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ABSTRACT

A common problem in contemporary web servers is the unpredictability of
response time. Researchers have recently considered different admission control
algorithms with differentiated service for web servers to complement the Internet
differentiated service model, and thereby provide QoS support to users of the World
Wide Web. However, most of these admission control mechanisms do not ensure the
QoS requirements of all admitted clients under a bursty workload. Although enabled
in web servers to improve the QoS guarantee predicament in previous literature, an
Internet service model called proportional differentiated service remains impractical
and incompatible with current Internet protocols. This work presents two algorithms
for admission control and traffic scheduling algorithms of the web server under
proportional differentiated service, which embed a time series predictor to estimate
the client traffic load in the next time period. The time series predictor is
implemented using four different approaches based on their successful prediction
rate in the literature. The experimental results demonstrate that the proposed
approaches can effectively realize proportional delay differentiation service in
multiclass Web servers when the support vector machines algorithm is utilized as the
time-series predictor.
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1. INTRODUCTION

As the Internet gains global popularity, the use of web servers to advertise and
sell merchandise in business is increasing. Traditional web servers apply a first-
come-first-served (FCFS) approach to provide service for client requests,
introducing unpredictable response times for the clients when the incoming traffic is
bursty. Customers who become frustrated by a long response time may terminate the
network connection with the web servers without completing the business transaction,
causing loss of revenue for the businesses and unsatisfactory quality of service
(QoS). Although the study of QoS provision in network transmission, such as
Integrated Services (IntServ) and Differentiated Services (DiffServ), has become
active in the research communities in recent years, guarantee of network layer QoS
alone might not be able to offer clients perceivable services when the servers are
overloaded by the unexpectedly significant increase in connections.

Prioritized processing in web servers has been investigated recently (Eggert &
Heidemann, 1999; Bhatti & Friedrich, 1999; Vasiliou & Lutfiyya, 2001; Chen et al.
2001; Chen & Mohapatra, 2002; Chen & Mohapatra, 1999; Kant & Mohapatra,
2001; Lee et al. 2002; Kanodia and Knightly, 2003; Ritter et al. 2000; Dovrolis et al.
2002). Eggert and Heidemann attempted to provide QoS service at the application
level by grouping client requests into two classes as in the network layer, and
restricting the process pool size and response transmission rate for different priority
groups. Bhatti and Friedrich developed tiered service levels and overloaded the
management model in their work and implement admission control mechanism by
blocking low-priority tasks when the number of high priority jobs exceeded a
predefined threshold. Both admission control algorithms adopt a conventional fixed-
bandwidth leased line approach that satisfies the requirement of bursty workload.
Although the service quality of high priority tasks is guaranteed, some bandwidth
remains unused. Vasiliou and Lutfiyya proposed a QoS architecture that can adjust
the number of requests for different priority groups according the performance of the
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high priority group during the runtime. However, their architecture still degrades the
service quality of low-priority tasks. Chen et al. presented service differentiating
Internet servers to cope with the QoS service provided by the network layer. Their
prioritized scheduling and task assignment schemes also significantly improve the
service to high-priority tasks. However, low-priority task are still starved of
resources due to the monopolization of the resources by high-priority tasks.

To enhance the performance of the low priority tasks, Lee et al. (2002) developed
an admission control algorithm that enables proportional delay differentiated service
(PDDS) (Leung et al. 2001; Li et al. 2000; Vuong & Shi, 2000; Li & Lai, 2001; Jin
& Li, 2001) at application level. Under PDDS, client requests are first classified into
different priority groups as in previously discussed approaches, and are then
allocated services according to class in proportional to the ratios set in the service
contracts. Client can then be charged for usage based on their maximum average
waiting time QoS requirement. Kanodia and Knightly (2003) devised the latency-
targeted multiclass admission control algorithm, which controls the QoS of each
class by measuring requests and service latencies. The works of Lee et al. and
Kanodia and Knightly might resolve the problem of starvation of low-priority tasks
in other approaches. Unlike the use of HTTP tags and HTML links, however, the
algorithm of Lee et al. requires clients to explicitly feed two parameters, maximum
arrival rate, and maximum average delay time, into the server to launch the
admission control mechanism. This approach is impractical in real life. Furthermore,
the simulations conducted in model the aggregate request rate from all clients as a
Poisson process, which is inconsistent with findingsthat the traffic from World Wide
Web (WWW) transfers has self-similarity (Arlitt & Jin, 2000; Arlitt & Williamson,
1997; Huebner et al. 1998; Deng, 1996; Crovella & Bestavros, 1997; Adas, 1997;
Paxson & Floyd, 1995). Therefore, the validity of the performance evaluation reports
in (Lee et al. 2002; Kanodia & Knightly, 2003) is disputable.

