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Abstract—Nowadays, cluster computing has become a cost-
effective and powerful solution for enterprise-level applications.
Nevertheless, the usage of this architecture model also increases
the complexity of the applications, complicating all activities
related to performance optimisation. Thus, many research works
have pursued to develop advancements for improving the per-
formance of clusters. Comprehensively evaluating such advance-
ments is key to understand the conditions under which they
can be more useful. However, the creation of an appropriate
test environment, that is, one which offers different application
behaviours (so that the obtained conclusions can be better
generalised) is typically an effort-intensive task. To help tackle
this problem, this paper presents a tool that helps to decrease the
effort and expertise needed to build useful test environments to
perform more robust cluster testing. This is achieved by enabling
the effective usage of Java Benchmarks to easily create clustered
test environments; hence, diversifying the application behaviours
that can be evaluated. We also present the results of a practical
validation of the proposed tool, where it has been successfully
applied to the evaluation of two cluster-related advancements.

Index Terms—Software Testing, Java, Clusters, Performance

I. INTRODUCTION

Performance is a major concern of any software project.

This is especially true at enterprise-level, as system perfor-

mance plays a key role in using the software to achieve busi-

ness goals [1]. However, it is not uncommon that performance

issues do occur, even materialising into serious problems

(e.g., outages on production environments or cancellation of

projects). Many research studies have documented the magni-

tude of this problem. For example, the authors of [2] recently

found 332 previously unknown performance problems in the

latest versions of five mature open-source software suites.

This situation can be explained by the pervasive nature of

performance, which makes it hard to assess (and its issues

hard to identify) because performance is influenced by every

aspect of the design, code, and execution of an application.

Recently, cluster computing has gained momentum as a

powerful and cost-effective solution paradigm for parallel

and distributed processing [3]. Thus, the usage of clusters is

becoming pervasive. Nonetheless, this shift to a distributed

architecture has also augmented the complexity of the ap-

plications, considerably complicating all activities related to

performance. Consequently, it is not surprising that achieving

good performance under these conditions is commonly a

challenging and time-consuming task.

To address this problem, multiple research efforts have

been performed to develop techniques which can improve the

performance of clusters. This has been done from different

perspectives. For example, the authors of [4] presented a high-

performance engine to protect the privacy of any sensitive in-

formation before releasing it to third-parties (e.g., public cloud

services). Likewise, the work in [5] presented a mechanism

to provide high reliability and availability for clustered web

services. This is achieved by offering a fault-tolerance capabil-

ity suitable to different classes of transactions. Alternatively,

other works have aimed to improve the performance testing

and analysis processes. For instance, the work in [6] proposed

a technique to generate realistic synthetic data that can be

useful to diversify the testing scenarios. Similarly, the work

in [7] proposed a methodology to improve the selection of an

appropriate analysis tool, best suitable for a particular task,

based on a list of usage profiles and comparable criteria.

Moreover, conducting an extensive analysis of the efficiency

and effectiveness of all proposed techniques is critical to iden-

tify the scenarios (and/or conditions) in which each technique

can be useful. This is because a deep understanding of the

costs and benefits of the techniques is key to understand

their limits and overall practicability [8], [9]. In the particular

case of clusters, a common challenge is that its intrinsic

complexity makes the creation of an appropriate test envi-

ronment particularly effort-intensive, and potentially costly,

for researchers. Furthermore, unlike other research domains

(e.g., Java technologies), the lack of a comprehensive suite

of applicable easy-to-use benchmarks indirectly makes the

evaluation of cluster-related advancements even harder.

To help tackle this problem, our research work has centred

on developing solutions that can help researchers (hereinafter

referred as users) to enhance the experimental evaluation

of performance engineering techniques that aim to improve

the performance of clustered systems. Specifically, this paper

presents a tool that enables the easy usage of Java Bench-

marks in the construction of cluster-based test environments.

Consequently, decreasing the effort and expertise needed to

create useful test environments to perform more robust testing.

Additionally, we present a practical validation of the proposed

tool, consisting of a prototype and the results of two performed

case studies. The obtained results illustrate the benefits that can

be obtained from using the tool.



II. STATE-OF-THE-ART

This section describes the relevant state-of-the-art w.r.t. the

background and related work needed to understand this work.

A. Background

With an estimated business impact of a hundred billion

dollars every year, Java is a predominant technology at the

enterprise level [10]. It has helped organisations to speed up

their development processes by leveraging its many object-

oriented features. A Java Virtual Machine (JVM) is the run-

time environment for Java applications. Internally, it interprets

the binary format in which a Java program is compiled. As

there are JVMs available for most contemporary operating

systems, a Java program is highly portable. Besides, a JVM

can be tuned at start-up time through multiple configuration

parameters (e.g., to customise its memory management).

