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Abstract—Mathematical models have been used to understand
the factors that govern infectious disease progression in viral
infections. Two basic models of within-host viral infection, pro-
posed by Nowak et. al. and Perelson et. al. respectively, have
been widely used in the studies of HBV and HIV infections.
However, the loss term of viral particles when it enters the target
cells are both ignored by these two models. Leenheer and Smith
provided a general virus dynamic model with the loss term of
viral particles, which make the above two basic models only be
special cases. But the basic reproduction numbers of all above
models are proportional to the number of total cells of the host’s
organ prior to the infection(when used for HBV infection) or
the normal target cell level(when used for HIV infection). On
the other hand, the global asymptotically stable condition of
the endemic equilibrium about Leenheer and Smith’s model is
related to the initial value of the growth function of uninfected
cell. In this paper, we formulate an amended Leenheer and
Smith’s model with standard incidence, the basic reproduction
numbers were no more dependent on the number of total cells of
the host’s organ. If the basic reproduction number of virus is less
than one, the infection-free equilibrium is globally asymptotically
stable and the virus is cleared; if the basic reproduction number
is great than one, then the virus persist in the host, and solutions
approach either an endemic equilibrium or a periodic orbit.
The periodic orbit can be ruled out in some cases but not
in general. The globally asymptotically stable condition of the
endemic equilibrium is only determined by the model parameters.

I. INTRODUCTION

The infection with Hepatitis B virus (HBV) is a major health
problem in the world. The WHO has reported that more than 2
billion people worldwide has been infected by HBV. There are
over 350 millions who are chronically infected with HBV[1].
25-40% of these chronic infection carriers will die from liver
cirrhosis or primary hepatocellular carcinoma[2].

Using mathematical models to enhance our understand-
ing of the dynamics of chronic viral infections has been
proved fruitful([3], [4], [5]), and using mathematical models
to interpret experimental and clinical results has made a
significant contribution to the fields of anti- HIV, HBV and
or HCV infections([6], [7], [8]). Mathematical analysis of
the HBV dynamics not only provide important quantitative
insights into the pathogenesis, but also lead to design treatment
strategies which would more effectively bring the infection
under control[9].

The basic models of within-host viral infection, proposed
by Nowak et. al. [2] and Perelson et. al. [10] have been
widely used in the studies of HBV and HIV infections. The
basic models, describing the dynamics of interaction between
uninfected cells x(t), infected cells y(t) and free virus v(t),

take the form of ⎧
⎨
⎩

ẋ = f(x) − βvx
ẏ = βvx − ay
v̇ = ky − uv

(1)

where the functional form of f is defined differently by:

1). Nowak and May[2]: f(x) = f1(x) = λ − dx.
2). Perelson and Nelson[10]:

f(x) = f2(x) = λ − dx + px(1 − x

xmax
).

Uninfected cells are assumed to be produced at the constant
rate λ, die at the rate of dx and become infected at the rate of
βxv. Infected cells are thus produced at the rate of βxv and
die at the rate ay. Free virions are generated from infected
cells at the rate of ky and decay at the rate of uv. Parameter
p is the maximum proliferation rate of uninfected cells and
xmax is the maximum capacity of host’s organ cells.

Obviously, as pointed by Leenheer and Smith[11], both
Perelson et. al. and Nowak et. al. ignored that the loss term
βvx should appear in the v equation, i.e.,

v̇ = ky − uv − βvx (2)

representing the loss of free virus particles when they enter the
target. Leenheer and Smith discussed a more general model
as follows: ⎧