This work presents admission control algorithms to enable PDDS at application
level. The proposed algorithms adopt a prediction mechanism to predict the total
maximum arrival rate and maximum average delay time of each priority task group
for the next measurement period according to the arrival rate of each class during the
current and the last three measurement periods. The admission control mechanisms
then utilize the predicted values to determine the next client for service from one of
the queues maintained for each priority task group. Significantly, the automatic
computation of these two parameters by the system resolves the impracticality of
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requiring the clients to specify. Moreover, WWW traffic is self-similar, and
therefore has a predictable time series. Support vector machines (SVM) have been
successfully employed in many areas, including time series prediction (Cao & Tay,
2003; Gestel et al. 2001; Zhu et al. 2002; Raicharoen et al. 2003), Internet traffic
prediction, call classification for AT&T's natural dialog system, multi-user detection
and signal recovery for a code division multiple access (CDMA) system.
Additionally, many VLSI-chip-based solutions permit the SVM to be hardware-
computed, and high-speed low-cost SVM chips have been introduced recently,
making hardware implementation of SVM feasible (Anguita & Boni, 2001; Anguita
et al. 1999a; Anguita et al. 1999b). This work therefore employs SVM to realize the
prediction mechanism, and compares this approach with another well-known
machine learning technique, namely the fuzzy logic system, which is renowned for
its mathematical framework for handling real world imprecision, and which allows
decision-making with estimated values under incomplete or uncertain information
(Buckley & Eslami, 2002).

The rest of this paper is organized as follows. The proposed admission control
schemes are introduced in Section 2. Section 3 introduces the prediction techniques
employed in the admission control schemes, namely, the fuzzy logic system and
support vector machines techniques. Section 4 presents the simulation results of
comparing the proposed algorithms with the FCFS service model and with two
representative time series predictors in the literature. Conclusions are presented in
Section 5.

2. ADAPTIVE ADMISSION CONTROL SCHEMES

World Wide Web traffic has been observed to have self-similarity (Arlitt & Jin,
2000; Arlitt & Williamson, 1997; Crovella & Bestavros, 1997). The evidence shown
in Box and Jenkins (1970) implies that WWW traffic is predictable because self-
similar time-series can be forecast. We thus tend to incorporate a prediction
algorithm in our admission control mechanism to estimate the ratio of the expected
average delay time between different classes and investigate whether the service
contract of each class is violated. We first give a brief review of definition and
characteristic of self-similarity as follows.
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2.1 Self-similarity

We assume that,X = (xt,l = 0,1,2 ···) is a stationary stochastic process. If we

compute the average of the series X over non-overlapping blocks of size m, we
obtain a /»-aggregated stationary time series X^m' = \Χ^, k ~ 0,1,2, · · ·) as follows:

Σ
Β,-1

Λ ί · = "°
m 0)

When the variances and the autocorrelations of X^"' and X satisfy the following
relation,

' , ,\ ir„-( v\
(2)

<3>

where H denotes the Hurst parameter. It is said that X is exactly self-similar. In
addition, A" is asymptotically self-similar if the following relation is satisfied,

(4)

<5>

The autocorrelations given in Eqs. (3) and (5) tell that the degree of variability or
burstiness is identical at different time scales for self-similar stochastic process, and
the autocorrelation does not drop to zero as m -»oo . This is in contrast to the
characteristic of the stochastic processes used in typical data models:

*>Μ ('")-» 0, /»-»· CG . (6)

As for the variances given in Eqs. (2) and (4), they decrease more slowly than γ

when m —» °o.
As the study in (Arlitt & Jin, 2000; Arlitt & Williamson, 1997) showed that the

self-similar traffic pattern generated by Web browsers fits very well to a Pareto-type
distribution, our simulation model will thus assume the packet interracial times for
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each priority task group to be independent and identically distributed according to
the infinite-variance Pareto distribution with shape parameter a and cut-off
parameter k

Λα+ι

7\
a>0, t>k, (7)

=0. t<k

2.2 Proportional Delay Differentiated Service

The basic principle of proportional delay differentiated service (PDDS)
proposed by Dovrolis et al. (2002) is that the higher-class requests will receive better
performance compared with the lower class requests. Specifically, we assume there
are W > 1 service classes, and the priority of each class is set in a decreasing order,
then average delay time is in proportion to the priority inversely for each class:

(9)

where D, and P, represent the average delay time and priority for class /,
respectively. In other words, the average delay time will be shorter for the priority
task groups that pay higher usage cost.

Our admission control scheme will predict the average delay time of each class
for next measurement period, and Eq. (9) is used to select the class client with the
largest gap in the ratio of the average delay time to receive next service from the
server. Notably, a new client requesting for service will be place in the class queue
that the client belongs to if the average delay time for that class does not exceed
some predefined threshold. Each class possesses its own average delay time
threshold value, and it is adjustable during operation based on the number of the
clients who leave the class queue without service due to long waiting time.
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2.3 Parameters Required for Admission Control Mechanism

Prediction-Based Admission Control Scheme
for Proportional Differentiated Services

The client is requested to supply some essential information before admitted into
the service. There are two options for each client—the class that the client belongs to
and the maximum average delay time that the client can endure, respectively. The
specification for the class to which the client belongs is simple and consistent with
the approach taken in the differentiated service enabled atthe network layer, whereas
the provision of the maximum average delay time directly reflects the customer's
requirement. Based on the two kinds of parameter specifications, the corresponding
admission control mechanisms are developed as follows.

2.3.1 Using client class as the parameter. As shown in Figure 1, each class
client waiting for the service is placed in the corresponding class queue, and each
queue is managed by the FCFS service model. According to conservation law (Bolch
et al. 1998), if the average arrival rate is λι for the class ι client during next

measurement period, then the average delay time for class/, DH should be,

Ν

J=\

Ν

7=1
(10)

Fig. 1: Admission control scheme with a parameter of each client's class specification.
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where D denotes the average delay time for the aggregate traffic serviced by a
work-conserving FCFS server.

Based on Eq. (9), Eq. (10) can be rewritten as,

ΣΛ·°-~=Σ^-ο. ου
7=1 ^ 7=1

Then the average delay time for class / traffic during next measurement period can
be derived as follows:

(12)

As it is difficult to obtain the average arrival rate for each class during next
measurement period in Eq. (12), we incorporate a time series predictor into our
admission control scheme to foresee the average arrival rate and thus resolve the
issue of the unreasonable request for the arrival rate specified by each client as
presented in (Lee et al. 2002).

We assume that class 1 clients possess the lowest priority, and the maximum
delay time for each class 1 client is D\1AX . Based on Eq. (9), the maximum delay

pMAX p
time that class ι client can tolerate is — ! - - . Accordingly, the incoming class /

*l

client is allowed to use the server if the following relationship is satisfied,

7=1 J

Λ

where λ denotes the average arrival rate for class ι aggregate traffic foreseen by the

time series predictor.
When the server is ready to service next client, the scheduler as shown on the

right of Figure 1 will use the following equation to determine which class client
should be selected for service:
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where Wt denotes the waiting time for the client at the front of the class ι queue, and
P, represents the priority of class /.