Benchmarking has proven to be a useful tool in many re-

search domains. This is because it enables the fair comparison

of alternative advancements which aim to solve the same

problem by different means. Benchmarks are also helpful to

assess the benefits and costs of using a particular advance-

ment [11]. In the case of Java, there have been several efforts

aiming to create realistic benchmarks suitable to evaluate the

capabilities of JVMs (e.g., to assess their compliance with

Java’s specifications). Nowadays, two of the Java benchmarks

most widely-used are DaCapo and SPECJVM. DaCapo has

been sponsored by international companies like IBM, Intel,

and Microsoft. Its latest version is 9.12 and it is composed

of 14 programs (shown inTable I). They are all open source,

real-world programs, and with non-trivial memory loads [12].

Meanwhile, SPECJVM has been developed by the Standard

Performance Evaluation Corporation, and companies like HP,

IBM and Oracle have also contributed to it. Its latest version is

2008 and it is composed of 10 programs (shown in Table II).

They are a mixture of real-life programs and specialised ones

developed to cover the core Java functionality [13].

B. Related Work

Multiple works have investigated ways to improve the pro-

cesses involved in developing software solutions. For example,

the work in [14] presents a variant of the popular Model-View-

Controller design pattern specially tailored for its usage in

TABLE I
DACAPO PROGRAMS

Name Description

avrora It simulates programs running on a grid of microcontrollers.

batik It processes vector-based images.

eclipse It executes performance tests in an eclipse instance.

fop It generates PDF files based on XSL-FO files.

h2 It runs banking transactions against a database application.

jython It executes a set of python scripts in a Java environment.

luindex It performs an indexing of documents.

lusearch It performs a set of keyword searchs over a data corpus.

pmd It reviews Java classes, looking for bugs.

sunflow It performs rendering of images.

tomcat It runs queries against a Tomcat application server.

tradebeans It executes stock transactions using Java Beans calls.

tradesoap It executes stock transactions using SOAP calls.

xalan It transforms XML files into HTML format.

TABLE II
SPECJVM PROGRAMS

Name Description

compiler It compiles Java source files.

compress It performs data compression on some test files.

crypto It and decrypts files with diverse protocols.

derby It runs queries on a Derby database instance.

MPEGaudio It decodes a set of audio files.

scimark It executes a set of floating point operations.

serial It serialises and deserialises a set of primitives and objects.

startup It executes each other program a single time.

sunflow It runs a set of graphics visualisation operations.

XML It transforms XML documents using style sheets.

the development of groupware. Moreover, the authors of [15]

describes a web tool that can help to identify insecure software

development aspects in Android applications. Likewise, the

authors of [16] proposes a multi-lingual metric tool that can

be customised (through user-defined metrics) to suit different

scenarios. Meanwhile, the work in [17] presents a detailed

comparison between the processes defined by the well-known

Project Management Book of Knowledge and the actives de-

fined by the Essence framework, highlighting the key overlaps

and differences between both project management standards.

In the particular area of testing, many research works have

aimed to enhance its involved processes. For instance, the

work in [18] presented a technique to facilitate the process

of identifying performance regressions. Besides, the authors

of [9] introduced a framework to create realistic testing data,

while the work in [19] presented a novel approach to improve

the process of monitoring and collecting performance counters.

Finally, other research works have aimed to reduce the exper-

tise and effort needed to conduct useful testing. For example,

by eliminating the need of manually configuring a diagnosis

tool [20], or setting an appropriate test workload [21]. In

contrast to these works, which have aimed to improve other

aspects of the testing process, our tool has been designed

with the aim of facilitating the creation of useful cluster test

environments. This is achieved by enabling the re-usage of the

most popular Java benchmarks in this scenario.

III. PROPOSED SOLUTION

In this section, we describe our proposed solution. We start

by providing the context of the tool, then we discuss its internal

workings, architecture, and the implemented prototype.

A. Overview

The main goal of our research work was to design a

tool that could enable the out-of-the-box re-usage of Java

benchmarks in the experimental evaluation of cluster-related

advancements. By ensuring an easy and effortless building of

useful test environments (based on these benchmarks), we seek

to improve the productivity of researchers in this domain. In

this context, usefulness means that the test environment is able

to offer a broad range of different application behaviours, so

that the experimental results obtained from such environment

can help to derive, to a fair degree, generalisable conclusions

(e.g., the performance gains that the tested technique offers,

or its computational costs).



Fig. 1. Contextual Diagram

Among the range of potential use cases, our work has

centred on enhancing the testing of clusters because variants of

this distributed architecture are commonly used at enterprise-

level. This scenario is exemplified in Fig. 1, which shows

how a load balancer is typically responsible for distributing

the incoming workload across the available application nodes.

