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Abstract. We generalize theorems of Kesten and Deuschel-Pisztora about
the connectedness of the exterior boundary of a connected subset of Zd, where
“connectedness” and “boundary” are understood with respect to
various graphs on the vertices of Z

d. These theorems are widely used in
statistical physics and related areas of probability. We provide simple and
elementary proofs of their results. It turns out that the proper way of viewing
these questions is graph theory instead of topology.

Denote by Z
d the usual nearest-neighbor lattice on Z

d, i.e., two points of Zd are
adjacent if they differ only in one coordinate, by 1. Let Z

d∗ be the graph on the
same vertex set and edges between every two distinct points that differ in every
coordinate by at most 1. We say that a set of vertices in Z

d is *-connected if it is
connected in the graph Z

d∗.
In [DP] Deuschel and Pisztora prove that the part of the outer vertex boundary

of a finite connected subgraph C in Z
d∗ that is visible from infinity (the exterior

boundary) is *-connected. Earlier, Kesten [K] showed that the set of points in the
*-boundary of a connected subgraph C ⊂ Z

d∗ that are Z
d-visible from infinity is

connected in Z
d. Similar results were proved about the case when C is in an n× n

box of Zd [DP], or Zd∗ [H]. See the second paragraphs of Theorem 3 and Theorem 4
for the precise statements.

We generalize these results about Z
d and Z

d∗ to a very general family of pairs
of graphs; see Lemma 2, Theorem 3 and Theorem 4. Our method also gives an
elementary and short alternative to the original proofs for the cubic grid case.
This approach seems to be efficient to treat possible other questions about the
connectedness of boundaries. Although [K] mentions that some use of algebraic
topology seems to be unavoidable, the greater generality (and simplicity) of our
proof is a result of using purely graph-theoretic arguments. Also, it makes slight
modifications of the results (such as considering boundaries in some subset of Zd

instead of boundaries in Z
d) straightforward, while previously one had to go through

the original proofs and make significant modifications.
In two dimensions, the use of some duality argument makes connectedness of

boundaries more straightforward to prove. The lack of duality (that is, the cor-
respondance that a cycle in one graph is a separating set in its dual) in higher
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dimensions has been responsible for the increasing difficulty and the role of topol-
ogy. Defining duality in higher dimensions led to models such as plaquette perco-
lation, where hyperfaces (“duals” of edges) are deleted independently with some
fixed probability, giving rise to random surfaces.

Theorems about connectedness of boundaries have a wide use in probability and
statistical physics. To list some representatives of the many results, connectedness
of the boundaries in [DP] and [K] are used in the study of Ising, Potts and ran-
dom cluster models [Pi], [GG], first passage percolation [K], Bernoulli percolation
[KZ], [AP] and random walks on percolation clusters [Pe], entanglement percolation
[GH], greedy lattice animals [H]. Understanding connectedness of boundaries is an
essential part for the use of Peierls estimates, and for proving the existence of phase
transitions. The fundamental role of these results in many statistical physics argu-
ments makes it important to understand these issues properly. Our generalizations
may help extend some of these results to graphs beyond Z

d. This was the case in
the simplification of the results of [BB] in [T], and the main lemma in the latter is
the starting point of the current paper (see Lemma 1). Even for the cases where Zd

is considered, the use of elementary graph-theoretic arguments instead of topology
adds a lot of flexibility and makes the proofs more accessible.

The graphs we consider can be finite or infinite, but we always assume that they
are locally finite (that is, every vertex has finite degree). Given a subgraph H of a
graph G, the inner boundary of H in G is the set of vertices in H that are adjacent
to some vertex in G \ H. Similarly, the outer boundary of H in G is the set of
vertices in G \ H that are adjacent to some vertex in H. If G is infinite and H
is finite, the exterior part of a boundary (of either type) is the set of vertices in
the boundary that are starting points of some infinite path with no interior vertex
in H. The boundaries we consider are always taken to be outer boundaries, but
our arguments would apply just as well for inner boundaries. By a separating set
we always understand a separating set of vertices. In this paper addition is always
understood modulo 2, and this is how we define the sums of sets of edges (regarded
as vectors over the 2-element field). In particular, this defines the generation of
cycles by other cycles. Let the cycle space of a graph G be the set of all finite
subgraphs such that every vertex has an even degree. It is well known that the
cycle space is generated by the set of cycles.

