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T wenty years ago, empirical macroeconomists shared some common under-
standings. One was that a dynamic causal effect—for example, the effect on 
output growth of the Federal Reserve increasing the federal funds rate—is 

properly conceived as the effect of a shock, that is, of an unanticipated autonomous 
change linked to a specific source. Following Sims (1980), the use of vector autore-
gressions to estimate the dynamic causal effect of shocks on economic variables was 
widespread. There was also an understanding that vector autoregressions, because 
they impose as little structure on the data as possible, cannot answer questions about 
changes in policy regimes, such as the macroeconomic consequences of the Fed 
adopting a new policy rule. For such questions, more structured models grounded 
in economic theory are needed. At the same time, there was an increasing recog-
nition that the available methods needed significant work. The schemes used to 
identify structural shocks in vector autoregressions were often seen as unconvincing 
by researchers outside the field, and the small structural models of the time were not 
econometrically estimated, miring that enterprise in an unhelpful debate over how 
to calibrate such models. In addition, there were chinks emerging in the theoretical 
econometric underpinnings of inference in time series data, as well as opportunities 
for using the much larger datasets becoming available, if only the tools to do so 
could be developed. The time was ripe for progress.
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This review tells the story of the past 20 years of time series econometrics 
through ten pictures. These pictures illustrate six broad areas of progress in time 
series econometrics: estimation of dynamic causal effects; estimation of dynamic 
structural models with optimizing agents (specifically, dynamic stochastic equilib-
rium models); methods for exploiting information in “big data” that are specialized 
to economic time series; improved methods for forecasting and for monitoring 
the economy; tools for modeling time variation in economic relationships; and 
improved methods for statistical inference.

These pictures remind us that time series methods remain essential for shoul-
dering real-world responsibilities. The world of business, finance, and government 
needs reliable information on where the economy is and where it is headed. Policy-
makers need analysis of possible policies, and macroeconomists need to improve 
their understanding of the workings of modern, evolving economies. Taken 
together, the pictures show how 20 years of research have improved our ability to 
undertake these professional responsibilities. These pictures also remind us of the 
close connection between econometric theory and the empirical problems that 
motivate the theory, and of how the best econometric theory tends to arise from 
practical empirical problems.

A review of 20 years of research must make some arbitrary decisions. One of our 
decisions is to focus on empirical macroeconomics, not finance. Fortunately, there 
are good surveys of the many developments in financial econometrics: for example, 
see the papers in Aït-Sahalia and Hansen (2010). Another concerns the choice of 
figures. Our ten figures are not meant to single out superstar papers (although 
some are) but rather to represent important lines of research: each figure illus-
trates a broader research program. In choosing these figures, we first looked for 
influential early papers from the late 1990s and early 2000s that framed subsequent 
research. This yielded five figures from papers with an average of 1,486 Google 
Scholar citations each. We then looked for figures more recently published that 
illustrate key findings or methods in a relatively mature line of research, yielding 
four more figures. Our final figure, which is not from published research, illustrates 
an open empirical challenge for research ahead.

Causal Inference and Structural Vector Autoregressions

An ongoing question in empirical macroeconomics is how to determine the 
causal effect of a policy change. For example, what is the effect of an autonomous, 
unexpected, policy-induced change in the monetary policy target rate—that is, a 
monetary policy shock—on output, prices, and other macro variables? The under-
lying problem is simultaneous causality: for example, the federal funds interest rate 
depends on changes in real GDP through a monetary policy rule (formal or informal), 
and GDP depends on the federal funds interest rate through induced changes in 
investment, consumption, and other variables. Thus, one cannot determine the effect 
of a change in the federal funds interest rate simply by using the rate (perhaps along 
with lagged values of the rate) as a right-hand-side variable in a regression to explain 
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GDP. Somehow, a researcher needs to isolate the exogenous variation in the federal 
funds interest rate, and for that you need external information.  

Since the seminal work of Sims (1980), vector autoregressions have been 
a standard tool for estimating the causal effects over time of a shock on a given 
macro variable. This tool evolved into “structural” vector autoregressions, which 
are based on the idea that the unanticipated movements in the variables—that is, 
their forecast errors—are induced by structural shocks. The goal of structural vector 
autoregressions is to impose sufficient restrictions so that one or more structural 
shocks can be identified: specifically, that one or more shocks can be represented 
as an estimable linear combination of the forecast errors. The result of this analysis 
is the estimation of a dynamic path of causal effects, which in macroeconometrics is 
called a “structural impulse response function.”

However, many applications of the original methods for identification of struc-
tural autoregressions that were dominant in the 1980s and 1990s have not withstood 
close scrutiny (as articulated, for example, by Rudebusch 1998). For example, a 
popular method for identifying monetary policy shocks in the 1980s and 1990s was 
to assume that economic activity and prices respond to a monetary policy shock 
with a lag, but that monetary policy responds systematically to contemporaneous 
nonmonetary shocks to the other variables. Under this assumption, the predicted 
value in a regression of the federal funds rate on its lags and on current and lagged 
values of the other variables is the endogenous policy response, and the residual is 
the unanticipated exogenous component—that is, the monetary policy shock. But 
this identifying assumption is not credible if the other variables include other asset 
prices, such as long-term interest rates.

Thus, this area needed new approaches. Broadly speaking, these new 
approaches bring to bear external information: information outside the linear 
system of equations that constitutes the vector autoregression. The development 
of new methods for estimating causal effects has been one of the main advances in 
microeconometrics over the past two decades (as discussed in several other articles 
in this symposium), and the focus on credible identification has parallels in the 
structural vector autoregression literature. 

Using External Information to Estimate the Shock Directly
This brings us to our first picture, which is from Kuttner (2001). Kuttner’s 

interest was in estimating the dynamic causal effect of a monetary policy shock on 
long-term interest rates, which is part of the broader program of estimating their 
dynamic causal effect on macroeconomic variables. Because the Fed controls the 
federal funds interest rate, one might initially think that the fed funds rate is exoge-
nous; but not so, because some of the changes are responses to changes in economic 
activity which have their own effect on long-term interest rates. Rather, the exog-
enous part of the fed funds rate—the monetary policy shock—is the part that is not 
a response to economic activity. Kuttner’s innovation was to draw on external infor-
mation to identify the shock. Specifically, he knew that the Federal Reserve Open 
Market Committee announced its decisions at a specific time after its meetings, and 
he also had evidence (along with the theory of efficient financial markets) that the 
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fed funds future rate was an efficient forecast of future fed funds rates. Thus, he was 
able to measure the unexpected part of the change in the federal funds futures rate 
as the change in the fed funds rate before and after the announcement. Assuming 
that no other relevant news was released during the announcement window, this 
change in the fed funds futures rate measures the change in market expectations 
of the fed funds rate resulting from the announcement—that is, it measures the 
monetary policy shock associated with the announcement. By using this external 
information, he could directly estimate the monetary policy shock. 