⎨
⎩

ẋ = f(x) − βvx
ẏ = βvx − ay
v̇ = ky − uv − iβvx

(3)

which f(x) is a smooth function satisfying:

f(x) > 0, 0 ≤ x < x̄,
f(x̄) = 0, f ′(x̄) < 0,
f(x) < 0, x > x̄

(4)

where x̄ represents the number of total cells of the host’s organ
prior to the infection when it is used for HBV infection or
normal target cell level when it is used for HIV infection.
Here i = 0 means ignoring the loss of viral particle, i = 1
otherwise. Thus f1(x) = λ−dx and f2(x) = λ−dx+px(1−
x/xmax) are the special cases. Leenheer and Smith also gave
the stable analysis of the model (3) and oscillation behaviors
when f(x) = f2(x). Obviously the rate of infection in model
(3) is bilinear in the virus v and the uninfected target cells
x, the basic reproduction number of models (3) is given by
R0 = x̄(βk − ia)/au, since R0 is proportional to x̄, which
implies that an individual with a smaller organ or smaller target
cell level may be more resistent to virus infection. Hence, it
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may not be reasonable for the basic mathematical models to
describe virus infection in a sense. Paper[12] pointed out that
actual incidence rates are probably not strictly linear, then, they
proposed a HIV model with saturated mass action βxv/(1 +
αv) under the assumption that a less than linear response in
v could occur due to saturation at high virus concentration.
Paper [13], [14] employed a standard incidence function to
describe the hepatitis B virus infection as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = λ − dx − βvx

x + y

ẏ =
βvx

x + y
− ay

v̇ = ky − uv.

(5)

The basic reproduction number of model (5) is R0 = βk/au
which is independent of the number of total cells of human
liver λ/d. It is proved that if R0 < 1, then the infection-
free steady state is globally asymptotically stable[13]. If R0 >
1, then the endemic steady state is globally asymptotically
stable[14].

Mover, the other amended mother model based on Perelson
and Nelson’s model was discussed by Yu Ji[15] as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = λ − dx + px(1 − x

xmax
) − βvx

x + y

ẏ =
βvx

x + y
− ay

v̇ = ky − uv.

(6)

The basic reproduction number of model (6) is R0 = βk/au
which is also independent of the number of human liver cells.
The result showed that if R0 < 1, then the infection-free
equilibrium is globally asymptotically stable and the virus is
cleared; if R0 > 1, then the virus persists in the host, and
solutions approach either an endemic equilibrium or a periodic
orbit. But the local stability which is needed for globally
asymptotical stability of the endemic equilibrium was given
with another additional condition a1a2 > a3.

Obviously, both model (5) and model (6) all ignored the loss
term of viral particles. In this paper, we formulate a general
model as follows:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = f(x) − βvx

x + y

ẏ =
βvx

x + y
− ay

v̇ = ky − uv − i
βvx

x + y
.

(7)

Here f(x) satisfy the condition (4), and i = 0 means we ignore
the loss of viral particles when it enters target cell, otherwise,
we choose i = 1. Thus model (5) and model (6) are only
two special cases of our model (7) when i = 0. The basic
reproduction number of our model is R0 = β(k − ia)/au,
which also make the basic reproduction number of Model (5)
and (6) the special case when i = 0. If R0 � 1, our model
has two steady states:

E0 = (x̄, 0, 0), Ee = (xe, ye, ve). (8)

which f(x̄)=0, ve =
k − ia

u
ye, ye =

f(xe)

a
, and xe satisfy

f(xe) − a(R0 − 1)xe = 0. (9)

Since f(x) satisfy condition (4), we know that there must exist
xe ∈ (0, x̄) which satisfy (9). These two steady states represent
the infection-free steady state and the endemic steady state
respectively. Note the biological meaning, Ee does not exist
if R0 < 1, and it becomes E0 when R0 = 1. It is easy to see
that xe < x̄ when R0 > 1. This means the infection of the
virus will reduce the total number of uninfected cells in host.

The main purpose of this paper is to discuss the globally
asymptotical stability of E0 and Ee for both i = 0, i = 1. For
the endemic equilibrium Ee, when i = 0, f(x) = f2(x), the
local stable condition a1a2 > a3 was proved without any addi-
tional condition. We also consider the oscillation behaviors of
system (7), and give some parameter condition of oscillation
behaviors when f(x) = f2(x), for both i = 0, i = 1.
Simulations were also given to test the theoretical conclusion.

