Designing Hardware with Dynamic Memory Abstraction

Jiri Simsa
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jsimsa@cs.cmu.edu

ABSTRACT

Recent progress in program analysis has produced tools that
are able to compute upper bounds on the use of dynamic
memory. This opens up a space for the use of dynamic
memory abstraction in high-level synthesis. In this paper,
we explain how to design hardware using C programs with
malloc() and free(). A compilation process is outlined for
transforming C programs with heap operations into a hard-
ware description language. As demonstrated by our exper-
iments, this approach is feasible. Further, automatic paral-
lelization of the generated circuits improves by a factor up
to 1.9 in terms of clock frequency and a factor up to 2.7 in
terms of clock cycles over the previous work.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids— Automatic Synthesis

General Terms

Experimentation, Measurement, Performance

Keywords

C to Gates, High-Level Synthesis, Dynamic Memory, Paral-
lel Execution, Bluespec

1. INTRODUCTION

One of the approaches to hardware design and prototyping
is to use a high-level programming language to describe the
desired functionality and a compiler that synthesizes this
description into a circuit. This approach, commonly referred
to as high-level synthesis, has been adopted by a number of
tools using a variety of high-level programming languages
such as C [7], Handel-C [10], Scheme [16], or Haskell [1].

This approach provides for a faster hardware design cy-
cle by automating the process of mapping a high level de-
scription to a low level implementation. It also also makes
hardware based co-processing more accessible to software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGA’10, February 21-23, 2010, Monterey, California, USA.

Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

Satnam Singh
Microsoft Research
7 J J Thompson
Cambridge, CB3 OFB, UK

satnams@microsoft.com

engineers that can continue to use familiar software pro-
gramming languages.

The languages C and C++ have inspired the creation of a
number of languages for used in high-level synthesis [2,3,5,
7,9,13,17,18]. The programming abstraction that these C-
like languages use is easy to adopt and provides for a smooth
transition between software and hardware design. In fact,
some C programs can be directly synthesized to gates.

However, until recently, the existing tools had no or very
limited support for one of the key features of C — pointers,
or more generally, the dynamic memory abstraction. In [4]
authors have shown how to use shape analysis [12] and in-
variant generation [6] to compute an upper bound on the size
of dynamic memory ever needed by a C program. Whether
this bound is computed by a tool or a designer, it can be
used to translate the use of dynamic memory away, for ex-
ample by replacing the heap with static arrays. Note that
this approach works only when such a bound exists.

To demonstrate the practicality of this approach the au-
thors of [4] wrote a simple C to VHDL compiler that for
a given C program produces a synthesizable VHDL code.
A notable imperfection of this compiler is that it produces
VHDL code that executes the original program sequentially.
Furthermore, the discussion of the design of such a compiler
is missing.

This paper improves on previous work by presenting a
description of a compiler that transforms C programs with
with heap operations into a hardware description language.
In addition to that, the compiler presented here uses sophis-
ticated control and data flow analyses to detect parallelism
and includes a back-end for both VHDL and Bluespec [14].
The contribution of this paper thus include: 1) a description
of a novel C to hardware description language compiler that
supports the use of dynamic memory abstraction, 2) im-
proved performance of generated circuits through the use of
a parallel execution model, 3) the use of Bluespec language
as an intermediate target in the C to gates synthesis.

2. EXAMPLE

Imagine you would like to design the following system.
First the system inputs a sequence of n symbols and their
weights. Then, the system builds a Huffman encoder [8] us-
ing the inputted data. Finally, the system enters an infinite
loop in which it inputs queries and outputs their binary en-
coding. A software implementation of such a system in C
might look similar to the one of Figure 1.