As the clients of some classes can tolerate longer waiting time, such as best-
effort traffic, our scheme can pop up an interactive dialogue to ask the clients if they
are willing to wait longer when the server is overloaded. The usage cost and the
priority for the clients will be lower down if they are willing to wait longer. This
approach can reduce the number of the customers in the higher class queues under a
bursty workload, and maintain the stringent QoS requirement for higher class clients.

Now we summarize the algorithm for the admission control scheme with the
class to which each client belongs as the parameter as follows.
1 . When a class i client arrives, use the time series predictor to forecast the average

arrival rate of class ι aggregate traffic during next measurement period.
2. Use Eq. (12) to compute average delay time of class i during next measurement

window.
3. Use Eq. (13) to determine if the incoming client is admitted to use the server.
4. If admitted, the client is placed at the end of the class / queue.

If Eq. (13) is not satisfied, but the client is willing to wait longer; search for the
first lower class that satisfy the requirement of Eq. (13).
If found, place the client into the corresponding class queue.

2.3.2. Using maximum delay time as the parameter. In our admission control
scheme, we also allow the client to specify the maximum delay time as shown in
Figure 2. Notably, a classifier is needed in the scheme to compute the class that the
incoming client belongs to as illustrated in Figure 2.

Let the maximum delay time requested by the incoming client is ω , and D^1

denotes the maximum delay time for class 1 clients that posses the lowest priority.
According to Eq. (9), we know that the longest delay time that class; clients can bear

r\MAX t ρ

is — - - ; the classifier then can use the following equation to derive the class
PI

that the incoming client belongs to:
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= arg min m ω·Ρ.
-1,0 -

Journal of Intelligent Systems

(15)

Fig. 2: Admission control scheme with the parameter of the maximum delay time.

Note that Eq. 15 is used to locate the highest priority task group whose
requirement of the maximum delay time is longer than the client can stand.

The algorithm for the admission control scheme as shown in Figure 2 can be
summarized as follows:
1. Use the classifier to categorize the incoming client based on Eq. (15).
2. Use the time series predictor to forecast the average arrival rate of the class, /',

that the incoming client belongs to during next measurement period.
3. Use Eq. (12) to compute average delay time of class / during next measurement

window.
4. Use Eq. (13) to determine if the incoming client is admitted to use the server.
5. If admitted, the client is placed at the end of the class / queue.

If Eq. (13) is not satisfied, but the client is willing to wait longer; search for the
first lower class that satisfy the requirement of Eq. (13).
If found, place the client into the corresponding class queue.
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3.0 TIME SERIES PREDICTOR

Time series is a sequence of numerical values indexed by increasing time units.
Well-known time series prediction techniques in the literature include the 'average'
method, which computes the mean of the pastM measurement periods:

M-\

Λί
(16)

and the weighted moving average, which increases the weight of the last measure-
ment period,

λ(ΐ + \)=(ΐ-ρ)·λ + ρ·λ(ή, (17)

where ρ =1, and λ is the average computed by Eq. (16).
ARIMA (Box & Jenkins, 1970; Zhang, 2003) is a tool that is often adopted to

model a given time-series data set. The flaw of ARIMA is its inability to identify the
complex properties of the real world. Machine learning techniques, such as grey
prediction theory (Chi et al. 1999; Sun, 2004) and neural networks (Sun, 2004), have
also recently been applied in the application of time-series prediction. Neural
networks models have been found to outperform grey system in predicting long-term
time-series data (Sun, 2004).

Fuzzy logic has recently been employed to solve multi-connection admission
control in Asynchronous Transfer Mode (ATM) and wireless networks and time-
series prediction problems efficiently (Liang, 2002.; Ren & Ramamurthy, 2000;
Bensaou et al. 1997; Ye et al. 2003; Liang & Mendel, 2000; Park & Kwang, 2001).
The SVM system is also popular for time-series forecasting, such as forecasting
financial markets (Suykens et al. 1999), forecasting electricity prices (Sansom et al.
2002), the estimation of power consumption (Chen et al. 2001), and the
reconstruction of chaotic systems (Matterra & Haykin, 1999; Ding et al. 2002). The
SVM model has been reported to give a better performance than the neural-network
prediction model on time series prediction (Yang et al. 2002).
This work employs the SVM and fuzzy logic systems as the time-series predictor in
the admission control scheme based on their high successful prediction rates in
previous literature. Simulations were also undertaken for the two approaches
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presented in Eqs. (16) and (17) to demonstrate the superiority of the proposed
prediction techniques.