Kuttner’s figure (our Figure 1) shows that this unanticipated component of 
the change in the target rate is associated with changes in the five-year Treasury 
rate (right panel), but anticipated changes are not (center). As a result, there is no 
particular relationship between the actual announced target and the five-year rate 
(left). We interpret this figure as a compelling plot of the “first stage” in instrumental 
variables regression: it shows that an instrument (the unanticipated component of 
the target change on the announcement day) is correlated with an endogenous vari-
able (the five-year interest rate).

The idea of using external information to identify shocks for structural vector 
autoregression analysis traces back to Romer and Romer (1989), who used textual 
and historical information to identify some exogenous monetary policy shocks. 
In addition to Kuttner (2001), Cochrane and Piazzesi (2002), and Faust, Rogers, 

Figure 1 
Changes in the 5-year Treasury Rate and in the Target Federal Funds Rate on 
Federal Reserve Open Market Committee (FOMC) Announcement Dates 
( fed funds changes are decomposed into anticipated and unanticipated components using 
changes in the fed funds futures market on announcement dates)

Source: Kuttner (2001), Figure 2.
Note: The figure shows changes in the 5-year Treasury rate (on the y-axes) and in the fed funds target 
rate (on the x-axes) on Federal Reserve Open Market Committee (FOMC) announcement dates. 
Unanticipated changes in the fed funds rate—which are the monetary policy shocks—are identified as 
changes in the fed funds futures rate from before to after the announcement of a change in the FOMC’s 
target for the fed funds rate. The anticipated change is the actual change in the fed funds futures rate, 
minus the unanticipated change. 
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Swanson, and Wright (2003), and Bernanke and Kuttner (2005) are early papers 
that use interest rate changes around Federal Reserve announcement dates to iden-
tify monetary policy shocks. In a similar spirit, Hamilton (2003) and Kilian (2008) 
use external information on international oil supply disruptions to estimate the 
effect of oil supply shocks on the economy. 

This line of attack aims to measure the exogenous shock directly from 
external information, such as knowledge of the interest rate markets around 
announcement dates. If the shock can actually be measured, then estimation of 
structural impulse response functions is straightforward: because the shock is 
uncorrelated with other shocks, one can simply regress a variable of interest on 
current and lagged values of the shock, and the resulting coefficients trace out the 
dynamic causal effect (for example, Stock and Watson 2011, chap. 15). But doing 
so requires a particular strong form of external information: that the shock can 
be accurately measured.

Identification by External Instruments
If the external information succeeds in measuring only part of the shock 

or produces a noisy measurement of the shock, then the measured shock has the 
interpretation as an instrumental variable and regressions on the measure have the 
interpretation as the first stage in two-stage least squares. Arguably, many of the shock 
measures proposed to date yield imperfect measures. For example, changes in federal 
funds futures around an announcement reveal only a part of the monetary policy 
shock. In this case, the external shock measure is an instrumental variable: it is exog-
enous (that is, it is uncorrelated with other structural shocks) if properly constructed, 
and it is relevant because it is correlated with the true shock. Hamilton (2003) uses his 
measured international oil shock measure as instrument in a single-equation setting. 
In a vector autoregression, the technicalities differ from standard instrumental vari-
ables regression because the observed endogenous variables are forecast errors, not 
the original variables themselves. Still, the two criteria for a valid instrument, rele-
vance and exogeneity, are the same in the structural vector autoregression application 
as in standard instrumental variable regression. 

The explicit use of external instruments in structural vector autoregressions is 
fairly recent. This method is described in Stock (2008), Ramey (2016), and Stock 
and Watson (2016). Empirical applications of identification of structural impulse 
response functions using external instruments include Stock and Watson (2012a), 
Mertens and Ravn (2013), and Gertler and Karadi (2015).

Identification by Heteroskedasticity
Another method for identifying impulse response functions developed during 

the past 20 years exploits the observation that changes in the variance of the shocks  
can serve to identify the impulse response functions if those responses remain 
constant despite the heteroskedasticity of the shocks. Suppose that there are two 
known regimes, a high- and a low-volatility regime. Identification by heteroskedasticity 
works by generating two sets of moment equations, one for each regime. Although 
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neither set can be solved on its own (the identification problem), assuming that the 
impulse response functions are the same across both regimes imposes enough para-
metric restrictions that together the two sets of equations can be solved, and thus 
the impulse response functions can be identified. This clever insight was developed 
for regime-shift heteroskedasticity by Rigobon (2003) and Rigobon and Sack (2003, 
2004), and for conditional heteroskedasticity by Sentana and Fiorentini (2001) and 
Normandin and Phaneuf (2004). Lütkepohl (2013) offers a survey and discussion. 

Identification by Sign Restrictions
An altogether different approach to identification in structural vector autore-

gressions is to use restrictions on the sign of impulse responses to identify the 
economic shocks. For many shocks, disparate macro theories often agree on the 
signs of their effects, at least over short horizons. Although several early papers 
build off this insight, the method developed by Uhlig (2005) is the most widely 
used. In his application, Uhlig restricted the impulse response with respect to a 
monetary policy shock identified by requiring that, on impact and over the next 
five months, the response of overall prices, commodity prices, and nonborrowed 
reserves to a contractionary monetary policy shock are not positive, and that the 
response of the federal funds interest rate is not negative. Identification using sign 
restrictions can be compelling and has been widely adopted.

At a mathematical level, using sign restrictions is fundamentally different than 
the other methods that identify shocks: with enough restrictions, those methods lead, 
in large samples, to a unique impulse response function, whereas the sign restric-
tions approach only determines a set that includes the impulse response. That is, 
sign-identified impulse response functions are not point-identified, but instead are 
set-identified. 

Set identification of impulse response functions raises subtle issues of inference, 
which have only recently been appreciated. Following Uhlig (2005), the standard 
approach is Bayesian, but just as the identification scheme in classical structural 
vector autoregression methods can strongly influence results, the prior distribution 
over the unidentified region of the impulse response parameter space strongly influ-
ences Bayesian inference, even in large samples. These methods therefore require 
great care to produce transparent, valid, and robust inference. Recent papers tack-
ling inference in sign-identified structural vector autoregressions are Fry and Pagan 
(2011), Moon, Schorfheide, and Granziera (2013), Giacomini and Kitagawa (2014), 
Baumeister and Hamilton (2015), and Plagborg-Møller (2016). For additional discus-
sion and references to the recent methodological literature see Stock and Watson 
(2016, Section 4).

Estimation of Dynamic Stochastic General Equilibrium Models

Dynamic stochastic general equilibrium models are models of forward-looking, 
optimizing economic agents who live in an economy subject to unexpected shocks. 
The development of methods for solving and estimating these models, combined 
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with their grounding in optimizing economic theory, has made them a central tool 
of monetary policy analysis at central banks.