For an arbitrary graph G, let Ends(G) be the the set of ends in G, where an end
is an equivalence class of infinite simple paths, two being equivalent if they can be
connected by infinitely many pairwise disjoint paths. So, Ends(G) = ∅ iff G is finite,
and for G = Z

d we have |Ends(G)| = 1. A path from an end x (or, between an
end and a vertex y) is some path in the equivalence class that defines x (and starts
from y respectively). A path between two ends x, y is a bi-infinite path P such that
for any v ∈ P , P \ v consists of a path that belongs to x and a path that belongs
to y. A separating set between x ∈ V (G) ∪ Ends(G) and a y ∈ V (G) ∪ Ends(G)
is a subset of V (G) that every path between x and y intersects. A separating set
of edges between x ∈ V (G) ∪ Ends(G) and a y ∈ V (G) ∪ Ends(G) is a subset
of E(G) that every path between x and y intersects. An important property of
minimal separating sets of edges is that they always split a connected graph into
two components (this may not be true for separating sets of vertices).
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Given some graph G and a graph H containing G, we say that a cycle C in G is
chordal in H if any two points in C are adjacent in H. If C is a set of cycles in G,
we say that C is chordal in H if every cycle in C is chordal in H.

The next lemma is the key to our proofs. Similar and slightly weaker versions
are in [BB] and [T].

Lemma 1. Let G be some graph and Π be a minimal separating set of edges between
two points x, y ∈ G∪Ends(G). Let C be a set of cycles that generate the cycle space
of G. Then for any partition (Π1,Π2) of Π, there is some cycle O ∈ C that intersects
both Π1 and Π2. There is also an O with the above property and such that |O∩Π2|
is odd.

Proof. If x (or y) is an end, define x′ (y′) to be a vertex such that there is a path
between x and x′ (y and y′) in G\Π. Otherwise let x′ := x (y′ := y). Choose paths
Pi between x′ and y′, i = 1, 2, such that Pi does not intersect Π3−i. Such paths
exist by the minimality of Π. There is a subset A ⊂ C such that

P1 + P2 =
∑

C∈A

C.

Let A1 ⊂ A be the set of those cycles that intersect Π1 and A2 := A \ A1. The
previous equation can be written as

P1 +
∑

C∈A1

C = P2 +
∑

C∈A2

C.

The right-hand side here does not intersect Π1, so it has to intersect Π2 (since x′

and y′ are the only vertices with odd degree in P2 +
∑

C∈A2
C, so they belong to

the same component of it). Furthermore, P2 contains an odd number of elements
from Π2, and every cycle in A2 contains an even number of elements from Π2.
Thus the total number of elements of Π2 in the sum on the right side is odd. We
conclude that the left side (regarded as a subgraph of G) has to contain some cycle
O that intersects Π2 in an odd number of edges (since P1 does not intersect Π2),
and O ∩ Π1 �= ∅ too, by the definition of A1. �

For a subgraph C of G, and x ∈ V (G) ∪ Ends(G), the outer boundary of C
visible from x is ∂vis(x)(C) := {y ∈ V (G) : y is adjacent to some point in C, and
there is a path between x and y disjoint from C}. When there are two graphs, G

and G′ on the same vertex set, we will also use ∂G′

visG(x)(C) := {y ∈ V (G) : y is

G′-adjacent to some point in C, and there is a G-path between x and y disjoint
from C}. Hence ∂G

visG(x)(C) = ∂vis(x)(C).

Let Bn denote the box induced by {1, . . . , n}d in Z
d. By a basic 4-cycle of Zd we

mean the 4-cycle surrounding some 2-face in a unit cube in Z
d. Note that the cycle

space of Zd has a generating set of basic 4-cycles: think about Zd as a Cayley graph
for the free Abelian group. Then the set of basic 4-cycles is the set of all conjugates
of the pairwise commutators of the generating elements, whose products generate
any word equal to the identity — and cycles of Zd correspond to such words.

