasound pulser/receiver (DPR500, JSR Ul-
trasonics) to emit acoustic waves for ultrasound imaging. The
generated PA and US signals are band-pass filtered, amplified,
and digitized with a data acquisition (DAQ) card (ATS9350,
Alazar Technologies Inc.) in a personal computer. In order to
obtain cross-sectional images (B-scans), we applied a proximal
scanning method in which the imaging probe is rotated through
a rotary joint. The rotary joint is assembled with a custom-
made electric slip ring (Hangzhou Prosper Electric Co., Ltd.),
a fiber optic rotary joint (Princetel, Inc.) and a rotary motor
(MicroMo Electronics, Inc.) which allow the laser beam and
electrical signal to pass across rotating interfaces. In consider-
ation of increased electrical noise and laser energy loss caused
by high speed scanning, we customized a fiber optic rotary joint
that maintains a high transmission efficiency while operating at
a rotation speed up to 50 revolutions per second (RPS). Further-
more, we have made improvements to enhance electromagnetic
shielding and developed an algorithm to remove electrical noise
instead of average which greatly decreases the imaging speed.
The algorithm separates the noise and the signal by correlating
two adjacent B-scan images in which the noise is differentiated
by its randomness, and thus, the signal can be extracted from the
original data. In addition, spiral three-dimensional (3D) images
can be obtained by a pull-back imaging probe using a trans-
lation stage. The software is written entirely in C++ for data
acquisition, image processing, and display in real-time using a
graphics processing unit.

In the probe, the laser beam propagates through the MMF,
collimated by a 1-mm GRIN lens (Aviation Magneto Optical
Sensor Corp.), and reflected by a rod mirror (Aviation Magneto
Optical Sensor Corp.) with a diameter of 1 mm at an angle of
45° towards the tissue surface. The laser pulse energy emitted
from the imaging probe is maintained at ~30 pJ throughout
the study. In consideration of water absorption and astigmatism
caused by the sheath, the corresponding fluence on the rectum is
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Fig. 2. Cross-sectional PA, US, and fused images with different locations
along pullback direction. (a) US images. (b) PA images. (c) Fused images. White
dashed box: typical layers of rectum wall. Group I, II, and III were obtained
with 20 frames per second (FPS). Group IV was obtained with 50 frames per
second. White arrow: surrounding organ. Scale bar: 1 mm (see Visualizations 1
and 2).

15 mJ/ cm?, which is well within the American National Stan-
dard Institute (ANSI) safety standard (20 mJ/cm?) in the visible
spectrum (400-700 nm) [22]. A miniature custom made single-
element ultrasonic transducer is used to detect the PA waves
from the sample as well as to perform pulse-echo US imaging.
Both transducer and rod mirror are tilted at a small angle in
order to achieve an optimal overlap between optical and acous-
tic beams. The outer diameter and rigid length of the imaging
probe are 1.5 mm and 11 mm, respectively. The length of imag-
ing probe is 50 cm. A double-wrapped torque coil (ID: 0.4 mm,
OD: 0.8 mm, Asahi Intecc USA, Inc.) is connected to the distal
end of the imaging probe to transmit the torque from the rotary
motor to perform cross-sectional images (B-scans) with high
imaging speed up to 50 revolutions per second. Compared with
the distal scanning method that applies a micro motor to drive
the mirror, the proximal scanning method has full field of view
imaging, improved flexibility and high imaging speed for the
endoscopic PA/US system.

III. EXPERIMENTS AND RESULTS

In order to demonstrate the performance of our integrated
endoscopic PA/US imaging system, we conducted an in vivo
experiment to image the rectum of a Sprague Dawley rat. The
rat was placed under general anesthesia via intraperitoneal in-
jection of ketamine hydrochloride (87 mg/kg) and xylazine (10
mg/kg) through a 29G needle. After the rat was anesthetized,
we performed enemas to clean the rectum and then inserted our
imaging probe with sheath for in vivo imaging. All procedures
were carried out in accordance with and approved by the Insti-
tutional Animal Care and Use Committee at the University of
California, Irvine under protocol #2016-3198.