One of the first full-system estimations of a dynamic stochastic general equilib-
rium model was by Ireland (1997), who estimated a three-equation (GDP, prices, and 
money) system by maximum likelihood. However, maximizing the likelihood proves 
far more difficult numerically than averaging over the likelihood using a Bayesian 
prior, and today the dominant methods for estimating dynamic stochastic general 
equilibrium models are Bayesian. These methods were first used by DeJong, Ingram, 
and Whiteman (2000), Schorfheide (2000), and Otrok (2001) for small dynamic 
stochastic general equilibrium systems. Smets and Wouters (2003) showed that these 
methods can be applied to larger dynamic stochastic general equilibrium models that 
are rich enough to be a starting point for monetary policy analysis. 

Figure 2, taken from Smets and Wouters (2003), represents the breakthroughs 
made over the past 20 years in the estimation of dynamic stochastic general equi-
librium models. In their model, the “Calvo wage” parameter in the first panel is 
the probability that a worker’s wage does not change, and the “Calvo price” param-
eter in the second panel is the probability that the firm’s price does not change. 
As Figure 2 illustrates, the method works: The computational problems encoun-
tered when fitting dynamic stochastic general equilibrium models using frequentist 
methods such as maximum likelihood are sidestepped by computing posteriors, 
facilitated by a suite of tools developed in the modern Bayesian computational liter-
ature. For some parameters, such as the “Calvo price” parameter, the data are highly 
informative: incorporating the data results in much stickier prices than the authors’ 
prior, so that the posterior and prior distributions are quite different. But for other 
parameters, such as the “Calvo wage” parameter, the data are much less informative, 
so that the prior and posterior essentially coincide. Thus, the Calvo wage parameter 
is in effect calibrated by the researcher, so the resulting complete model combines 
estimation where the data are informative with calibration where they are not.

This property of estimation cum calibration means that care needs to be taken 
in interpreting measures of uncertainty arising from the model. From a frequentist 
perspective, a classic justification of Bayesian methods is that coverage intervals (“Bayes 
credible sets”) computed using the Bayesian posterior are essentially the same as 
frequentist confidence intervals in large samples, as long as a continuous prior does not 
rule out parameter values. (This is the celebrated Bernstein–von Mises theorem.) But 
for dynamic stochastic general equilibrium models, because the data are  uninformative 
for some parameters—that is, some parameters are poorly identified—this equivalence 
does not hold and the uncertainty measures are heavily influenced by the shape of the 
prior. We return to this issue below, when we discuss weak identification.

The literature on estimation of dynamic stochastic general equilibrium models 
is vast and, because it quickly gets into specialized computational devices, it can be 
difficult to penetrate. For example, models of the Smets–Wouters sort rely on log-
linearized approximations to decision rules, which both makes the models fairly 
easy to solve and means that the Kalman filter can be used to compute the Gaussian 
likelihood. Much of the recent methodological research on estimation of these 
models has focused on avoiding the log-linearization step. Among other things, 
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avoiding log-linearization can improve the ability to analyze the effects of risk 
and uncertainty. However, there are substantial computational challenges in esti-
mating nonlinear models, so that log-linearization remains common in practice. 
Canova (2007) provides an accessible textbook treatment of the linearize/Kalman 
filter/Bayes approach. Herbst and Schorfheide (2015) provide an up-to-date 
textbook treatment that focuses on computationally efficient methods for evalu-
ating the posterior of linearized models. Fernández-Villaverde,  Rubio-Ramírez, 
and  Schorfheide (2016) provide a detailed overview of methods that avoid 
linearization.

Source: Smets-Wouters (2003), Figure 1c (upper panel).
Note: This figures represents the breakthroughs made over the past 20 years in the estimation of dynamic 
stochastic general equilibrium models. In the model of Smets-Wouters (2003), the “Calvo wage” 
parameter in the first panel is the probability that a worker’s wage does not change, and the “Calvo price” 
parameter in the second panel is the probability that the firm’s price does not change.

Figure 2 
Prior and Posterior Distributions for Two Structural Parameters in a Dynamic 
Stochastic General Equilibrium Model
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Dynamic Factor Models and “Big Data”

The idea of using a large number of series to understand macroeconomic 
fluctuations is an old one, dating back at least as far as the economic indexes and 
forecasts of the Harvard Economic Service in the 1920s (Friedman 2009) and to 
Burns and Mitchell’s (1946) use of 1,277 time series to study business cycles. The 
challenge of using large numbers of series is the proliferation of parameters in 
standard time series models. While there were large macroeconomic models devel-
oped in the 1960s, and versions of them remain in use today, the restrictions that 
reduced the number of parameters in those models were heavily criticized as being 
arbitrary, having neither statistical nor economic foundations. Although low-dimen-
sional vector autoregressions had become a standard macroeconometric tool by 
the mid-1990s, an outstanding challenge was increasing the number of variables, 
both to improve forecasting and to span a wider range of forecast errors, and thus 
structural shocks. The technical challenge was that in an unrestricted vector autore-
gression, the number of parameters increases with the square of the number of 
variables. Methods were needed to manage this proliferation of parameters if time 
series methods were to be used with large numbers of variables.

Dynamic factor models impose parametric restrictions in a way that is consis-
tent with empirical evidence and a broad set of modern theoretical models. In a 
dynamic factor model, a given observable variable—say, the growth rate of consump-
tion of services—is written as the sum of a common component and an idiosyncratic 
component. The common component depends on unobserved (or latent) common 
variables, called factors, which evolve over time; the idiosyncratic component is 
uncorrelated with the common component and has limited correlation with the 
other idiosyncratic components. The idiosyncratic component captures measure-
ment error and series-specific disturbances that have no broader macroeconomic 
consequences. Thus, in a dynamic factor model, a small number of unobserved 
factors explain the comovements of a large number of macroeconomic variables.

This brings us to our next figure, which is taken from Stock and Watson 
(2012a). Figure 3 shows the predicted value of six US quarterly macro variables from 
a 200-variable, six-factor dynamic factor model; this predicted value is called the 
“common component” of the series. The in-sample R 2 of the common component 
for four-quarter growth in GDP (that is, the R 2 of the regression of the four-quarter 
growth in GDP on the four-quarter growth of the six factors) is 73 percent; the 
average R 2 of the common component over 21 major expenditures variables from 
the national income and product accounts is 56 percent; and the average R 2 for all 
200 variables is 46 percent. The parameters in this dynamic factor model were fitted 
using data from 1959–2007, so the post-2007 values of the common component 
represent the pseudo out-of-sample fit. At the visual level, for these and many other 
series, the fit is essentially the same in-sample and out-of-sample, suggesting that the 
parameters of the dynamic factor model remained largely stable during and after 
the financial crisis.