The *-connectedness of the Zd-boundary of a finite connected set in Z
d∗ is shown

in [DP]. We prove a weaker statement here, assuming that the connected set is from
Z
d. We will prove the (generalization of) the original version later in Theorem 3,

with more assumptions on the underlying graphs.
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Lemma 2. Let G be a graph and G+ be a graph that contains G. Suppose that
there is a generating set ΔG for the cycle space of G that is chordal in G+. Then for
any connected subset C of G and any x ∈ (V (G)∪Ends(G))\C, the set ∂G

visG(x)(C)

induces a connected graph in G+.
In particular, any finite connected subset of Zd has a *-connected exterior Z

d-
boundary, and if C ⊂ Bn, the outer Z

d-boundary of C in any component of Bn \C
is *-connected.

Proof. Let Π := {{u, v} ∈ E(G) : u ∈ C, v ∈ ∂G
visG(x)(C)}. Then Π is a minimal

separating set of edges in G between C and x. because for every edge e ∈ Π there
is a G \Π-path from x to the endpoint of e in ∂G

visG(x)(C), and appending e to this

path we get a path from C to x that intersects Π only in e.
Let ∂G

visG(x)(C) = S1 ∪ S2 be an arbitrary partition. Further, partition Π to sets

Πi := {{x, y} ∈ E(G) : x ∈ C, y ∈ Si}, i = 1, 2. By Lemma 1, there is a cycle
O ∈ ΔG such that O ∩ Π1 �= ∅ and O ∩ Π2 �= ∅. Take an edge from each of these
intersections and consider their endpoints in C. These are adjacent in G+, since O
is chordal, and hence the G+-distance of S1 and S2 is 1. Since the partition to S1

and S2 was arbitrary, we conclude that ∂G
visG(x)(C) is G+-connected. �

For Lemma 2 to hold with a C that is G∗-connected but not necessarily G-
connected (which is the form of the result in [DP]), we need some extra assumptions
on the cycle space. Without those, the conclusion of Lemma 2 need not hold, as
shown by G = Z

2, G+ = Z
2∗ ∪ {{u, v}}, where {u, v} is an edge with endpoints

at distance 10 in Z
2, and we choose C to be the G+-connected set induced by the

2-neighborhoods of x and y in G+.

Theorem 3. Let G+ be a connected graph and G a connected subgraph of G+.
Suppose that there is a generating set ΔG for the cycle space of G that is chordal in
G+, and that for every edge e ∈ G+ there is a cycle Oe in G+ such that Oe \e ⊂ G,
and Oe is chordal in G+. Let C be a connected subgraph of G+, and x ∈ (V (G) ∪
Ends(G+)) \ C. Then ∂G

visG(x)(C) is connected in G+.

In particular, any finite *-connected subset of Zd has a *-connected exterior Z
d-

boundary, and if C ⊂ Bn, the outer Z
d-boundary of C in any component of Bn \C

is *-connected.

Note that Theorem 3 is stronger than the one in [DP] even in the Z
d case: it

implies that the boundary of a connected subset of Zd is connected in the graph
Z
d ∪ {edges connecting two points of some basic 4-cycle}, which does not follow

from the topological proof in [DP]. (This strengthening was first shown (for Zd) in
[GG].)

Proof of Theorem 3. Define S := ∂G
visG(x)(C). Let Π := {{x, y} ∈ E(G) : x ∈

C, y ∈ S} and H be a graph with V (H) = V (G) and E(H) = G+|C ∪ E(G) (here
by G+|C we denote the subgraph of G+ induced by C). Then Π is a separating set
of edges between C and x in H, and it is a minimal separating set of edges, because
for every edge e ∈ Π there is a path in G \Π from x to the endpoint of e in S, and
appending e to this path we get an H-path from C to x that intersects Π only in e.

Let Δ be a generating set for the cycles of H, consisting of cycles that are chordal
in G+. We are going to show the existence of such a Δ. By our assumptions
H := {Oe : e ∈ H \ G} ∪ ΔG consists of cycles that are chordal in G+. On the
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other hand, any cycle U in H is generated by H, because U +
∑

e∈U\G Oe is a

2-regular graph in G, and hence it is generated by ΔG.
Let S = S1 ∪ S2 be an arbitrary partition. Further, partition Π to sets Πi :=

{{x, y} ∈ E(G) : x ∈ C, y ∈ Si}, i = 1, 2. By Lemma 1, there is an O ∈ Δ
with O ∩ Π1 �= ∅ and O ∩ Π2 �= ∅. Since O is chordal in G+, we obtain that the
G+-distance between S1 and S2 is 1. Since their choice was arbitrary, S necessarily
induces a connected graph in G+.