The function huffman has five arguments. The first argu-
ment represents the number of symbols to be read. The

void huffman (
int n,
FIFO symbol, FIFO weight, FIFO query,
FIFO result
) A
int k, query;
List *1list;
Tree *node,*node_1,*node_2;

assert (n>0);

// Build up an n-sized sorted list
list = NULL;
for (int k=0;k<n;k++) {
node = new_node (deq(symbol),deq(weight));
list = sorted_insert(node,list);

}

// Create Huffman encoder
while (list->next != 0) {
node_1 = first(list);
list = remove_first(list);
node_2 = first(list);

list = remove_first(list);
node = combine_nodes(node_1,node_2);
list = sorted_insert(node,list);

}

// Start answering queries
while (1) {
query = deq(query);
enq(result,encode (list->data,query));
}
¥

Figure 1: SW implementation of Huffman encoder

following three arguments are FIFOs for inputting the sym-
bols, weights, and queries respectively. The last argument is
a FIFO for outputting the binary encoding. The interface of
these FIFOs consists of two methods — int deq(FIF0 fifo) and
void enq(FIF0 fifo, int data) — with the standard functional-
ity. For simplicity, the implementation of these FIFOs is
omitted.

The function hutfman starts by repeatedly creating new leaf
nodes for the inputted symbols and their weights and sort-
ing these nodes by weight into a list. Second, the encoder
is built by repeatedly removing the first two nodes from the
list, combining the removed nodes into a new one, and sort-
ing the newly created node back into the list. Finally, an
infinite loop is entered. Each iteration of this infinite loop
inputs a query, computes a binary encoding of the query,
and outputs the result. The implementation of subroutines
use in the example of Figure 1 is routine and except for the
code artifact presented in Figure 2 the details are omitted.

List *remove_first(List *1list) {
List *tmp;

tmp = list;

list = list->next;
free(tmp);

return list;

Figure 2: remove_first() heap operations

Creating such an implementation is easy and the use of
dynamic data structures greatly simplifies this task. In com-
parison to that, a similar implementation in hardware can-
not benefit from the use of dynamic memory abstraction.

int remove_first (int list) {
int tmp;

tmp = list;

list = ma_list[list].next;
fl_list_index--;
f1_list[fl_list_index] = tmp;
return list;

Figure 3: remove_first() after transformations

That is, unless the hardware implementation is generated
automatically from the software implementation.

In order to generate a hardware implementation from a
software implementation that makes use of dynamic mem-
ory abstraction, one needs to first compute an upper bound
on the dynamic memory ever needed by the software imple-
mentation. For the example above, one could compute the
bound with an automated tool such as [6,12], or do a back of
the envelope analysis to arrive at a bound n - list + (2n — 1) -
node, where list is the size of the struct 1ist data structure
and node is the size of the struct node data structure. To
see that this bound is correct one needs to realize that the
list for sorting the initial nodes will never have more than n
elements and that the encoder is a binary tree with n leaves
and thus will have 2n — 1 nodes.

Next, the bound needs to be made concrete. In our exam-
ple this corresponds to specifying the maximum size of the
alphabet that the Huffman encoder supports, say n = 256.
Now, the use of dynamic memory abstraction can be re-
moved from the program as follows.

Fﬁrst, global arrays list ma_list[266], tree ma_tree[511], int
£1_1ist[257] and int f1_tree[512] and scalars int £1_list_index
and int f1_tree_index are introduced. Further, code that ini-
tializes the arrays fi1_1ist[] and fl_tree[] with numbers 1
through &, where k is the length of the respective array, is
added.

Second, the statement node = (Tree *) malloc(sizeof (Tree));
in new_node iS replaced,wvith,node = fl_tree[fl_tree_index]; fol-
lowed by f1_tree_index++;. Other calls to malloc() are pro-
cessed similarly.

Third, the statement free(tmp); in remove_first() is replaced
with £1_1list_index--; followed by f1_1ist[f1_list_index] = tmp;.
Other calls to free() are processed similarly.

Fourth, the statement node->symbol = symbol; in new_node()
is replaced with ma_tree[node] .symbol = symbol. Other cases of
pointer dereferencing are processed similarly.