II. STABILITY ANALYSIS OF THE INFECTION-FREE STEADY

STATE

Before the analysis of the stability of the equilibria, we
will show that the solution of model (7) always positive and
bounded. The proof of positive solution is easy, the bound
proof is similar to lemma 3.1 in [11], we only describe the
result as follows:

Theorem 2.1: There is an M > 0 such that all solutions
satisfy x(t) < M, y(t) < M, v(t) < M for all large t.
Define

D = {(x, y, v) ∈ R3
+ : 0 < x(t) � x̄, 0 � y(t), v(t) � M}.

If x(0) � x̄, from the first equation of model (7), we have
x(t) � x̄ when t > 0. It is easy to see that D is a positively
invariant region for model (7).

Theorem 2.2: the disease-free state E0 is globally asymp-
totically stable when R0 < 1, and becomes unstable when
R0 > 1.

Proof: First, we will analyze the locally asymptotical
stability of E0. The Jacobian matrix of the vector field
corresponding to model (7) is

J =

⎛
⎜⎜⎜⎜⎜⎝

f ′(x) − βyv

(x + y)2
βxv

(x + y)2
− βx

x + y
βyv

(x + y)2
−a − βxv

(x + y)2
βx

x + y

−i
βyv

(x + y)2
k + i

βxv

(x + y)2
−u − i

βx

x + y

⎞
⎟⎟⎟⎟⎟⎠

.

The above Jacobian matrix evaluted at E0 is

JE0 =

⎛
⎝

f ′(x̄) 0 −β
0 −a β
0 k −u − iβ

⎞
⎠ . (10)

Here f ′(x̄) < 0 is an eigenvalue, since the trace of the two-
by-two lower right submatrix is negative and the determinant
is au(1 − R0), if R0 < 1, the remaining two eigenvalues are
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also negative, so E0 is locally asymptotically stable. If R0 > 1,
there must exist a positive eigenvalue, so E0 is unstable.

Next, we’ll discuss the globally asymptotical stability. Con-
sider the Lyapunov function

V2 = y(t) +
a

k
v(t).

Calculating the derivative of V2 along the solutions of the
model (7) gives

V ′
2 (t) =

βxv

x + y
− au

k
v − ia

k

βxv

x + y

=
βxv

x + y
(1 − ia

k
) − au

k
v

� βv(1 − ia

k
) − au

k
v

= (1 − 1

R0
)
β(k − ia)

k
v � 0.

Let E = {(x, y, v) ∈ D|V ′
2 (t) = 0}, it is clear that

E ⊂ {(x, y, v) ∈ D|v = 0}. Let M be the largest positively
invariant subset of the set E, in the set M , y′(t) = −ay,
so that y(t) → 0 when t → ∞. By the Lyapunov -
Lasalle Theorem[16], lim

t→∞
y(t) = 0, lim

t→∞
v(t) = 0. Thus,

the first equation of model (7) is asymptotically equivalent
to ẋ = f(x), because f(x) > 0, x ≤ x̄ and f(x) < 0, x > x̄,
we can know that x(t) → x̄. By the theorem on limiting
systems[17], we can know the infection-free equilibrium E0 is
globally attractive, combine with the the locally asymptotical
stability, E0 is globally asymptotically stable.

III. STABILITY ANALYSIS OF THE ENDEMIC STEADY STATE

A. Local stability of the endemic steady state

We first consider the local stability of the endemic steady
state Ee:

Theorem 3.1: If R0 > 1 and f ′(xe) ≤ 0, then the endemic
steady state Ee is locally asymptotically stable for i = 0, 1.