3.1 Fuzzy Logic Predictor

In this subsection, we first apply fuzzy logic controller concept to predict the
maximum arrival rate and maximum delay time as shown in the scheme presented in
the previous section.

As in Ren & Ramamurthy (2000), Bensaou et al. (1997), and Ye et al. (2003), we
use the average arrival rate for each class during the current and the last four
measurement periods λ{ί — 2),λ(ί-2),λ{ί-\), and λ(ί) to predict the average arrival

rate during next measurement period λ(ί +1). Figure 3 shows the corresponding fuzzy

logic time series predictor. The basic functions of the components employed in the
predictor are described as follows.

A(t+0

Fuzzffier Defuzzifler

Inference engine

Fuzzy rale base

Fig. 3: The fuzzy logic based time series predictor
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• Fuzzifier: The fuzzifier performs the fuzzification function that converts crisp
input data into suitable linguistic values that are needed in the inference engine.

• Fuzzy rule base: The fuzzy rule base is composed of a set of linguistic control
rules and the attendant control goals.

• Inference Engine: The inference engine simulates human decision-making
based on the fuzzy control rules and the related input linguistic parameters. The
max-min inference method is used to associate the outputs of the inferential
rules (Buckley & Eslami, 2002), as described later in this subsection.

• Defuzzifler: The defuzzifier acquires the aggregated linguistic values from the
inferred fuzzy control action and generates a non-fuzzy control output, the
foreseen average arrival rate of each class during next measurement period. The
Mamdani defuzzification method is employed in this paper to compute the
centroid of membership function for the aggregated output, where the area under
the graph of membership function for the aggregated output is divided into two
equal subareas (Buckley & Eslami, 2002).

Figure 4 shows the mapping of four inputs of the fuzzifier and the output
parameter of the inference engine into some appropriate linguistic or membership
values, which are expressed by the values within the range of 0 and 1 . Three
membership functions for each of four inputs and the output are given in Figure 4,
where the linguistic variables "low", "medium", and "high" give the measure of the
average arrival rate for each class. Note that the following Gaussian membership
function is chosen for the antecedents and the consequent,

(18)

where m, denotes the mean, <Jt represents the variance.

The input and output fuzzy sets are correlated to establish the inferential rules of
the fuzzy logic time series predictor. Note that three fuzzy sets are used for each
antecedent, so the number of fuzzy rules is 34=81. By way of illustration, each fuzzy
rule can be interpreted as:
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. i if+i)

Fuzzificr

Infer dice engine

Fnzzy rule base

Deftmifiw

Fig. 4: Membership function for the antecedents and the consequent.

\

Min

t ί*4

M/ Vr
• ^

/ f\

/ \\

- i "'Xj

j"\̂ _
l __
1 S
C2

j L· _ i __,. i „,.

f'

r^/· i.fA
;,t-H

»Ux

"V7

Fig. S: The reasoning procedure for Mamdani defuzzification method.
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Fuzzy rule A,: IF λ(ί-ϊ) is Aj and λ(ί-2) is B} and A(f-l)is C,

and λ(ί) is D} , THEN λ} (t + 1) is E}. (] 9)

The inference engine then jumps to the following conclusion for fuzzy

E] = (A'J xBj xC'JxDJ)o(AJxBj xCjXDj -» £,), (20)

where A} , B/t Cj and D} stand for the membership grades of four inputs obtained

from fuzzy rule RJt respectively, and the expression inside the second parenthesis
denote the simplified representation for Eq. (19).

Figure 5 illustrates the reasoning procedure for a two-rule Mamdani fuzzy
inference system. Note that the composition of minimum and maximum operations,
which corresponds the ο operator in Eq. (20), is employed in the evaluation of the
fuzzy rules. The non-fuzzy output of the defuzzifier can then be expressed by the
following algebraic expression:

(21)

where / ^ d denotes the membership function of the aggregated output λΑ .