Finally, the declaration Tree #node; in new_node() is replaced
with int node;. Other occurrences of a pointer type are pro-
cessed similarly. Figure 3 depicts the function of Figure 2
after these transformations.

These transformations can be applied to the source code
using a simple C to C compiler. Or, as is the case of our C to
HDL compiler, these transformations are an inherent part
of the method the generates hardware description language
code from the intermediate representation.

After using our compiler to produce the Bluespec code for
the example of Figure 1, the Bluespec compiler was used to
produce Verilog and the Altera Quartus 9.0 synthesis tools
were used to synthesize an FPGA design. This resulted in a
circuit with 26,123 Altera’s look-up tables, 14,005 registers,
2,784 memory bits and clock frequency of 154MHz. For a

sample test bench this circuit achieved latency of 525 clock
cycles and throughput of 21 clock cycles.

3. EXPERIMENTAL EVALUATION

This section demonstrates the practicality of the approach
presented in this paper and evaluate the efficiency of the
hardware designs generated by our compiler. In particular,
the designs produced by our compiler are compared to the
results produced by the compiler of [4].

For the purpose of the experimental evaluation a number
of simple hardware designs was described in C using the
dynamic memory abstraction. Our compiler was then used
to generate a Bluespec and VHDL versions of these designs.
The Bluespec compiler was then used to generate a Verilog
version of the designs. Finally, both Xilinx and Altera tools
were used to synthesize FPGA designs for the Verilog and
VHDL. The performance of the designs was evaluated using
a test bench.

In previous work, VHDL has been used the output of the
back-end. It turns out that such a choice introduces several
problems for the compilation process; for example, data se-
lect and unit scheduling. We noticed that these problems
can be solved elegantly and efficiently by generating Blue-
spec code and letting the Bluespec compiler to deal with
such problems. Further, there is a nice match between the
rule-based scheme of Bluespec and our internal representa-
tion of the C program to be synthesized. Finally, Bluespec
proved to have a highly tuned Verilog netlist generator which
generates Verilog code that passes nicely through synthesis
tools. All these points motivated our decision to add Blue-
spec as a back-end to our compiler.

Next, we describe the examples adopted from [4] that were
used in the experimental evaluation.

Huffman Encoder — This is our running example of Fig-
ure 1. The design has three inputs and one output. The im-
plementation inputs n symbols and their weights, and builds
a Huffman encoder using this data. It then enters an infinite
loop in which it inputs a symbol and outputs its encoding.
For the purpose of experimental evaluation we chose n = 10.

Batched Priority Queue — This example implements a
data structure for sorting elements in a batch. The design
has one input and one output. The implementation repeat-
edly inputs n elements, and outputs them in a sorted order.
For the purpose of experimental evaluation we chose n = 10.

Merger — This example implements a merger of two sorted
sequences. The design has two inputs and one output. The
implementation repeatedly receives ni sorted elements on
the first input and ng sorted elements on the second input.
Using the merge phase of the merge sort algorithm it com-
bines the two sequences into one sorted sequence, which is
then outputted. For the purpose of experimental evaluation
we chose n1 = 10 and ny = 10.

Packet Sorter — This example implements a simple net-
work element. The design has two inputs and one output.
The implementation repeatedly inputs packet data on the
first input and packet identifier on the second input. It sorts
these packets in a queue by their identifiers, ignoring dupli-
cates, until it fills the queue with n packets. It then outputs

Program Latency | Throughput
Huffman | 525 cycles 21 cycles
Prio 198 cycles 3 cycles
Merger 92 cycles 4 cycles
Packet 332 cycles 3 cycles
BST 173 cycles 21 cycles

Table 1: Bluespec back-end

Program Latency | Throughput
Huffman | 813 cycles 30 cycles
Prio 196 cycles 3 cycles
Merger 125 cycles 4 cycles
Packet 353 cycles 3 cycles
BST 166 cycles 21 cycles

Table 2: New VHDL back-end

Program Latency | Throughput
Huffman | 1410 cycles 42 cycles
Prio 343 cycles 5 cycles
Merger 192 cycles 7 cycles
Packet 589 cycles 5 cycles
BST 282 cycles 21 cycles

Table 3: Original VHDL back-end

the packets in the sorted order. For the sake of experimental
evaluation we chose n = 10.