Proof: Note that

xe

xe + ye
=

1

R0
,

βxeve

(xe + ye)2
=

a(R0 − 1)

R0
,

βyeve

(xe + ye)2
=

a(R0 − 1)2

R0
,

the Jacobian matrix of the vector field corresponding to model
(7) evaluated at Ee is

JEe =

⎛
⎜⎜⎜⎜⎜⎝

J11
a(R0 − 1)

R0
− β

R0
a(R0 − 1)2

R0
−a(R0 − 1)

R0
− a

β

R0

−i
a(R0 − 1)2

R0
k + i

a(R0 − 1)

R0
−u − i

β

R0

⎞
⎟⎟⎟⎟⎟⎠

.

which J11 = f ′(xe) − a(R0 − 1)2/R0 The characteristic
equation associated with JEe is given by

|lE − JEe | = l3 + a1l
2 + a2l + a3 = 0, (11)

where

a1 = aR0 + u − f ′(xe) + i
β

R0
> 0,

a2 = −f ′(xe)(a + u +
a(R0 − 1)

R0
+ i

β

R0
)

+au(R0 − 1) +
a2(R0 − 1)2

R0
> 0,

a3 =
a2u(R0 − 1)2

R0
− f ′(xe)

au(R0 − 1)

R0
> 0.

Let

a1 = u + C, a2 = −f ′(xe)
a(R0 − 1)

R0
+

a2(R0 − 1)2

R0
+ D,

which

C = aR0 − f ′(xe) + i
β

R0
> 0,

D = −f ′(xe)(a + u + i
β

R0
) + au(R0 − 1) > 0.

then

a1a2 − a3 = uD + C(−f ′(xe)
a(R0 − 1)

R0
)

+C(
a2(R0 − 1)2

R0
+ D) > 0.

By Routh-Hurwitz criterion, Ee is locally asymptotically sta-
ble.

B. Globally asymptotic stability of the disease steady state

In order to prove the global stability, we need to show the
uniform persistence of system (7) when R0 > 1. By Theorem
4.3 in paper [20], we choose X = R3 and E = D. The
maximal invariant set N on the boundary ∂D is the singleton
E0 and is isolated, so the uniform persistence is equivalent
to the unstability of E0. Hence, by theorem 2.2, we know if
R0 > 1, the system (7) is uniform persistence. Consequently,
there exists a compact absorbing set K ⊂ D[21].

Theorem 3.2: Suppose that R0 > 1, f ′(x) < 0 for x ∈
[0, x̄], and denote 0 < α∗=− maxx∈[0,x̄] f

′(x). If i = 0 or if
i = 1 and β < min (α∗, a), then Ee is globally asymptotically
stable with initial conditions in D but not on the x axis.

Proof: By the first statement of theorem 3.3, if the
omega limit set does contain Ee, because xe < x̄, we
must have f ′(xe) < 0 , combine with the first statement of
theorem 3.1, we establish the claim. If system (7) possesses
a nontrival periodic solution, similar to the arguments in
Muldowney’paper[19], we will show the periodic solution
must be asymptotically orbitaly stable. Denote the periodic
solution by p(t) ≡ (p1, p2, p3)

T and suppose its minimal
period is ω > 0, by the positive invariance of D, we know

0 ≤ p1 ≤ x̄, ∀t ∈ [0, ω]. (12)

Next, we only need to prove the system

ż = (DF [2](p(t)))z(t). (13)

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

315 Zhuhai, China, September 2–4, 2011



is asymptotically stable, where DF [2] is the second additive
compound matrix of Jacobian (11).

DF [2] =

⎛
⎜⎜⎜⎜⎜⎝

D11
βx

x + y

βx

x + y

k + i
βxv

(x + y)2
D22

βxv

(x + y)2

i
βyv

(x + y)2
βyv

(x + y)2
D33

⎞
⎟⎟⎟⎟⎟⎠

.

which

D11 = f ′(x) − a − βv

x + y
,

D22 = f ′(x) − βyv

(x + y)2
− u − i

βx

x + y
,

D33 = −a − u − βxv

(x + y)2
− i

βx

x + y

We will show that the function

V (z1, z2, z3; p(t)) = sup

{
|z1|,

p2

p3
(|z2| + |z3|)