Fig. 2 shows the representative PA and US images. The trans-
verse resolution of the PA imaging is ~250 pm, which is de-
termined by the optical beam size. For the US imaging, the
transverse resolution is ~300 pm, which is mainly governed by
the ultrasound transducer size. The axial resolutions of the PA

7102005
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Fig. 3. 3D endoscopic PA, US, and fused images of the rat rectum. (Ia) and
(Ib) PA images. (I1a) and (IIb) US images. (IITa) and (IIIb) Fused images. White
arrow: surrounding organ. Scale bar: 1 mm.

and the US systems both depend on the bandwidth of the ultra-
sound transducer and are approximately 50 pm. The imaging
depth is ~4 mm, determined by the overlapping range between
the optical beam and the acoustic wave. At the optimum imag-
ing depth in which the optical beam and acoustic wave are
fully overlapped, the signal to noise ratio (SNR) of the PA and
US systems are ~45 dB and ~42 dB, respectively. The de-
tailed methods for measuring these parameters were described
previously [23]. We acquired ~500 B-scan images with a pull-
back speed of 0.5 mm/s. For groups I, II, and III, a 20 frames
per second (FPS) were used to perform B-scan imaging. For
group IV, 50 FPS were applied to perform imaging. From the
US images of the four groups [Figs. 2(Ia)—(IVa)], the typical
layered architecture indicated by the white dashed box, and
seminal vesicles that correspond to low echoes in the US im-
ages indicated by the white arrow can be identified. From the
PA images [Figs. 2(Ib)—(IVb)] of the four groups, the signal of
blood vessels present in different layers can be found. Fused PA
and US images [Figs. 2(Ic)-(IVc)] provide the co-registration
images, which are advantageous over either modality alone to
supplement lesion evaluation. These results demonstrate that
this integrated endoscopic imaging system has the capability to
visualize the layered architecture and vasculature of the rectum
wall simultaneously. A video in the Supplementary Information
shows the PA, US, and fused B-scan images while pulling back
the imaging probe.

Figs. 3(D—(III) show representative 3D PA, US, and fused
images, respectively, of the rectum. Fig. 4 shows an unwrapped
image from Fig. 3(e); the pattern of vasculature can be observed.
The entire process of imaging only takes ~10 seconds, and no
averaging was applied. From the 3D US images [Figs. 3(Ila),
(ITb) and 4(IIa), (IIb)], morphology of the rectum wall and sur-
rounding organ can be identified. The white dashed box indicates
the typical layered architecture, and the white arrow indicates
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Fig.4. Unwrapped 3D endoscopic PA, US, and fused images of the rat rectum.
(I) PA images. (II) US images. (III) Fused images. White arrow: surrounding
organ. Scale bar: 1 mm.

the seminal vesicles. From 3D PA images [Figs. 3(Ia), (Ib) and
4(Ia), (Ib)], vasculature of the rectum wall was found.

IV. SUMMARY

Endoscopic integrating PA and US imaging is a minimally
invasive non-ionizing imaging technology that has the potential
for the diagnosis and classification of GI disease. Here, we re-
ported an integrated endoscopic PA/US imaging system which
is able to provide information of tissue structure and vascula-
ture of GI tissues simultaneously. Utilizing a high repetition rate
pulsed laser and an optimized rotary joint as well as a proximal
scanning method, a high speed integrated endoscopic PA/US
imaging system was obtained. The outer diameter of the imag-
ing probe is around 1.5 mm, which is accessible through the
accessory channel of the commercial endoscope. The results
obtained from the in vivo rat experiment demonstrated that the
typical layered architecture and vasculature can be identified
by this integrated imaging system. While our PA/US imaging
system has laid the groundwork for clinical imaging, several
challenges still need to be addressed for clinical integration.
(1) Resolution: to visualize the microvasculature of the rectal
wall, the transverse resolution of the PA imaging needs to be
improved. Furthermore, to accurately demarcate the tissue lay-
ers, axial resolution of both modalities has to be improved as
well, which may be achieved by employing a higher frequency
acoustic transducer. (2) Probe form factor: for deeper GI tract
imaging (e.g., small intestine), the diameter and the rigid length
of the imaging probe need to be further minimized to ensure
a smooth insertion. This may be achieved by using a GRIN
fiber with better flexibility and a smaller diameter to focus the
optical beam. (3) Sensitivity: for higher speed imaging (>50
RPS), the performance of a fiber optic rotary joint and slip ring
will also need to be further optimized. In addition, the overlap
between the optical beam and acoustic wave can be further im-
proved to enhance the detection efficiency through the entire
imaging depth, and this may be accomplished by employing
coaxial imaging. Lastly, a diseased animal model with in vivo
imaging is needed for further verification.
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