As Figure 3 illustrates, dynamic factor models fit the data. Techniques for dynamic 
factor analysis now can handle arbitrarily many series. One convenient way to estimate 
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the factors is principal components analysis, in which the factors are estimated by least 
squares. When estimated using many series, the principal component factor estimates 
can be treated as data for subsequent regressions (Stock and Watson 2002; Bai 2003; 
Bai and Ng 2006). To implement this approach, one needs to decide how many factors 
to use, and Bai and Ng (2002) show how to use information criteria to estimate the 
number of factors. This approach can be expanded to arbitrarily many series without 
substantially increasing the computational burden, indeed these models provide a 
twist on the usual “curse of dimensionality:” in dynamic factor models, the precision 

Figure 3 
Selected US macroeconomic Time Series: Actual Values and Common Components  
(where the common components are the fitted values using the factors from a 200-variable, 
6-factor dynamic factor model fit using data from 1959–2007) 

Source: Stock-Watson (2012a), Figure 2.
Note: Figure 3 shows the predicted value of six US quarterly macro variables from a 200-variable, 6-factor 
dynamic factor model; this predicted value is called the “common component” of the series. The 
parameters in this dynamic factor model were fitted using data from 1959–2007, so the post-2007 values 
of the common component represent the pseudo out-of-sample fit.
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of the estimation of the factors improves as the number of data series increases, so 
that the curse becomes a blessing.

Because of theoretical and empirical work over the past 20 years, dynamic factor 
models have become a leading method for the joint modeling of large numbers—
hundreds—of economic time series. Dynamic factor models have natural applications 
to macroeconomic monitoring and forecasting, a topic we take up below. They also 
can be used to estimate the effect of a structural shock, such as a monetary policy 
shock, on multiple economic variables. These economy-wide shocks drive the 
common factors, and because the factors can be estimated, the economic shocks can 
be estimated up to a nonsingular linear transformation. As a result, the techniques 
for shock analysis developed for structural vector autoregressions, including the new 
methods discussed above, carry over directly to dynamic factor models. By using many 
variables, dynamic factor models can more plausibly capture macro-structural shocks 
than can low-dimensional vector autoregressions. Moreover, the estimated structural 
impulse response functions are internally consistent across all the variables. In Stock 
and Watson (2016), we survey dynamic factor models, with a focus on structural shock 
analysis.1

Dynamic factor models are not the only method available for high-dimensional 
modeling. A different approach is to use a Bayesian prior distribution over the vector 
autoregression parameters to reduce the influence of the data on any one parameter 
estimate and thus to reduce the amount of noise across parameter estimates. In some 
applications, large numbers of restrictions arise naturally: for example, global vector 
autoregression reduces the dimensionality of the vector autoreregression parameter 
space by restricting domestic variables to depend on foreign variables only through 
a small number of weighted averages of global variables (Chudik and Pesaran 2016).

While this discussion has focused on the development of econometric methods 
for analyzing high-dimensional time series models, the other major development 
that has facilitated this work is the ready availability of data. The Federal Reserve 
Bank of St. Louis’s FRED database, which migrated to an online platform in 1995, 
has been a boon to researchers and to the general public alike. A recent useful 
addition to FRED is FRED-MD, a monthly dataset currently comprised of 128 
major economic time series for use in high-dimensional macroeconomic modeling 
(McCracken and Ng 2016); a beta-version with quarterly data (FRED-QD) is now 
available too. These datasets provide a common testbed for high-dimensional 
time series modeling and relieve researchers from the arduous task of updating 
a large dataset in response to new and revised data. A more specialized database, 
maintained by the Federal Reserve Bank of Philadelphia, archives and organizes 

1 A variant of a dynamic factor model is the factor-augmented vector autoregression (Bernanke, Boivin, 
and Eliasz 2005), in which one or more of the factors are modeled as observed. For example, because the 
Federal Reserve controls the federal funds interest rate, Bernanke, Boivin, and Eliasz (2005) argue that 
the target interest rate is itself a macroeconomic factor. Alternatively, factor-augmented vector autore-
gression can be interpreted as augmenting a low-dimensional vector autoregression with information 
from a first-step dynamic factor model. See Stock and Watson (2016) for a discussion of the relation 
between dynamic factor models and factor-augmented vector autoregressions.
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real-time economic data; these data are especially valuable to those who want to 
test tools for real-time monitoring and forecasting.

Macroeconomic Monitoring and Forecasting

Two important related functions of macroeconomists in business and govern-
ment are tracking the state of the economy and predicting where the economy is 
headed. During the 1960s and 1970s, these two functions—macroeconomic moni-
toring and macroeconomic forecasting—relied heavily on expert judgment. The 
1980s and 1990s saw new efforts by time series econometricians to place macro-
economic monitoring and forecasting on a more scientific footing: that is, to be 
replicable, to use methods that are transparent and have well-understood prop-
erties, to quantify uncertainty, and to evaluate performance using out-of-sample 
experience. While these advances provided macroeconomic monitoring and 
forecasting with a solid foundation, much work remained to be done. This work 
included improving methods for quantifying and conveying forecast uncertainty; 
dramatically expanding the number of data series that could be used, both to enable 
real-time monitoring to use the most recently released information and to improve 
forecasts; and developing reliable forecasting tools that take into account the evolu-
tion of the economy. Here, we discuss the first two of these: forecast uncertainty and 
macroeconomic monitoring. Issues of model instability go far beyond macroeco-
nomic monitoring and forecasting, so we defer that discussion to the next section.

Estimating and Conveying Forecast Uncertainty
A fundamental problem of economic forecasting is that many economic 

variables are inherently very difficult to forecast, and despite advances in data avail-
ability, theory, and computational power, we have not seen dramatic improvements 
in forecast accuracy over the past decades. One implication of this observation is 
that economic forecasters should focus on communicating not just point estimates, 
but likely future ranges or distributions of the variable. 

Our next figure highlights the development and adoption of density forecasts 
over the past 20 years. Figure 4 is a real-time release of a so-called fan chart from the 
Bank of Norway’s Monetary Policy Report for December 2016. A fan chart commu-
nicates uncertainty by providing a density that describes the distribution of possible 
future values of the series being forecast, in this case Norwegian consumer price 
inflation.2 The Bank of England was an early leader in the use of density forecasts 
and fan charts to communicate uncertainty to the public, and these methods are 
now widely adopted. Methods for constructing density forecasts are reviewed in 

2 The forecast uncertainty is better communicated in color! See the real thing at the websites of the Bank of 
England Inflation Report (http://www.bankofengland.co.uk/publications/Pages/inflationreport) and 
the Norges Bank Monetary Policy Report (http://www.norges-bank.no/en/Published/Publications/
Monetary-Policy-Report-with-financial-stability-assessment/).

http://www.bankofengland.co.uk/publications/Pages/inflationreport
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Elliott and Timmermann (2016, ch. 13), and Corradi and Swanson (2006) survey 
methods for evaluating the accuracy of density forecasts. 

Beyond the clear communication of uncertainty, the past 20 years of academic 
work on forecasting has focused on extending the scientific foundations for 
forecasting. These include methods for evaluating forecasts (including density fore-
casts), selecting variables for forecasting, and detecting forecast breakdown. While 
judgment will inevitably play a role in interpreting model-based forecasts, a central 
goal of this research program is to reduce the amount of judgment involved in 
constructing a forecast by developing reliable models and tools for evaluating those 
models. For a graduate textbook treatment, see Elliott and Timmerman (2016), 
and for additional detail see Elliott and Timmermann (2013).