Binary Search Tree Dictionary — This example imple-
ments a data structure for storing a set of elements with
a lookup operation. The design has two inputs and one
output. The implementation inputs n elements on the first
input and builds a binary search tree out of them. This is
followed by an infinite loop in which a query is received on
the second input and the result of the lookup is produced
on the output. For the purpose of experimental evaluation
we chose n = 10.

For each example, we generated three descriptions in a
hardware description language — Bluespec description using
our compiler, VHDL description using our compiler, and
VHDL description using the original compiler of [4]. The
Bluespec descriptions were compiled to Verilog using the
Bluespec compiler (version 2008.11.C).

Further, a test bench was written for each example to eval-
uate the latency and throughput of the generated designs.
Tables 1, 2, and 3 give the result obtained by simulating the
generated designs using the Bluespec, new VHDL, and old
VHDL back-end respectively.

The LATENCY column identifies the number of cycles after
which the first value appeared on the output. The THROUGH-
PUT column identifies the number of cycles after which the
second value appeared on the output.

Note that the THROUGHPUT value is much smaller than
that of LATENCY not because of pipelining, but because all
the examples operate either in a batched mode — Priority
Queue, Merger, Packet Sorter — or include an initialization
phase — Binary Search Tree Dictionary, Huffman Encoder.

The high level message of the measurements presented
in Tables 1, 2, and 3 is twofold. First, the parallel nature

Program | ALUTs | Registers | Mem Bits Speed
Huffman 26,123 14,005 2,784 | 154MHz
Prio 4,687 3,459 928 | 170MHz
Merger 4,356 3,368 1,856 | 211MHz
Packet 6,942 6,556 1,856 | 165MHz
BST 10,861 7,484 1,856 | 196MHz

Table 4: Altera — Bluespec back-end

Program | ALUTs | Registers | Mem Bits Speed
Huffman | 12,723 9,840 3,072 | 96MHz
Prio 1,824 1,775 1,024 | 104MHz
Merger 1,724 1,837 2,048 | 111MHz
Packet 2,922 3,329 2,048 | 107TMHz
BST 1,819 2,243 2,048 | 150MHz

Table 5: Altera — Original VHDL back-end

of the execution improves the latency of the generated cir-
cuits by a factor of 1.7 to 2.7 and the throughput of the
generated circuits by a factor of 1 to 2. Second, the cir-
cuits generated through the Bluespec back-end perform on
examples roughly the same (Prio and BST) or better (Huff-
man, Merge, Packet) then the circuits generated through
the VHDL back-end. This demonstrated the improvement
over the previous work and justifies the design decision to
introduce a Bluespec back-end.

Finally, the Altera Quartus II 9.0 and Xilinx ISE 11.2
tools were used to synthesize the generated VHDL and Ver-
ilog, targeting the Stratix III FPGAs and Virtex-6 FPGAs
respectively. Both tool sets produced consistent results and
only the result for the Altera tools are presented.

The results for the Bluespec back-end and the original
VHDL back-end are shown in Tables 4 and 5 respectively.
The ALUTS (Altera’s adaptive look-up tables) column indi-
cates the number of the combinational elements in the gen-
erated design. The REGISTERS column indicates how many
flip-flops in the logic fabric were used for registers. The MEM
BITS column indicates how many memory bits were mapped
onto embedded memory blocks. The last column shows the
maximum speed. In all cases the tools automatically picked
the smallest EP3SL50F484C2 FPGA.