3.2 Support Vector Machines Approach

Support vector machines (SVM) have recently been gaining popularity due to
their numerous attractive features and eminent empirical performance (Vapnik, 1995;
Burges, 1998; Vapnik, 1998; Suykens et al. 1999). The main difference between the
SVM and conventional regression techniques is that it adopts the structural risk
minimization (SRM) approach, as opposed to the empirical risk minimization (ERM)
approach commonly used in statistical learning. The SRM tries to minimize an upper
bound on the generalization rather than minimize the training error and is expected
to perform better than the traditional ERM approach. Moreover, the SVM is a convex
optimization, which ensures that the local minimization is the unique minimization.

To solve a nonlinear regression or functional approximation problem, the SVM
nonlinearly map the input space into a high-dimensional feature space via a suitable
kernel representation, such as polynomials and radial basis functions with Gaussian
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kernels. This approach is expected to construct a linear regression hyperplane in the
feature space, which is nonlinear in the original input space. Then the parameters can
be found by solving a quadratic programming problem with linear equality and
inequality constraints (Burges, 1998).

We assume that a training data set D = |[x1,j'l)e 91" x9l,/= !,...,/), which
consists of / pair training data (xl,yl),i = \,...l , is given. The inputs x,'s are

«-dimensional vectors, and the system responsesj»,'s are continuous values. Based on
the knowledge of data set D, the SVM attempts to approximate the following function:

N
(22)

where b is the bias term, and w,'s are the subjects of learning. Moreover, a mapping
ζ = φ(χ) is chosen in advance to map input vectors χ into a higher-dimensional
feature space F, which is spanned by a set of fixed functions <p,(x) 's.

By defining a linear loss function with the following e-insensitivity zone as
shown in Figure 6,

I»-. ο
J,j, j_ /(Xi i

,y>,-/(x,,w)|<i
otherwise

(23)

Fig. 6: £--insensitivity loss function.
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w,'s in Eq. (22) can be estimated by minimizing the risk:

where C is a user-chosen penalty parameter that determines the trade-off between the
training error and VC dimension of the SVM model.Note that the VC dimension is a
scalar value that measures the capacity of a set of functions(Burges, 1998).

Eq. (24) can be further derived into the following constrained optimization
problem:

(25)2
subject to constraints

y,-w x,-<
wrx, +b-y, <,ε + ξ* , (26)

where ξ and ξ* represent the measurements above and below the zone with the radius
ε in Vapnik's loss function as given in Eq. (23), respectively.

It can be shown (Burges, 1998) that the above constrained optimization problem
is solved by applying the Karush-Kuhn-Tucker (KKT) conditions (Taha, 1997) for
regression, and maximizing the following Lagrangian:

L(a) = -0. 5αΓΗα + f 7'α , (27)

under constraints

' . '
Σα· =2>·

0 Sa, S C. /"=!....,/, (28)

where f = [e-yl s-y2 ... e-yN ε + γλ e+y2 ... £ + yN], (α,,α,)
denotes one of/ Lagrange multiplier pairs, and the Hessian matrix H is given as
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«4G
L-G (29)

G denotes the corresponding kernel matrix.
The best nonlinear regression hyperfunction is then given by

/(x.w)=Gwe+6e, (30)

where w„ and b,, denote the optimal desired weights vector and the optimal bias,
respectively.

w„ and b,, can be derived by

w„=a*-a , (31)

02)
' 1=1

where g=G w„.
The training of w„ and b0 will be reinitiated whenever the cumulative error

measure as given in Eq. (23) for / successive incoming input/output pairs is larger
than a predefined threshold. This can assist the SVM in keeping up with the abrupt
change in the average arrival rate of the aggregate traffic.

4.0 PERFORMANCE EVALUATI ON

This work conducted a series of simulations to evaluate the performance and the
behavioral specifics of the admission control algorithms. The performance metrics
that particularly interest us include the achieved delay time ratio for different classes
of requests and the percentage of infringement of QoS requirement for admitted
clients of each priority task group.