}

is a Lyapunov function for system (25). We have

D+(|z1(t)|) ≤ −(−f ′(p1) + a +
βp3

p1 + p2
)|z1|

+
βp1

p1 + p2

p3

p2

p2

p3
(|z2| + |z3|)

D+

(
p2

p3
(|z2| + |z3|)

)

=

(
ṗ2(t)

p2
− ṗ3(t)

p3

)
p2

p3
(|z2| + |z3|)

+
p2

p3
D+(|z2| + |z3|)

=
p2

p3

(
k + i

βp3

p1 + p2

)
|z1| −

p2

p3
(−f ′(p1)|z2| + a|z3|)

+

(
ṗ2(t)

p2
− ṗ3(t)

p3
− u − i

βp1

p1 + p2

)
p2

p3
(|z2| + |z3|)

≤ p2

p3

(
k + i

βp3

p1 + p2

)
|z1| − min (α∗, a)

p2

p3
(|z2| + |z3|)

+

(
ṗ2(t)

p2
− ṗ3(t)

p3
− u − i

βp1

p1 + p2

)
p2

p3
(|z2| + |z3|)

Thus , we obtain that

D+V (t) ≤ sup(g1(t), g2(t))V (t). (14)

where

g1(t) = −(−f ′(p1) + a +
βp3

p1 + p2
) +

βp1

p1 + p2

p3

p2

= −(−f ′(p1) +
βp3

p1 + p2
) +

ṗ2(t)

p2

≤ −α ∗ +
ṗ2(t)

p2
.

g2(t) = k
p2

p3
+ i

βp2

p1 + p2
+

ṗ2(t)

p2
− ṗ3(t)

p3
− u

−i
βp1

p1 + p2
− min (α∗, a)

= i
βp2

p1 + p2
+

ṗ2(t)

p2
− min (α∗, a).

Hence g1(t) < g2(t), so we have

D+V (t) ≤ g2(t)V (t). (15)

If the following holds:
∫ ω

0

g2(t)dt < 0,

it follows that V must be a lyapunov function for system(13).
when i = 0,

∫ ω

0

g2(t)dt =

∫ ω

0

(
ṗ2(t)

p2
− min (α∗, a)

)
dt

= − min (α∗, a)ω < 0.

when i = 1,
∫ ω

0

g2(t)dt =

∫ ω

0

(
βp2

p1 + p2
+

ṗ2(t)

p2
− min (α∗, a)

)
dt

≤
∫ ω

0

βdt +

∫ ω

0

(
ṗ2(t)

p2
− min (α∗, a)

)
dt

= (β − min (α∗, a))ω < 0.

Combine with (15) we know that lim
t→∞

V (t) = 0, which means

z1(t), z2(t), z2(t) → 0, so the system (13) is asymptotically
stable, this completes the proof.

IV. OSCILLATIONS

When f(x) = f2(x), if the condition f ′(xe) ≤ 0 in theorem
3.1 couldn’t be satisfied, there would exist an orbitally asymp-
totically stable periodic solution, and we have the following
theorem.

Theorem 4.1: If R0 > 1 and a1a2 < a3, then model (6)
exists an orbitally asymptotically stable periodic solution.

Proof: When f = f2,

Ee = (xe, (R0 − 1)xe,
(k − ia)(R0 − 1)

u
ve).

which

xe =
xmax

2p
[p − d − a(R0 − 1) +

√
Δ]

whichΔ = (p − d − a(R0 − 1))2 +
4pλ

xmax
>

a2(R0 − 1)2

R2
0

.