Thus, it is not only important to assess the behaviour of the

application instances, but also of the load balancer (as it might

have a major influence on the overall system performance).

B. Architecture

Our tool is based on the component-based architecture

shown in Fig. 2. There, it can be seen how the tool (i.e.,

a benchmark executor) is composed of three main elements:

Firstly, the benchmark logic, which contains all the function-

ality required to successfully execute the set of supported Java

benchmarks. Secondly, the proxy logic, which contains the

functionality that allows the tool to interface with different

types of clients. Thirdly, the generic logic, which contains

all functionality providing miscellaneous services which are

independent of the supported set of proxies and benchmarks.

This architecture was designed with the aim of minimising

the code changes required to extend the tool (e.g., to support

other benchmarks, or types of clients). Following the same

line of thinking, the components exclusively interface with

each other through interfaces. This is exemplified in Fig. 3,

which presents a simplified high-level class hierarchy of the

tool. There, it can be seen how the tool internally follows

an object-oriented design where the involved entities are

modelled as a set of inter-related objects and interact with each

other (through interfaces) within the tool. For instance, the

figure shows how the benchmark component contains a main

interface IBenchmark to expose the set of supported actions, as

well as an abstract class which contains all the common func-

tionality (at benchmark level). Then, the hierarchy of classes

can be extended to support specific types of benchmarks (e.g.,

DaCapo or SPECJVM). A similar strategy is followed for the

proxy logic, as different strategies to interface with the tool can

be supported (e.g., a web interface or a messaging service).

This design decision was taken to make the architecture highly

extensible and easily maintainable.

Fig. 2. Component Diagram

Finally, the different components communicate through

commands, following the well-known Command design pat-

tern [22]. For instance, the controller class invokes a command

to instantiate an access proxy, while the corresponding proxy

class implements the logic in charge of actually initialising

the proxy logic (e.g., creating an embedded instance of an

application server, in the case of a web-based proxy). The

internals of these components are explained in the following

sections:

1) Generic Logic: In Fig. 3, it can be seen how the Con-

troller acts as the MainClient, handling all the tasks associated

with the initialisation of the tool. For instance, setting the

configuration parameters provided by the user. This involves a

set of access proxies, benchmarks and their respective config-

urations (e.g., a port and context in the case of a web proxy,

or the path where the benchmark’s executable is located). The

Controller is also responsible for managing the life-cycle of

the selected set of access proxies (i.e., initialisation and destroy

methods), while the corresponding proxies are responsible for

implementing the actual initialisation and cleaning processes.

For instance, a proxy might require creating an instance of

an embedded messaging service or a web application server

(in the case of a messaging and web proxies, respectively)

as part of its initialisation. Inversely, the proxies would need

to release such resources during their destroying cycles (e.g.,

stopping the web server instance in the case of a web proxy).

It is also worth mentioning that the generic logic involves a

set of utility services, which have been identified as potential

useful logic for the supported set of proxies and benchmarks.

For instance, a standardised logging mechanism, thread-based

classes to consume and parse the verbose produced by the

benchmarks (in their standard error and output streams), logic

to safely execute and monitor the execution of the benchmarks

in an independent process (also supporting diverse operating

systems, such as Windows and Linux), or miscellaneous logic

to execute the benchmarks through Java reflection.

Finally, the generic logic is also responsible for the instanti-

ation of the different benchmark objects, which are later used

by the access proxies to execute the benchmarks’ programs.

Internally, the required benchmark class (supporting a particu-

lar Java benchmark, and possible a specific operating system)

is instantiated by a developed benchmark factory [22], which



Fig. 3. Simplified Class Diagram

is responsible for handling the selection of the appropriate

class to create the required object type per benchmark. This

design decision was taken with the aim of isolating the rest of

the tool from the complexities of initialising the correct class

across the hierarchy of benchmark sub-classes (e.g., calling

the right constructor).

2) Proxy Logic: Understanding that each type of proxy

might require very different supporting logic to work properly,

the architecture of our tool only enforces a set of life-cycle

methods that homogenise the management of the proxies. They

are defined on an interface that every proxy must implement

and involved three methods: init, service, and destroy. The init

method is responsible for initialising the proxy; the service

method is responsible for processing the client requests and

returns the success (or failure) of the operation, including the

results of the same; while the destroy method is responsible

for performing any cleaning that is needed to release whatever

resources were obtained during the initialisation step.

This design strategy helps the tool to support a diverse

range of access proxies, which might be applicable to different

use cases and clients (e.g., web applications, web services,

messaging servers, sockets, etc.). This strategy also allows

supporting multiple similar proxies. For instance, following

our web example, for some test scenarios, it might be better

to have an embedded web application server (to simplify the

installation of the tool in the test environment). Hence, an

embedded web application server (such as Jetty [23]) can

be easily integrated into the tool. Alternatively, a user might

prefer to install the tool on top of an existing web application

server (e.g., Tomcat [24]) because her testing methodology

requires to validate that her research works under a real-

life application server (like Tomcat). Therefore, the tool can

implement a deployable servlet/JSP-based web application,

which would act as an alternate web proxy.