Although all of the designs generated using the new VHDL
back-end simulate correctly, some of them cause the Xilinx
tools to run out of memory and crash and the Altera tools
to produce an erroneous empty circuit (which may also be
a side effect of memory exhaustion). An alternative for-
mulation of the generated VHDL may side-step this prob-
lem, which seems to be related to the size and access pat-
terns used for the array representing the heap. This alterna-
tive has not been pursued as the Verilog designs generated
through Bluespec proved to be an acceptable alternative.

4. CONCLUSION

This paper furthers the practicality of the use of dynamic
memory abstraction in the process of designing hardware.
It presents a detailed description of a compiler that inputs
a C program and creates a parallel execution model of the
program. This model is then used to generate a description
in a hardware description language. The compiler currently
includes back-ends for VHDL and Bluespec.

The circuits generated by the presented compiler repre-
sent an improvement over the previous work — the combined
decrease in latency and increase in clock frequency result in
5x improvement. Also, to the best of our knowledge this pa-
per is the first to offer a detailed description of compiling a C
program with malloc() and free() to a hardware description
language.

As an on-going work the authors of this paper investigate
the use of heap-based program analyses [11,15] for auto-
mated localization and pipelining of hardware designs based
on C programs with dynamic memory abstraction. Also, al-
ternatives for the current parallel execution model are con-
sidered, that would allow execution of several iterations of
a loop at a time.

Acknowledgement.

The authors would like to thank the Bluespec team for
providing them with access to the Bluespec compiler and
the Xilinx team for help with troubleshooting.

5. REFERENCES

[1] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In ICFP, 1998.

[2] F. Bruschi and F. Ferrandi. Synthesis of complex control
structures from behavioral SystemC models. DATE, 2003.

[3] B. A. Buyukkurt, Z. Guo, and W. Najjar. Impact of loop
unrolling on throughput, area and clock frequency in ROCCC:
C to VHDL compiler for FPGAs. Int. Workshop On Applied
Reconfigurable Computing, 2006.

[4] B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa,

S. Singh, and V. Vafeiadis. Finding heap-bounds for hardware
synthesis. Accepted to FMCAD 2009. Available on Byron
Cook’s webpage, 2009.

[5] M. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski.
Stream-oriented FPGA computing in the Streams-C high level
language. FCCM, 2000.

[6] A. Gupta and A. Rybalchenko. InvGen: An efficient invariant
generator. In CAV, 2009.

[7] S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau. SPARK: A
high-level synthesis framework for applying parallelizing
compiler transformations. VLSI Conference, 2003.

[8] D. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098-1101, 1952.

IMEC. CleanC analysis tools. http://www.imec.be/CleanC/,

2008.

[10] C. Inc. Handel-C language overview. Web page
http://www.celoxica.com, 2004.

[11] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing
static analyses. SAS, 2000.

[12] S. Magill, M. Tsai, P. Lee, and Y. Tsay. THOR: A tool for
reasoning about shape and arithmetic. CAV, 2008.

[13] W. A. Najjar, A. P. W. Bohm, B. A. Draper, J. Hammes,

R. Rinker, J. R. Beveridge, M. Chawathe, and C. Ross.
High-level language abstraction for reconfigurable computing.
IEEE Computer, 36(8), 2003.

[14] R. Nikhil. Bluespec system verilog: efficient, correct rtl from
high level specifications. Formal Methods and Models for
Co-Design, 2004. MEMOCODE ’04. Proceedings. Second
ACM and IEEE International Conference on, pages 69-70,
June 2004.

[15] M. Raza, C. Calcagno, and P. Gardner. Automatic
parallelization with separation logic. In ESOP, 2009.

[16] X. Saint-Mleux, M. Feeley, and J.-P. David. SHard: a Scheme
to hardware compiler. In Workshop on Scheme and Functional
Programming, 2006.

[17] A. Takach, B. Bower, and T. Bollaert. C based hardware design
for wireless applications. DATE, 2005.

[18] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev,
Y. Lu, and S. Vassiliadis. DWARV: Delftworkbench automated
reconfigurable VHDL generator. FPL, 2007.

[9