4.1 Simulation Scenario

This work developed an event-driven simulator for the experimental study of the
proposed admission control schemes. Although previous works reported that the
WWW traffic pattern has self-similar characteristic (Arlitt & Jin, 2000; Arlitt &
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Williamson, 1997; Crovella & Bestavros, 1997; Box & Jenkins, 1970), the precise
generation of representative self-similar WWW traffic for performance evaluation is
still an open problem (Barford & Crovella, 1998; Paxson & Floyd, 1997). The present
work thus simulated various offered loads to the Web server, keeping a fixed targeted
waiting time ratios by using the real trace based on the logs from the Web server at the
National Hualien University of Education. The trace files contain hundred thousands of
requests within two-week period. The access logs provide the request timestamp, client
ID, object URL, service status, and reply size of each request. The simulation
parameters are listed in Table 1.

TABLE 1

Simulation parameters

Parameter

Priority Level

Measurement period

Disk seeking overhead

Disk bandwidth

Maximum server process number

Maximum queue length

Delay time differentiations

Maximum delay time for basic class

Average system service time

Value

2
1 sec.

1 ms.

10 Mbps

30
1000

1.4
1 1 sec.

18ms

As the primary concern of the simulations is to examine effectiveness of our
admission control schemes, only two priority levels are considered—namely premium
clients and basic clients to simplify the study during the experiments. The delay time
differentiation of the two class clients is 1.4. The maximum delay times of all clients
are drawn uniformly between 2 and 11 seconds for the scheme using maximum delay
time as the parameter. The service times of all requests are exponentially distributed
with mean equal to 18 ms. The priority of each incoming request is assigned randomly,
and the number of high priority tasks is identical to that of low priority tasks. Identical
to the parameter settings adopted in (Chen & Mohapatra, 2002), the disk I/O
throughput of the server is set to 10 MB per second, and disk seeking overhead of each
disk request is set to I ms per second.

93



C-JHuang, Y-TChuang
and R-L Luo

4.2 Simulation Results

Journal of Intelligent Systems

We ran a bunch of simulations for our admission control schemes embedded
with the four types of time series predictor, i.e. support vector machines (SVMAC),
fuzzy logic system (FLAG), average method (AAC), and the weighted moving
average (WMAAC), respectively, and contrasted their results to the first-come-first-
serve service model (FCFS). The admission control scheme that utilizes the
maximum delay time as the parameter is denoted as scheme I, and the admission
control scheme using each client's class specification as the parameter is denoted as
scheme II in the following illustrations.

To see the prediction performance of the four time series predictors employed in
this work, this work used a time-series data set consisting of the number of sunspots
recorded from 1749 to 1983 (Genet & Petrowski, 2003) to compare the prediction
capability of these four predictors. Figures 7-10 depicts the prediction outcomes of
these four techniques. Obviously, the SVM apparently outperforms other three
techniques as expected.

1 57 112 I« 215 351 237 »2 «4» SOS XI «17 m TS »5 841 tel 0B 10» !W5 1U1117? LB3 ua»B451«l

Yttr

Fig. 7: Time series prediction outcomes of SVM.
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Fig. 8: Time series prediction outcomes of fuzzy logic system.
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Fig. 9: Time series prediction outcomes of average method

95



C-JHuang, Y-TChiiang
and R-L Luo

Journal of Intelligent Systems

Anal Dun - WtidttdMmnn; Airmgi I

1 61 m 181 241 301 361 421 4SI 541 601 661 721 781 Ml 901 961 1031 10Θ1 1141 1201 1361 13211381
Year

Fig. 10: Time series prediction outcomes of weighted moving average method

TABLE 2

NMSE comparison of four time series predictors

Method

NMSE

SVR

19.542

Fuzzy Logic

28.8

Average

24.37

Weight Average

24.66

Table 2 lists the normalized mean square error (NMSE) of time series prediction
outcomes of the four prediction models. Notably, the NMSE is defined as:

ησ
(33)
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/ -*) .* = — Σ *, , and xt and Je, represent the actual and the

predicted number of sunspots, respectively.