The case G = Z
d follows by choosing Δ to be a generating set of basic 4-cycles.

For an edge e ∈ Z
d∗, let Oe be a cycle such that Oe \ e only has edges from a unit

cube that contains e. �

The Zd version of the following theorem is due to Kesten. Its proof in [K] takes a
section, with references to results from algebraic topology. The similiar statement
for the box of Zd as G was proved in [H] (and it did not follow automatically from
Kesten’s result).

Theorem 4. Let G+ be a connected graph and G a connected subgraph of G+.
Suppose that there is a generating set ΔG for the cycle space of G that is chordal in
G+, and that for every edge e ∈ G+ there is a cycle Oe in G+ such that Oe \e ⊂ G,
and Oe is chordal in G+. Let C be a connected subgraph of G+ and x ∈ (V (G) ∪
Ends(G+)) \ C. Then ∂G+

visG(x)(C) is connected in G.

In particular, if C ⊂ Z
d is finite and *-connected, then the subset of its exterior

outer boundary in Z
d∗ that is accessible by an infinite path in Z

d\C is Zd-connected.

If C is a subset of Bn, x ∈ Bn \ C, then ∂Z
d∗

vis
Zd

(x)(C) is Z
d-connected.

The first half of the proof is very similar to that of Theorem 3. The only differ-
ence between the proofs is that we have to define the auxiliary graphs H slightly
differently and that we need some more arguments in Theorem 4 for the conclusion.

Proof of Theorem 4. Define S := ∂G+

visG(x)(C). Let Π := {{x, y} ∈ E(G+) : x ∈
C, y ∈ S} and H be a graph with V (H) = V (G) and E(H) = G+|C ∪ E(G) ∪ Π.
Similarly to the proof of Theorem 3, Π is a minimal separating set of edges between
C and x in H, and there exists a Δ generating set for the cycles of H, consisting
of cycles that are chordal in G+.

Let S = S1 ∪ S2 be an arbitrary partition. Further, partition Π to sets Πi :=
{{x, y} ∈ E(G) : x ∈ C, y ∈ Si}, i = 1, 2. By Lemma 1, there is an O ∈ Δ with
O ∩ Π1 �= ∅ and |O ∩Π2| odd.

Suppose first that O contains some vertex v not in C ∪ S. Let CG+(x) be the
component of x in G+ \ Π, and let CH(x) be the component of x in H \ Π. By
the chordality of O, there is an edge between some vertex w ∈ O ∩ C and v. If
v ∈ CH(x), then this would imply v ∈ S, contradicting the assumption on v. So
suppose v �∈ CH(x). But the cycle O{v,w} is such that every edge of it different
from {v, w} is in G. In particular, there is a G-path from v to S: this path goes
from v to the element u of S that is the neighbor of w inside O, and appending this
path to the path from u to x gives that v should be in CH(x), a contradiction.

Hence V (O) ⊂ C ∪ S. Call a set of vertices B ⊂ S2 in O a block if B induces
a connected subgraph in O (i.e., a subpath) and it is maximal with this property.
Let I be the set of edges in O that have exactly one endpoint in B. It is clear by
the definition that O ∩ Π2 ⊂ I and that |I| is even, since every block contributes
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two edges to it. If there is an edge e in I such that the other endpoint of e is in S1,
then the proof is finished: S1 and S2 have distance 1 in H (and hence in G, since
H|S = G|S). So suppose not: every e ∈ I has the form e = {x, y} with x ∈ S2,
y ∈ V (O) \ S ⊂ C (using the assumption V (O) ⊂ C ∪ S). That is, I = O ∩ Π2.
But by the fact that I has an even number of elements, this would contradict the
choice of O (that |O ∩ Π2| is odd).

The Z
d case follows by the same argument as at the end of the proof of Theo-

rem 3. �
Remark 5. The proofs of Theorem 4 and Theorem 3 show that the conditions on the
cycle spaces of G and G+ can be weakened or stated differently: the only important
thing is that we can generate the cycle space of H by cycles that are chordal in G+.
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