Macroeconomic Monitoring
Twenty years ago, economists who monitored the economy in real time used 

indexes of economic indicators and regression models for updating expectations 
of individual releases (such as the monthly employment report), combined with 
a large dose of judgment based on a narrative of where the economy was headed. 
While this approach uses data, it is not scientific in the sense of being replicable, 
using well-understood methods, quantifying uncertainty, or being amenable to later 
evaluation. Moreover, this method runs the risk of putting too much weight on 
the most recent but noisy data releases, putting too little weight on other data, 

Figure 4 
Fan Chart (Density Forecast) for Consumer Price Index (CPI) inflation in Norway 
(percent; four-quarter change)

Source: Reproduced from Chart 2.2c of Norges Bank Monetary Policy Report for December 2016, which 
used data from Statistics Norway and Norges Bank.
Notes: This chart shows the distribution of possible future values of Norwegian consumer price inflation, 
projections for 2016 Q4 through 2019 Q4. 
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and being internally inconsistent because each series is handled separately. Because 
knowing the current state of the economy in real-time is an ongoing, arguably 
increasingly important responsibility of policymakers, time series econometricians 
at central banks and in academia have put considerable effort into improving the 
foundations and reliability of real-time macroeconomic monitoring.

Our next figure illustrates a central line of research in macroeconomic moni-
toring: the use of large models, in particular dynamic factor models, to incorporate 
real-time data releases to provide an internally consistent framework for estimating 
current economic conditions. Figure 5 is taken from the February 10, 2017, weekly 
update published by the New York Federal Reserve Bank. The dynamic factor 
model used by the New York Fed incorporates the most recently available data on 
36 major economic indicators to provide a weekly estimate of the growth of GDP 
in the current quarter. Figure 5 shows the evolution of this real-time forecast of 
current-quarter GDP growth—for obvious reasons, called a “nowcast” of GDP—for 
the fourth quarter of 2016. 

In August, the prognosis was for growth slightly above 2 percent at an annual 
rate, but by the first Friday in the fourth quarter (October 7), the nowcast had fallen 
to 1.3 percent. The November 18 nowcast rose to 2.4 percent on the strength of 
retail sales and housing starts data released that week. Then weak industrial produc-
tion data, along with weak housing data released less than two hours before the 
December 16 update, pushed that nowcast down to 1.8 percent. As it happened, 
the advance estimate of fourth-quarter GDP growth released January 27 was  
1.9 percent, slightly less than the estimate of 2.1 percent made on January 20. 

Under the hood of this real-time tracking product is a powerful set of tools 
for updating estimated factors in dynamic factor models using real-time data flows. 
The use of dynamic factor models for real-time macroeconomic monitoring incor-
porating staggered data releases dates to the NBER experimental coincident index 
(Stock and Watson 1989). By today’s standards, that index was primitive: a monthly 
release that encompassed only four variables. The current suite of tools for handling 
large series and complicated data flows are exposited in detail in Bańbura, Gian-
none, Modugno, and Reichlin (2013). The New York Fed’s model is updated (using 
the Kalman filter) as new data arrives, yielding an updated estimate of the single 
latent factor which in turn provides an updated estimate of the current-quarter 
value of GDP growth. By using a single flexible model, the news content of each 
series is exploited in a disciplined and internally consistent way. Some announce-
ments contain substantial news, but many do not, and using a single model to 
evaluate these releases—rather than a suite of small models or judgment—provides 
a scientific way to use the real-time data flow.

The New York Fed report is one of several that use dynamic factor models 
to provide real-time, publicly available reports on the state of the economy. The 
EUROCOIN index, maintained by the Centre for Economic Policy Research and 
the Bank of Italy, is a real-time monthly index computed using a dynamic factor 
model with approximately 145 variables, calibrated to estimate monthly euro-
zone GDP growth (Altissimo, Cristadoro, Forni, Lippi, and Veronese 2010). The 
Chicago Fed National Activity Index is a monthly index of real economic activity 
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constructed as the single factor in an 85-variable dynamic factor model. The Federal 
Reserve Bank of Philadelphia maintains the Aruoba-Diebold-Scotti (2009) index, 
which is updated weekly using a six-variable dynamic factor model with one quar-
terly series (GDP), four monthly series, and one weekly series. The Federal Reserve 
Bank of Atlanta’s real-time nowcasting tool, GDPNow, uses a dynamic factor model 
combined with a GDP accounting approach to estimate current-quarter GDP. 

There are other methods for nowcasting and mixed-frequency data. One 
popular tool for single-equation prediction using mixed-frequency data is the 
MIDAS model (Ghysels, Sinko, and Valkanov 2007), in which high-frequency data 

Figure 5 
Contributions of Daily Data Releases to the Federal Reserve Bank of New York Real-
Time Nowcast of 2016Q4 GDP Growth  
(bars represent weekly contributions of data revisions to changes in the nowcast)

Source: Federal Reserve Bank of New York Nowcasting report, February 10, 2017.
Note: Figure 5 shows the evolution of a real-time forecast of 2016 fourth-quarter GDP—for obvious 
reasons, sometimes called a “nowcast.” Technically, the points through September 31, 2016, are forecasts 
of fourth quarter GDP growth; the points October 1 through December 31, 2016, are nowcasts; and the 
points January 1, 2017, to the end of the series are backcasts of fourth quarter GDP growth.
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are temporally aggregated using data-dependent weights. For a survey of methods 
of mixed-frequency nowcasting and forecasting, see Foroni and Marcellino (2013).

Model Instability and Latent Variables  

A large empirical literature has documented instability in both large- and small-
dimensional time series models. A particularly well-known example of this instability 
is the Great Moderation, the period from 1984 to 2007 in which the volatility of many 
macroeconomic time series was greatly reduced. Examples of some of the many papers 
that document instability in the parameters of time series models include Stock and 
Watson (1996) for univariate time series forecasts, Stock and Watson (2003) for infla-
tion forecasts using asset prices, and Welch and Goyal (2008) for equity premium 
forecasts. The methods in this literature draw in part on tests for breaks, time varia-
tion, and out-of-sample stability that date to the early 1990s. 

This widespread nature of instability in time series relations raises the question 
of how to modify time series models so that they can be useful even in the presence 
of instability. An early approach was to model instability as deterministic regime 
shifts, but while useful, that approach is often unsatisfying because, outside of appli-
cations to a policy regime shift, the single-break model is an approximation and in 
any event there is rarely a reason to think that another shift will not occur. After 
all, the Great Moderation was followed by the financial crisis. A more appealing 
modeling strategy is to allow model parameters to evolve over time according to 
a stochastic process. If those time-varying parameters multiply observed variables, 
then the model has a linear state space (hidden Markov) structure and the Gaussian 
likelihood can be computed (using the Kalman filter). If, however, the time-varying 
parameters multiply latent variables, then it has an inherently nonlinear structure. 
Estimating such models is challenging, and it was clear 20 years ago that the rudi-
mentary methods available needed to be improved.