Table 2 shows that the SVM indeed has the lowest normalized mean square
error among the four prediction models.

The comparison of the delay time ratio for the five methods under different
offered loads to the Web server is given in Figures 1 1 and 12. The former shows the
comparison for admission control scheme I, and the latter the admission control
scheme II. As seen in Figures 1 1 and 12, the ratio of the SVM AC approach is closer
to the expected value, 1 .4, as specified in Table 1 , than to the other four models for
higher traffic loads, despite four time series predictors achieving about the same
performance under low workloads. As for the FCFS service model, it does not give
any differentiations between the two priority task groups as expected.

SVMAC -*- FLAC -*- AAC —- WMAAC -*- FCFS

1.8

1.6

1.4

08α
O.fi

0,4

0.2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Aggregate traffic loan

Fig. 11: Delay time ratio for two priority task groups under different workloads for admission
control scheme I.

97



C-J Huang, Y-TChuang
and R-L Luo

Journal of Intelligent Systems

- SVMAC -»- FLAG -*- AAC · WMAAC —- FCFS

Ι,ί

1.4

l.J

n .
0.2

0.6

04

0.2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1 I . I 1.2

Aggregate traffic load

Fig. 12: Delay time ratio for two priority task groups under different workloads for admission
control scheme I

Table 3 lists the comparison of the average delay time ratio achieved for two
admission control schemes. The ratio for the SVMAC approach is almost identical to
the expected value, 1.4, for both schemes, and the FLAG approach achieves the
second best. The evidence shown in Figures 11 and 12 and in Table 3 demonstrate
the effectiveness of the machine learning techniques, such as support vector machines
and fuzzy logic system, used in the prediction of self similar time series.

TABLE 3

Comparison of the average delay time ratio for two priority task groups

Admission control
scheme I
Admission control
scheme II

SVMAC

1.402

1.41

FLAG

1.423

1.421

AAC

1.446

1.363

WMAAC

1.382

1.424

FCFS

1.015

1.068
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TABLE 4

Percentage of infringement QoS requirement for two priority task groups

Admission
control scheme

Scheme I

Scheme II

Client's
priority
(class)

Premium
Basic

Premium
Basic

SVMAC (%)

0.012
0.033
0.019
0.031

FLAG (%)

0.063
0.029
0.074
0.035

AAC (%)

0.218
0.135
0.256
0.113

WMAAC (%)

0.108
0.079
0.131
0.094

FCFS (%)

19.515
13.289
21.642
12.443

Table 4 shows the percentage of the clients whose QoS requirement (maximum
delay time) is infringed. We can see that the SVMAC model gives the most
satisfactory service for the admitted clients of each class. Even though the other four
algorithms might accept more clients for service than the SVMAC scheme, the
higher percentage of the violation of QoS requirements for the admitted clients, as
shown in Table 4, is highly undesirable for the realization of proportional
differentiated services enabled Internet servers.

CONCLUSION

In this paper, two adaptive admission control schemes are proposed to provide
proportional delay differentiated services from an Internet server. Four different time
series predictors are embedded in the admission control schemes to estimate the
traffic load of the client in the next measurement period. The prediction is required
to determine whether the client can be accepted in the admission control and the
forecast is promising since a self-similar time series is predictable. Support vector
machines, fuzzy logic, average method, and weighted moving average algorithms are
used to implement the time-series prediction module for the admission control schemes
in turn. The simulation results show that the implementation of the time-series
prediction module with support vector machines is better then the other three methods
when the performance metric of proportional delay differentiated service consistency
is compared. Although the admission control scheme that utilizes the maximum
delay time as the parameter slightly achieves better performance than that of the
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other scheme that employs each client's class specification as the parameter, the
difference of performance for the two admission control schemes is still
insignificant. Subsequent research will incorporate other intelligent tools such as
neuro-fuzzy and genetic algorithms into our scheme to improve the accuracy of
prediction for the arrival rate of the aggregate traffic.
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