3) Benchmark Logic: The core element of this component

is the hierarchy of supported benchmarks. It starts with a

main interface (to expose the supported commands), then

an abstract class which offers the common logic across the

benchmarks. In this part, it was important to identify shared

characteristics among the investigated benchmarks in order

to model them into a reusable hierarchy of classes. This is

important not only to reduce the code repetition, but also

to efficiently support other Java benchmarks (other than the

analysed ones). For instance, the tool currently supports two

alternate execution modes: embedded and external. In the

embedded mode, the benchmark program executes within the

same JVM of the tool. This can be useful to make the overall

benchmark(s) behave as a more complex application. For

instance, to stress more a memory-related advancement. To

support this mode, it is important to execute the logic, while

avoiding some behaviours that might affect the health of the

tool. For example, to disable the calls that the benchmarks

might do to the System.exit() method (e.g., by creating and

setting a NoExitSecurityManager, which avoids the direct

triggering of the exit and converts it into an exception, which

can then be captured and reported as part of the benign errors

of the benchmark program). Similarly, it is important to set

any other dependencies that are needed (e.g., JVM proper-

ties). Also, the abstract benchmark logic needs to be thread-

based, so that multiple instances of the benchmark programs

can be run in parallel (to emulate a distributed application,

which is a typical scenario in clustered environments). On

the contrary, in the external mode, the benchmark program

is executed in its own JVM (i.e., independent from the tool).

This might be useful in cases where a user want to mimic

an application distributed across multiple JVMs, or when a

benchmark program has some dependencies that might not be

modelled within the tool due to their technical characteristics

(e.g., it might not be possible to execute a benchmark program

involving an embedded web server - like Tomcat, from the

DaCapo benchmark - from within a JSP-based web proxy, as

that would involve running a Tomcat within another Tomcat).

The abstract benchmark class also contains a core process

that executes the supported benchmarks. The first step involves

to set-up the experimental environment that the benchmark

needs to be executed successfully (i.e., any required depen-

dencies that it might have). For instance, the benchmark might

require the presence of a temporal directory (or a copy of the



Java ARchive that contains the benchmark, in the case of the

external execution mode). Next, the execution of the chosen

benchmark program begins. This step involves constructing

the exact command required to run the benchmark (as each

supported benchmark might have a diverse syntax as well

as a set of supported options available). This logic is also

responsible for handling the program’s execution (e.g., the

parsing/processing of its standard error and output streams).

This level of abstraction ensures that the tool can be extensible

for other Java benchmarks, as they usually share the same

type of starting steps and processing functionality (e.g., they

always have as entry point a pre-configured class and method).

Once the benchmark program has started, the standard output

and error streams of the benchmark program are parsed and

processed (so that this information can be logged, if needed).

Once the execution has finished, the benchmark logic reports

the success (or failure) of the execution to the AccessProxy

that called it. Finally, all the dependencies that have been

previously set are rolled back (e.g., anything that has been

copied into a temporal directory is deleted). The goal is to

reduce the resource footprint of the tool by releasing any

resources (e.g., hard disk) that are temporarily required to

successfully execute a benchmark program. Finally, all errors

and exceptions that might occur are internally handled.

C. Prototype

From a technical perspective, our prototype was developed

in Java 7. This has been done with the aim of making

our solution highly portable (hence maximising its portability

and overall adoption), as there are JVMs available for most

of the contemporary operating systems [25]. For this initial

prototype, we concentrated on implementing a web proxy.

This design decision was taken because the web application

servers are a traditional Java business niche [8]. Furthermore,

we implemented two web proxies: One proxy was developed

by embedding a Jetty web servlet container [23], which is a

popular open source solution used for enabling the machine to

machine communications. This proxy exemplifies how our tool

can simplify the configuration of a test environment, as it is a

self-contain solution (i.e., without external dependencies to run

successfully) that only needs to be installed in the application

server nodes. The other proxy was developed by creating a

set of JavaServer Pages (within a web application) that offer

the same functionality (i.e., they allow the different supported

benchmarks, through their respective set of programs, to

be executed through HTTP requests). This alternate proxy

exemplifies how our tool can be easily integrated with existing

testing infrastructure (as this proxy enables the prototype to

be executed within any Java web application server currently

available in the industry).