The next two figures illustrate developments in the estimation of nonlinear latent 
variable models over the past 20 years. The first, Figure 6, is from Kim and Nelson 
(1999); the figure shows real GDP growth (the solid line), and the posterior prob-
ability of a break in the variance in GDP (dashed line). Based on this figure, Kim and 
Nelson (1999) concluded that US GDP growth had entered a period of low volatility,  
and that the most likely date for this transition was 1984Q1. This conclusion was reached 
independently using break test methods by McConnell and Perez-Quiros (2000). This 
low-volatility period, which lasted through 2007 (and to which the economy seems to 
have returned) subsequently became known as the Great Moderation.

Aside from its seminal empirical finding, Figure 6 illustrates a major meth-
odological development in handling nonlinear and/or non-Gaussian time series 
models with latent variables. Kim and Nelson’s (1999) model falls in this category: it 
allows for a one-time shift in the mean and variance of GDP growth, layered on top 
of Hamilton’s (1989) stochastic regime shift model with recurrent shifts in the mean 
(which, Hamilton found, aligned with business cycle turning points). A challenge 
in these models is estimating the time path of the latent variable given all the data, 
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the so-called smoothing problem, along with the model parameters. To estimate 
their parameters and to solve this smoothing problem—to produce Figure 6—Kim 
and Nelson used Markov Chain Monte Carlo methods, which break down their 
complicated nonlinear non-Gaussian model into a sequence of Monte Carlo simu-
lations using simpler models. Over the past 20 years, Markov Chain Monte Carlo 
has become a widely used tool for estimating seemingly intractable nonlinear/non-
Gaussian models. With this tool, Kim and Nelson were able to obtain the posterior 
distribution of a one-time structural break in the variance which, as Figure 6 shows, 
strongly points to a reduction in the variance of GDP growth early in 1984.

The next figure, Figure 7, shows two panels from Cogley and Sargent (2015) that 
illustrate the incorporation of stochastic volatility into latent state variables. Cogley 
and Sargent use a univariate model that decomposes the rate of inflation into unob-
served permanent and transitory (measurement error) components, both of which 
have innovations with time-varying variances. These variances are modeled as latent 
stochastic volatility processes. From a technical perspective, the situation is similar 
to that faced by Kim and Nelson (1999) in that the resulting model expresses the 
observed data as a nonlinear function of unobserved random variables (the perma-
nent and transitory components of inflation and their volatilities). While the details 
differ, the Cogley–Sargent model is also readily estimated by Markov Chain Monte 
Carlo methods. 

Figure 6 
US GDP Growth and the Posterior Probability of a Regime Change in its Innovation 
Variance 

Source: Kim and Nelson (1999), Fig. 3.A.
Note: The figure shows real GDP growth (the solid line), and the posterior probability of a break in the 
variance in GDP (dashed line). Based on this figure, Kim and Nelson (1999) concluded that US GDP 
growth had entered a period of low volatility, and that the most likely date for this transition was 1984Q1.
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Figure 7 
Trend Inflation (Upper Panel) and the Standard Deviation of the Trend 
Innovation (Lower Panel) in an Unobserved Components–Stochastic Volatility 
Model of US Inflation, 1850–2012

Source: Cogley-Sargent (2015), Fig. 7(A, C).
Note: Figure 7 illustrates the incorporation of stochastic volatility into latent state variables. Cogley and 
Sargent (2015) use an unobserved-components/stochastic-volatility model to study the evolution of the 
US inflation process from 1850 to 2012. Their posterior estimate of trend inflation is shown in the first 
panel, and their estimate of the time-varying standard deviation of changes in the trend is shown in the 
second panel. They find the periods of greatest variance in the trend to be during the Civil War and 
during the period of inflation and disinflation in the 1970s and early 1980s.

 
 

 
 

1850 1900 1950 2000

1900 1950 2000

0.08

0.06

0.04

0.02

0

–0.02

Median

Interquartile range

μt

qt
1/2

0.015

0.01

0.005

0
1850



James H. Stock and Mark W. Watson     77

Cogley and Sargent (2015) use this unobserved-components/stochastic-volatility 
model to study the evolution of the US inflation process from 1850 to 2012. Their 
posterior estimate of trend inflation is shown in the first panel, and their estimate of 
the time-varying standard deviation of changes in the trend is shown in the second 
panel. They find the periods of greatest variance in the trend to be during the Civil 
War and during the period of inflation and disinflation in the 1970s and early 1980s.

The literature on nonlinear/non-Gaussian filtering is complex, nuanced, and 
massive. See Durbin and Koopman (2012) for a textbook treatment of linear and 
nonlinear filtering methods.

More Reliable Inference 

Finally, the past 20 years has seen important work that aims to improve the 
quality of statistical inferences. In the mid-1990s, several influential studies found 
that widely used methods for computing test statistics with time series data could 
reject far too often or, said differently, that confidence intervals could fail to include 
the true parameter value far less frequently than the claimed 95 percent coverage 
rate. Theoretical econometricians recognized that more work was needed, particu-
larly in the areas of instrumental variables where the instrument might be weak, 
standard errors for regression with serially correlated errors, and regression with 
highly persistent regressors.

Weak Instruments and Weak Identification
A weak instrument has a small correlation with the variable it is instrumenting, 

given the other included variables. For decades, conventional wisdom held that a 
weak instrument would simply produce large standard errors, which would correctly 
convey that the information in that variable is scant. But a series of papers in the 
1990s showed that the consequences of a so-called weak instrument were more 
serious: the estimator will in general be biased, conventional standard errors are 
misleading, and these problems can occur in very large samples.3 This problem, 
which is more generally referred to as weak identification, also arises in generalized 
method of moments estimation. Although weak instruments have received the most 
attention in microeconometrics, the inferential challenges posed by weak identi-
fication also have played a role in time series econometrics over the past 20 years.

The next figure, taken from Mavroeidis, Plagborg-Møller, and Stock (2014), 
illustrates the problems with using conventional asymptotic standard errors and 
confidence intervals in instrumental variables methods when one has weak instru-
ments. Figure 8 shows confidence sets for two key parameters of the hybrid New 
Keynesian Phillips Curve; on the vertical axis, λ is the coefficient on marginal cost 
(or, in other specifications, the unemployment gap or output gap) and, on the 

3 Key papers on this subject from the 1990s include Nelson and Startz (1990a, 1990b) and Hansen, 
Heaton, and Yaron (1996) (Monte Carlo simulations), Bound, Jaeger, and Baker (1995) (empirical 
application), and Staiger and Stock (1997) (econometric theory).
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horizontal axis, γf is the coefficient on forward-looking rational expectations (some-
times interpreted as relating to the fraction of forward-looking agents). The results 
in this figure were computed using data from 1984–2011, where, following Galí and 
Gertler (1999), the labor share is the proxy for marginal cost, and the instruments 
are three lags each of marginal cost and the change in inflation, pruned down from 
Galí and Gertler’s (1999) original set of 24 instruments (which yield similar qualita-
tive results). The dot is the point estimate using generalized method of moments, 
and the small ellipse around the point estimate is the corresponding nominal 90 
percent confidence set computed using textbook asymptotics. The gray regions in 
the figure comprise a 90 percent confidence set that is robust to the use of weak 
instruments. The obvious conclusion from Figure 8 is that the  weak-identification 
robust confidence sets differ dramatically from the standard asymptotic confi-
dence ellipse. Mavroeidis, Plagborg-Møller, and Stock (2014) argue that the reason 
for this divergence is that the instruments used in this generalized method of 
moments estimation are weak. This problem of weak identification arises broadly 
in New Keynesian Phillips Curve applications (for example, Henry and Pagan 2004; 
Mavroeidis 2004; Nason and Smith 2008). 