The jacobian matrix of the vector field corresponding to model
(7) evaluated at Ee when f = f2 is

J =

⎛
⎜⎜⎜⎜⎜⎝

−B
a(R0 − 1)

R0
− β

R0
a(R0 − 1)2

R0
−a(R0 − 1)

R0
− a

β

R0

−i
a(R0 − 1)2

R0
k + i

a(R0 − 1)

R0
−u − i

β

R0

⎞
⎟⎟⎟⎟⎟⎠

.
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which B =
√

Δ − a(R0 − 1)

R0
. The parameters of equation

(11) become as follows:

a1 =
√

Δ + a + u + i
β

R0
> 0,

a2 =
√

Δ(a + u +
a(R0 − 1)

R0
+ i

β

R0
)

−(R0 − 1)(a2 + i
βa

R0
),

a3 =
√

Δ
au(R0 − 1)

R0
> 0

When R0 > 1, the second part of a2 is positive, so we can
choose a proper parameters p and a large enough xmax such
that

√
Δ be very small, so a2 may be negative and a1a2 < a3

holds, which means Ee is unstable.
The conclusion follows from Theorem 1.2 [22] and the fact

that nonlinearities in model (7) are analytic in D. In order to
apply that result, we take the domain for (7) to be the interior
of the positive orthant, in which the only steady state is Q2. If
R0 > 1 and a1a2 < a3, then Q2 is unstable. The dissipativity
hypothesis of Theorem 1.2 [22] follows from Theorem 2.1
and the persistence of model (7). By looking at the Jacobian
matrix J and choosing the matrix H = diag{1, −1, 1}, then
HJH is a matrix with non-positive off-diagonal elements.
Hence, the model (7) is competitive in D. Taking l = 0 in
the characteristic equation (11), we have |JQ2 | = −a3 < 0.
Hence, all conditions of Theorem 1.2 [22] are satisfied. This
completes the proof.

V. NUMERICAL SIMULATIONS

In this section, we will give some numerical simulations
of system (7) when f(x) = f2(x). When we simulate the
orbitally asymptotical stability of stable periodic solution, by
the theorem 4.1, we only need to choose parameters satisfying
R0 > 1 and a1 ∗ a2 − a3 < 0. When i = 0, we choose
parameters as follows: λ = 2.5267e + 005, d = 0.00379,
u = 0.16, p = 3, a = 0.0533, β = 1.6891e + 003,
k = 2.4500e−004, Xmax = 6.6667e+007, R0 = 48.52 > 1,
thus we have a1 ∗ a2 − a3 = −2.5024e + 003 < 0,
which satisfy the theorem 4.1, we choose the initial condition
X0 = [3.3333 ∗ 107, 3.3333 ∗ 107, 102], the system (7) has
an orbitally asymptotically stable periodic solution( see fig.1)
which is consistent with the statement of theorem 4.1.

When i = 1, we choose λ = 2.5267e + 005, d = 0.00379,
u = 0.650, p = 0.0311, a = 0.00379, β = 2.8957e − 004,
k = 70, Xmax = 6.6667e + 12, R0 = 8.2276 > 1, a1 ∗
a2 − a3 = −2.2537e − 005 < 0, which satisfy the note of the
theorem 4.1, we choose X0 = [6 ∗ 107, 6.6667e + 006, 103],
the system 7 has an orbitally asymptotically stable periodic
solution( see fig.2).

VI. CONCLUDING REMARKS

In this paper, based on Leenheer and Smith’s model[11],
we consider an amended viral infection model with standard
incidence. By stability analysis we give sufficient conditions
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Fig. 1. an orbitally asymptotically stable periodic solution of
system (7) when i = 0.
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Fig. 2. an orbitally asymptotically stable periodic solution of
system i = 1

for the global stability of infection-free steady-state and the the
endemic steady state. That is when R0 = β(k − ia)/au < 1,
the infection-free equilibrium E0 is globally asymptotically
stable and becomes unstable when R0 > 1. If R0 > 1,
the globally asymptotical stability of endemic equilibrium Ee

is related to f(x) which determine the dynamic behavior of
uninfected cell in system (7) both for i = 0 and i = 1. But
when i = 1, another condition of parameters must hold , that
is β < min (α∗, a). We also show that periodic oscillations
of system (7) are possible. When f(x) = f2(x), we give the
sufficient condition of the parameters to obtain the periodic
oscillations. The numerical simulation results confirm our
analytic results.
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