Regarding its configuration, the tool relies on a set of

Extensible Markup Language (XML) configuration files. XML

was chosen for configuration purposes because it is a widely

used and standard format that can also be easily understood by

the user (e.g., it allows to add comments that can complement

the description of the options). Fig. 4 presents an example of

Fig. 4. Example of Configuration File

the tool’s configurations (i.e., the configuration file of one of

the web proxies, for the DaCapo benchmark).

In terms of Java benchmarks, we have initially concentrated

on supporting the DaCapo and SPECJVM benchmarks. This is

because, as discussed in Section II-A, they are two of the Java

benchmarks most widely-used in the literature, as well as they

offer a broad range of diverse programs that can be useful to

diversify the testing of cluster-oriented advancements. Addi-

tionally, these benchmarks are composed of real life programs

(unlike other Java benchmarks which have been synthetically

generated) and which do not have trivial memory loads [26]

(an important characteristic which exemplifies their potential

usefulness in testing, as memory is an important computational

cost aspect to consider when assessing the feasibility of any

advancement for real-word usage).

Our analysis of the chosen benchmarks allowed us to

develop the corresponding benchmark classes to support them.

Additionally, we have configured their main identified at-

tributes within the system. Tables III and IV summarise them.

It is important to mention that their attributes can be classified

into two main types: Those that are common across both

benchmarks (suggesting that they are generic and potentially

applicable to other benchmarks), and those that are specific

to the benchmark. This is an important finding, which has

led us to believe that the hierarchy of benchmarks might

be extended with intermediate classes that encapsulate the

similarities in behaviours and/or functionalities that some

subsets of benchmarks might experience (like DaCapo and

SPECJVM do). This idea, that we plan to explore in the near

future, can be useful to make our tool more robust by making

it easier to integrate other benchmarks to the supported ones.

Regarding the specific configurations, they are closely re-

lated to the specific usage of the programs within the bench-

mark. For instance, in the case of SPECJVM (whose programs

are mainly based on timed executions), the identified specific

attributes are: the time to perform a warm-up of the program,

the number of iterations that will be carried out, and the time

that each iteration will last. In contrast, as DaCapo is mainly

iteration-driven, the main elements to control its execution are:

the number of iterations, and the size of the test workload that



Fig. 5. Example of Tool Execution

Fig. 6. Example of JMeter Test Script

it will use. Here, it is worth mentioning that each program

has its set of supported sizes (ranging from a small to a huge

sizes). As the ranges of supported test workloads vary across

the 14 supported programs, we considered more appropriate

to use the “default” test workload as the default value of its

corresponding attribute (as this is one size common across all

DaCapo programs).

Finally, it is worth mentioning that some specific attributes

are similar in spirit (among the benchmarks), as they aim

to address an equivalent need (e.g., the internal validation

attribute which aims to assess, before the actual execution of

the program, if its dependencies have been fulfilled). However,

from the time being, these attributes have been classified as

specific until we analyse other benchmarks (as we do not

preliminarily considered that these attributes will be very

commonly found in many Java benchmarks).

To complement our discussion of the developed prototype,

Figs. 5 and 6 presents an example of the outputs of the

tool, as well as an example of the test scripts that can be

generated to test its functionality (i.e., the set of supported

TABLE III
DACAPO CAPTURED ATTRIBUTES

Type Name Default Value

Generic Name DaCapo

Generic Path TOOL BASE DIR/benchmark/dacapo

Generic Jarfile dacapo-9.12-bach.jar

Generic Directory Dependencies None

Generic JVM Properties None

Generic Supported Programs All programs listed in Table I

Generic Default Program avrora

Generic Main Class org.dacapo.harness.TestHarness

Specific internal validation false

Specific iteration 1

Specific workload size default

TABLE IV
SPECJVM CAPTURED ATTRIBUTES

Type Name Default Value

Generic Name SpecJvm

Generic Path TOOL BASE DIR/benchmark/specjvm

Generic Jarfile SPECjvm2008.jar

Generic Directory Dependencies lib, resources, redistributable sources

Generic JVM Properties specjvm.home.dir

Generic Supported Programs All programs listed in Table II

Generic Default Program startup

Generic Main Class spec.harness.Launch

Specific internal validation false

Specific warmup 1 minute

Specific iteration 1

Specific iteration time 1 minute

benchmarks and their programs). Putting aside the fact that

the look-and-feel of the tool can be improved (which is one

of our next-in-line goals), it can be noticed in Fig. 5 how the

benchmark executions can be tailored to the set of supported

attributes (as previously explained). In this example, we used

a GET HTTP request because that makes the example more

visual. However, the tool also supports POST HTTP requests.

Moreover, the result of the execution (i.e., either success

or failure) is presented, as well as the configuration that

was used. This is a valuable level of debugging information

(e.g., in cases where default values are used for some of the

configuration parameters). Meanwhile, Fig. 6 exemplifies how

the tool can be successfully applied to the testing of cluster-

related advancements. In the figure, it can be seen a test script

created in JMeter [27] (a popular performance testing tool).