Weak identification also arises in other contexts, like in the estimation of inter-
temporal consumption-based asset pricing models (Stock and Wright 2000) and 
estimation of monetary policy reaction functions using generalized method of 
moments (Consolo and Favero 2009). Weak identification arises in some types of 

Figure 8 
Point Estimate and 90% Confidence Sets for Hybrid New Keynesian Phillips 
Curve Parameters: Standard Generalized Method of Moments (Ellipse) and Weak-
Instrument Robust (Gray)

Source: Mavroeidis, Plagborg-Møller, and Stock (2014), Fig. 11a.
Note: Figure 8 shows confidence sets for two key parameters of the hybrid New Keynesian Phillips Curve. 
The dot is the point estimate using generalized method of moments, and the small ellipse around 
the point estimate is the corresponding nominal 90 percent confidence set computed using textbook 
asymptotics. The gray regions in the figure comprise a 90 percent confidence set that is robust to the 
use of weak instruments. The figures show that the weak-identification robust confidence sets differ 
dramatically from the standard asymptotic confidence ellipse. See text for details.

http://pubs.aeaweb.org/action/showImage?doi=10.1257/jep.31.2.59&iName=master.img-012.jpg&w=293&h=160
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inference in structural autoregressions (for example, Pagan and Robertson 1998; 
Chevillon, Mavroeidis, and Zhan 2016; for more references, see Stock and Watson 
2016, Section 4). It also arises in complicated ways in the estimation of dynamic 
stochastic equilibrium models (for example, Andrews and Mikusheva 2015; Qu 2014).

In linear instrumental variable regressions, one commonly used diagnostic 
is to check if the F - statistic testing the hypothesis that the coefficient(s) on the 
instrument(s) in the first stage of two stage least squares—the so-called first-stage 
F - statistic—is less than 10; if so, weak identification is potentially a problem. This 
specific approach is specialized to the homoskedastic setting with uncorrelated 
errors; approaches to extending this to heteroskedasticity are proposed by Montiel 
Olea and Pflueger (2013) and Andrews (2016).

In the simplest models—the textbook regression model with a single 
endogenous regressor and errors that are homoskedastic and serially uncorre-
lated—there are now methods for dealing with weak instruments with very good 
size and power, both asymptotically and in finite samples. As one departs from this 
model, most notably when the number of parameters gets large and/or the model 
is nonlinear in the parameters, the toolkit is less complete and theoretical work 
remains under way.

Inference with Serially Correlated and Potentially Heteroskedastic Errors
In time series data with a serially correlated error term, each additional obser-

vation does not provide entirely new information about the regression coefficient. 
Moreover, many time series regressions exhibit clear signs of heteroskedasticity. In 
this setting, the ordinary least squares standard error formula does not apply and 
instead standard errors that are robust to heteroskedasticity and autocorrelation 
must be used. For example, this problem arises when the dependent variable is a 
multi-period return or a multiple-period-ahead variable. The problems of hetero-
skedasticity and autocorrelation also arise in generalized method of moments 
models when the data are serially correlated.

In practice, the most commonly used standard errors that are heteroskedas-
ticity- and autocorrelation-robust are computed using methods from seminal papers 
by Newey and West (1987) and Andrews (1991). These methods compute standard 
errors by replacing the estimate of the variance of the product of the regressor and 
the error in the usual heteroskedasticity-robust formula for the variance of the ordi-
nary least squares estimator with a weighted average of the autocovariances of that 
product; the number of autocovariances averaged is determined by the so-called 
“bandwidth” parameter. But even 20 years ago, there were inklings that the perfor-
mance of hypothesis tests and confidence intervals constructed using these standard 
errors in typical macroeconometric applications fell short of the asymptotic perfor-
mance used to justify the tests. In an early Monte Carlo simulation, den Haan and 
Levin (1997) studied the rejection rates of tests using these standard errors under 
the null hypothesis—that is, the size of the test. Depending on the persistence in 
the data, they found that a test that should reject 5 percent of the time under the 
null will in practice reject 10 or even 20 percent of the time. If the aim of a research 
project is, say, to test for predictability in multiyear stock returns using monthly 



80     Journal of Economic Perspectives

data, this over-rejection could easily lead to an incorrect conclusion that returns are 
predictable when in fact they are not. 

Understanding the source of these size distortions and improving upon 
Newey–West/Andrews standard errors therefore became a major line of research 
by theoretical econometricians over the past 20 years, which is succinctly surveyed 
by Müller (2014, Sections 2–3). In brief, this line of work finds that to construct 
tests with a rejection rate closer to the desired 5 percent, it is necessary to use band-
widths much larger than those suggested by Newey–West and Andrews. But doing 
so results in a complication: the test statistic no longer has the usual large-sample 
normal distribution and, in general, nonstandard critical values must be used. 
These ideas were set out by Kiefer, Vogelsang, and Bunzel (2000), and their insights 
prompted a large literature aimed at understanding and refining their large-band-
width approach. This theoretical literature has now produced multiple methods 
that yield far smaller size distortions than tests based on Newey–West/Andrews stan-
dard errors, and which also have better power than the Kiefer–Vogelsang–Bunzel 
test. Moreover, some of these tests have standard critical values, simplifying their 
use in practice.

Applied econometricians typically are eager to use the most recent econometric 
method when they demonstrably improve upon the methods of the past. Curiously, 
this has not been the case for heteroskedasticity- and autocorrelation-robust infer-
ence, where empirical practice continues to be dominated by Newey–West/Andrews 
standard errors. The new methods are easy to use, straightforward to understand, 
and have a lineage that traces back 40 years. It is time for empirical researchers in 
time series econometrics to take the next step and to adopt these improved methods 
for heteroskedasticity- and autocorrelation-robust inference.

Long-run Relations, Cointegration, and Persistent Regressors
The basic insight of cointegration—the development for which Clive Granger 

received the Nobel Prize in 2003—is that multiple persistent macroeconomic vari-
ables move together at low frequencies, that is, they share common long-term trends. 
Moreover, these low-frequency comovements connect with basic economic theories 
such as balanced economic growth. But while there was a surge of work on cointegra-
tion in the 1980s and 1990s, such work has received less emphasis since then.