In this example, the whole set of DaCapo programs was used

together to simulate an application composed of 14 different

functional operations. Alternatively, a user might prefer to

create individual test scripts in order to assess each program

behaviour individually. Both of these testing strategies are

exemplified in our experimental evaluation.

IV. EXPERIMENTAL EVALUATION

Here, we present the setup of the performed experiments,

as well as the highlights of the experimental results obtained.

A. Experimental Setup

In this section, we describe the methodology that was

used for our experimental validation, as well as the different

elements that defined the set of experimental configurations

used, including the evaluation criteria and the test environment.

1) Methodology: The performed experiments aimed to il-

lustrate the benefits of using our developed tool in the testing

of cluster-related advancements. To achieve this, we conducted

two series of experiments. In the first series, we used the



tool as part of the evaluation of a load balancing strategy

(describe next). In the second series, we used the tool in

the evaluation of a performance testing framework (describe

next). This dual methodology design was done with the aim

of showing how the tool can be suitable for strengthening the

experimental evaluation of different cluster-related solutions.

Finally, it is important to mention that the aim is not to

exhaustively evaluate the advancements, but to demonstrate

how our tool can be useful to strengthen the validation of

such types of advancements.

2) Load Balancing Strategy: To illustrate the benefits of the

proposed tool, we firstly used it to experimentally evaluate the

behaviour of TRINI [8]. TRINI is an adaptive load balancer

strategy which aims to improve the performance of a clustered

system by avoiding the impacts in the cluster’s performance

caused by the occurrence of the Major Garbage Collection

(MaGC) events in the individual nodes (which are known

to be a major cause of performance degradation in Java

systems [28]).

In terms of experimental configurations, two different types

of runs were performed. The first type used the original

version of two popular load balancing algorithms: random

(RAN), and round robin (RR). They were chosen not only

because they are widely used in the industry, but also because

TRINI supports their GC-aware counterparts (i.e., GC-RAN

and GC-RR). Moreover, the second type of run precisely used

these GC-aware algorithms. For these GC-aware algorithms, a

value of 100 ms was used as sampling interval (SI). The SI is

a configuration parameter required by TRINI, which defines

how frequently it retrieves GC and memory samples from the

clustered system (data which is internally used to predict when

a MaGC event will occur in an individual node, information

which is then used to decide if a node needs to be skipped,

w.r.t. the incoming load, due to the closeness of a MaGC

event). Finally, each test run lasted 60 minutes and used 100

concurrent virtual users.

3) Performance Testing Framework: To demonstrate how

the proposed tool can be easily adjusted to different use

cases, we also used it to experimentally assess PHOEBE [20],

which is a policy-based adaptive framework that automates the

configuration and usage of a diagnosis tool (e.g., WAIT [25])

in the performance testing of clustered applications. The aim

is to enhance a tester’s productivity by decreasing the effort

and expertise needed to effectively use a diagnosis tool. For

instance, PHOEBE is able to adapt during the performance test

run the sampling interval (which is used to gather information

from the system-under-test) in order to keep the introduced

overhead caused by the gathering process under control (so

that it does not compromise the results of the test).

In terms of experimental configurations, two different types

of runs were performed. The first type used the diagnosis tool

manually, involving the usage of a range of static (i.e., pre-

configured) sampling interval (SI) values (i.e., 0.125, 0.25,

0.5, 1, 2, 4, 8 and 16 minutes) in order to have a baseline

to which compare PHOEBE’s results against. The second

type of run used PHOEBE. It required the definition of

Fig. 7. Test Environment

some input configurations required by PHOEBE: A 20%

response time threshold was defined (configuration parameter

which defines the maximum amount of tolerable introduced

overhead). Besides, a minimum SI and ∆SI were set to 30

seconds (configuration parameters which define the sampling

interval space that is explored by the automated data gathering

process). Finally, each test run lasted 24 hours in order to

mimic realistic (i.e., industry-like) testing conditions.

4) Environment: All the performed experiments were done

in an isolated test environment, so that the overall workload

was controlled. This environment was composed of eight

virtual machines (VM): A cluster of five application nodes

with one load balancer, one diagnosis tool server, and one

load tester node (as shown in Fig. 7). All the VMs had the

following characteristics: 4 virtual CPUs @ 2.20GHz, 3GB

of RAM, and 50GB of HD; running Linux Ubuntu 12.04L

64-bits, and a JVM 7 with a 1,600MB heap (i.e., memory).

Each JVM was configured to initialise its heap to its maximum

size (to keep it constant during the experiments), and the

calls to programmatically request a Garbage Collection (i.e.,

the automatic memory management process) were disabled.