Our final historical figure, from Elliott (1998), illustrates a technical road-
block hit by this research program. Elliott’s figure, our Figure 9, portrays the null 
rejection rate of a test of the value of a cointegrating coefficient in a simple model 
with two cointegrated variables. The test maintains that each of the variables is 
integrated of order one, that is, has a unit autoregressive root, an assumption that 
is part of the cointegration model. Figure 9 shows that small departures from this 
unit-root assumption (as measured by c, which is the difference between the true 
largest root and one, multiplied by the sample size) can cause major problems for 
tests and confidence intervals about the value of that cointegrating coefficient: 
tests that are supposed to reject 5 percent of the time under the null can reject 
with very high rates (shown on the vertical axis), particularly when the correla-
tion δ (shown on the horizontal axis) between innovations in the error and in 
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the regressor is large. In fact, this problem arises for deviations from a unit root 
that are too small to be detected with high probability, even in arbitrarily large 
samples. As a result, standard methods of inference developed for cointegration 
models are not robust to effectively undetectable departures from the model, 
making such inference unreliable.

While subsequent work has produced novel ideas by econometric theorists, 
the proposed methods have drawbacks and no alternative set of procedures have 
emerged. In fact, the literature has shown that the problem documented in Figure 
9 goes beyond the local-to-unity model used by Elliott (1998) and other researchers 
in this area. Related problems of inference also arise in regressions in which a 
regressor is persistent, as can occur in applications with financial data.

It is important to stress that these challenges are technical ones; the basic insight 
of cointegration that variables move together at low frequencies is a deep one that 
connects with core economic theories such as balanced growth and the term struc-
ture of interest rates. But inference, and perhaps modeling, of those comovements 
can be more complicated than had originally been thought.

Figure 9 
Asymptotic Size of Tests of Values of the Cointegrating Coefficient Using Efficient 
Cointegrating Estimators and Their Standard Errors when the Time Series Follow 
Local-to-Unity Processes with Parameter c 
(delta is the correlation between innovations in the error and in the regressor)

Source: Elliott (1998), Figure 1(a).
Note: The figures portrays the null rejection rate of a test of the value of a cointegrating coefficient in a 
simple model with two cointegrated variables. The test maintains that each of the variables is integrated 
of order one, that is, has a unit autoregressive root, an assumption that is part of the cointegration model. 
The figure shows that small departures from this unit-root assumption (as measured by c, which is the 
difference between the true largest root and one, multiplied by the sample size) can cause major problems 
for tests and confidence intervals about the value of that cointegrating coefficient. 
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Challenges Ahead

We close by mentioning a few of the research challenges for time series 
econometrics. Our final figure shows that despite the substantial improvements in 
forecasting methods over the past decades, much work remains. When we teach, 
we call Figure 10 the “Mother of All Forecast Errors.” This figure shows the real-
time median forecast of the log of nonfarm employment recorded by the Survey 
of Professional Forecasters in the quarters leading up to and through the financial 
crisis. Even well after the crisis began and real-time information about the collapse 
of the economy was available, these forecasters consistently predicted a mild reces-
sion. A small part of these errors is due to revisions between preliminary and final 
data, but most of these errors, we believe, represent a failure of forecasting models 
to capture the severity of the shocks and their devastating effect on the economy. 
Forecasters certainly were not the only economists to misjudge events leading up to 
and during the financial crisis! But this is an article about time series methods, and 
in our view, tackling the challenge of Figure 10 is a priority.

Another open challenge lies in the big data sphere. The methods of the past 
20 years—dynamic factor models and large Bayesian vector autoregressions—have 
made it possible to include arbitrarily many series in forecasting systems and to incor-
porate data releases in real time, and the result has been large improvements in 

Figure 10 
“The Mother of All Forecast Errors”: Survey of Professional Forecasters Median 
Forecast for Nonfarm Business Employment during the 2007–2009 Recession and 
Early Recovery

Source: Philadelphia Fed Survey of Professional Forecasters.
Note: This figure shows the real-time median forecast of the log of nonfarm employment recorded by the 
Survey of Professional Forecasters in the quarters leading up to and through the financial crisis. Even 
well after the crisis began and real-time information about the collapse of the economy was available, 
these forecasters consistently predicted a mild recession.
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macroeconomic monitoring. However, there is some evidence that the parametric 
restrictions (or priors) that make these methods work discard potentially important 
information. In the context of dynamic factor models, the question is whether there 
is useful information in the higher factors beyond the handful that would normally be 
included (such as the six factors used to produce Figure 3). Some studies have looked 
at this question, with mixed results; for example, Carrasco and Rossi (2016) give some 
positive results, while we give some negative results in Stock and Watson (2012b). A 
more ambitious question is whether there is exploitable nonlinear structure in these 
data that could perhaps be revealed by modern machine learning methods. While it 
is tempting to dive in and use a battery of machine learning methods to attack these 
data, one must remember that data snooping can lead to unintentional overstate-
ment of results. One advantage of dynamic factor models, after all, is that they are 
closely linked to dynamic macro models (Sargent 1989; Boivin and Giannoni 2006). 
We suspect that the next steps towards exploiting additional information in large 
datasets will need to use new statistical methods guided by economic theory.

Separately, there are important open questions relating to low-frequency time 
series econometrics. For example, what does historical evidence tell us about whether 
the recent slowdown in US productivity is permanent or temporary? The answer to 
this question is crucial for many long-term economic issues, such as the future of 
Social Security and valuing policies to mitigate climate change. Another, technically 
related set of questions returns to the basic insight of cointegration and the challenge 
posed by Elliott’s (1989) figure (Figure 9): there are clearly low-frequency comove-
ments in the data, and macroeconometricians need a set of tools for quantifying those 
comovements that does not hinge on adopting a particular model, such as a unit 
root model, for the underlying trends. These are technically difficult problems, and 
Müller and Watson (2016a, 2016b) propose possible avenues for tackling them.

Finally, there are a number of opportunities for expanding identification and 
estimation of macro models by using information in microeconometric data. Here, 
opportunities range from estimation of parameters describing individual prefer-
ences and firm behavior, to the possibility of using rich micro data to improve macro 
monitoring and forecasting.

The earliest empirical work in macroeconomics relied on time series data; 
indeed the first instrumental variables regression was estimated in 1926 using time 
series data. The past 20 years has seen a continuation of the vigorous development 
of methods for using time series data. These methods draw on improved computa-
tional capacity, better data availability, and new understandings in econometric and 
statistical theory. The core driver of these developments is the need of policymakers 
for reliable guidance on the effects of contemplated policies, along with their 
shared need with the private sector to understand where the economy is and where 
it is going. Those needs will not go away. If anything, they become more urgent in 
our volatile and ever-changing economic environment. Although the challenges 
facing time series econometricians are difficult, so have they been in the past, and 
exciting and highly relevant research programs beckon.

■ We thank Gray Calhoun, Mikkel Plagborg-Møller, and the authors of the papers from which 
we took figures, for helpful comments.
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