Moreover, the VMs were located on a Dell PowerEdge T420

server equipped with 2 Intel Xeon CPUs at 2.20Ghz (12

cores/24 threads), running Linux Ubuntu 12.04L 64-bit, 96 GB

of RAM, 2TB of HD, and using KVM [29] for virtualisation.

The load balancer node ran an Apache Camel [30] server,

which is a well-known lightweight Java-based load balancer.

The load tester node ran an Apache JMeter 2.9 [27] instance,

which is a leading open source tool commonly used for

application load performance testing. The application nodes

ran an Apache Tomcat 6.0.35 [24], which is a popular open

source Java web application server. The diagnosis tool used

was WAIT, which has proven to be useful to identify perfor-

mance issues in Java applications [31]. It is based on non-

intrusive sampling mechanisms available at Operating System

level (e.g., the top command in Unix) and the JVM, in the form

of Javacores (which are snapshots of the JVM state, offering

information such as locks, threads, and memory).

5) Evaluation Criteria: In terms of performance, our main

metrics were the throughput per second (tps) and response

time (ms). They were collected with JMeter. Regarding the

response time, lower values are better; while higher values are

better for throughput. In terms of resource utilisation, our main

metrics were CPU (in %) and memory (in MB) utilisations. In



both cases, lower values are better. They were collected using

the top command. In terms of testing productivity, our main

metric was the number of bugs found. Here, higher values are

also better. The bugs were obtained from the reports generated

by the chosen diagnosis tool (i.e., WAIT).

B. Experimental Results

1) TRINI’s results: In terms of the effort required to use the

tool in our initial use case (i.e., performance optimisation in

real-time), it was minimal: We only needed to install the tool

in the application nodes. It involved placing the tool inside

Tomcat’s application directory (as we chose to use the web

interface), as well as configuring the location of the JVM

which would be used in the experiments (in our XML config-

uration files). As TRINI’s implementation currently uses Java

Management Extension (JMX) to interact with the monitored

JVM, we used Oracle HotSpot JVM (as it offers more robust

JMX support, compared to other JVM versions). JMX is a

standard component of Java Standard Edition which offers

a set of standard management components (i.e., MBeans)

which allow the easy extraction of monitoring data (e.g., GC,

memory, threads, etc).

This experiment also required the creation of a set of JMeter

test scripts. Specifically, a JMeter test script was created for

each one of the 23 programs that compose the DaCapo and

SPECJVM benchmarks. This design decision was taken to

diversify as much as possible the GC/memory application

behaviours to be evaluated (as each program has its own

GC/memory behaviour). Each script had some controlled di-

versity with respect to the test workload. The specific strategy

followed was different for DaCapo and SPECJVM due to

the differences in their behaviours (i.e., DaCapo is based on

iterations, while SPECJVM is based on time). In the case

of the DaCapo programs, the script varied the workload size

between the different program calls (by iterating among the

existing pre-defined workload sizes of DaCapo). In the case

of the SPECJVM programs, the controlled diversity involved

varying the warm-up and execution iteration times between

program calls. It was done iteratively in the range between 30

to 90 seconds (in increments of 30 seconds).

Typically, an important evaluation perspective is to assess

the generality of any obtained findings. For instance, any

performance benefits (e.g., an increment in the throughput, or

a decrement in the response time). Likewise, it is important to

understand the costs of a proposed solution (e.g., introduced

overhead or the amount of required computational resources).

These two scenarios are exemplified in Figs. 8 and 9. Fig. 8

shows the performance improvements obtained by TRINI. A

performance improvement for a specific metric (e.g., through-

put) is defined as the difference between an experimental

configuration using a GC-aware load balancing algorithm (e.g.,

GC-RAN) and its original counterpart (e.g., RAN). Regarding

response time, an improvement implies a negative difference

(as lower response time is better) in the range between 0%

and 100%. Regarding throughput, an improvement implies a

positive difference (as higher throughput is better) and has a
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value equal or greater than 0%. The overall results showed that

TRINI worked well, as significant performance improvements

were observed (in average) for both evaluated GC algorithms.

More importantly, similar results were obtained, proving to

a certain degree the generality of TRINI’s improvements. A

point worth noticing is the relatively high standard deviations

(e.g., it ranged between 28% and 31% for the response time).

They are the result of considerably diversifying the range of

memory behaviours that were tested (i.e., the 23 programs

that belong to the DaCapo and SPECJVM benchmarks). Such

diversify would have been harder to achieve without our tool.

Similarly, Fig. 9 presents some interesting findings, this time

in terms of the overhead introduced to the cluster: Unlike the

performance gains discussed previously, which experienced a

relatively high standard deviation, the costs of TRINI (i.e.,

CPU and memory utilisations) had a minimal impact in

the clustered application (e.g., it introduced an overhead of

approximately 1% in average CPU utilisation) regardless of

the tested application behaviour (as reflected in a low standard

deviation -i.e., less than 1%-). This is an important finding,

as the amount of required computational resources is usually

an important indicator of the practicability of the technique

for a real-world usage. This low overhead is the result of the



design of the solution, where most of the work is done at the

load balancer node (typically not a major concern, in terms of

resource utilisation, as that is a node exclusively dedicated to

load balancing). For that reason, the only source of overhead

in the application nodes is the data gathering process of TRINI

(i.e., through JMX), which periodically collects memory/GC

samples from the monitored application nodes.

In summary, these results demonstrated how our tool was

useful to diversify the tested application’s behaviours. Con-

sequently, helping to have more confidence regarding the

generality of the obtained results.

2) PHOEBE’s results: In terms of the changes required to

adjust our tool to this alternative use case, they were minimal,

only requiring to modify the configured JVM in our XML

configuration files. This is because the chosen diagnosis tool

(i.e., WAIT) relies on Javacores (as explained in Section IV-A)

which are better supported by the IBM JVM (in comparison

with Oracle’s version). Therefore, it was more appropriate to

use an IBM JVM in this scenario. This also exemplifies how

our tool can be reused across evaluation strategies. Another

difference of this evaluation strategy (compared to TRINI’s)

was the way that the tool was used: As the aim was to

mimic a complex application (so that it has multiples potential

performance bottlenecks), all the different programs were

executed in a single JMeter test script. Here, all the programs

were iteratively executed during the total performance test run,

using the highest available test workload (where applicable).

An example of the obtained results is depicted in Fig. 10

which compares the results obtained by PHOEBE against

the set of eight rival static sampling intervals. There, it can

be noticed the trade-off that is typically experienced when

using a diagnosis tool: On one hand, if one samples very

frequently, one will be able to collect more data from the

system-under-test. Consequently, as one is able to better feed

the diagnosis tool, the bug accuracy (i.e., the identification of

performance bugs) can be drastically improved. On the other

hand, if one samples too frequently, one risks introducing a

high overhead into the system-under-test. If it ever happens,

the test results might get compromised. In the figure, this is
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illustrated by the test run using the smallest SI (i.e., 0.125

minutes): It obtained the highest bug accuracy, but at the

expense of introducing a considerably high performance

impact. On the contrary, PHOEBE was able to achieve a good

level of bug accuracy, within the tolerable level of overhead

(i.e., the blue line shown in the figure).

To complement the results of this analysis, Fig. 11 shows an

example of one of the obtained WAIT reports (using a static

SI of 30 seconds). It can be observed how a rich WAIT report

was successfully generated: Its top area summarises the usage

of resources (i.e., CPU or memory) and the types of threads

collected and analysed. Meanwhile, the bottom section shows

all the performance issues that have been identified, ranked

by frequency and impact. Each problem category is indicated

with a different colour. For example, in Fig. 11 the top issue

appeared in 68% of the samples and affected 18 threads on

average. Additionally, it was a multi-factorial problem, mainly

caused by a CPU-intensive method (as the blue colour is

used to identify CPU problems), and in less degree by an

inappropriate usage of locks (as the brown colour identifies

lock-related issues).

In conclusion, these results proved how our tool can be

easily adjusted to support more than one use case. For instance,

in this case, we used it to demonstrate the improvements in

bug accuracy (i.e., identified performance issues). This was

done by combining the full set of 23 application behaviours,

so that it behaves as a complex web application (which is

reasonable, as we have previously shown - as part of TRINI’s

results - how the 23 programs belonging to the DaCapo

and SPECJVM benchmarks are considerably diverse in their

memory/GC behaviours).

V. CONCLUSIONS AND FUTURE WORK

Conducting an extensive analysis on the efficiency and

effectiveness of any proposed technique is key to understand

its limits and under which conditions it might be appropriate

to use. To help tackle this problem within the clustering

domain, this paper presented a tool that has been designed

to enable researchers to effortlessly leverage well-known Java

benchmarks in the testing of cluster-related advancements.

Additionally, we experimentally evaluated the tool through

two case studies where it was successfully applied to the

testing of a load balancing strategy and a performance testing

framework. These case studies demonstrated how the tool

works well, as it was possible to easily use two of the most

widely-used Java benchmarks to strengthen the testing of those

cluster advancements. As future work, we plan to increase the

set of Java benchmarks that are supported, as well as to extend

the tool to work with other technologies (e.g., .NET). Also,

we plan to broaden our experimental validation. For instance,

by diversifying the sizes of the clusters and assessing the

suitability of the tool to other distributed architectures (e.g.,

grids). Finally, we plan to improve the quality of our source

code in order to release our work as an open-source project.



Fig. 11. Example of WAIT Report
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