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Abstract

Gesture recognition is an important issue in computer

vision. Recognizing gestures with videos remains a chal-

lenging task due to the barriers of gesture-irrelevant fac-

tors. In this paper, we propose a multimodal gesture recog-

nition method based on a ResC3D network. One key idea

is to find a compact and effective representation of video

sequences. Therefore, the video enhancement techniques,

such as Retinex and median filter are applied to eliminate

the illumination variation and noise in the input video, and

a weighted frame unification strategy is utilized to sample

key frames. Upon these representations, a ResC3D net-

work, which leverages the advantages of both residual and

C3D model, is developed to extract features, together with

a canonical correlation analysis based fusion scheme for

blending features. The performance of our method is evalu-

ated in the Chalearn LAP isolated gesture recognition chal-

lenge. It reaches 67.71% accuracy and ranks the 1st place

in this challenge.

1. Introduction

Gesture recognition has been a promising topic since it

has many applications, such as visual surveillance, video

retrieval and human-computer interaction (HCI). In gesture

recognition, the main task is to extract features from an im-

age or a video and to issue a corresponding label.

Although in the past decades, many methods have been

proposed for this issue, ranging from static to dynamic ges-

tures, and from motion silhouettes-based to the convolu-

tional neural network-based, there are still many challenges

associated with the recognition accuracy. The gesture-

irrelevant factors, such as the illumination, the background,

the skin color and clothes of performers can handicap the

recognition of gestures. Furthermore, it can be more ar-

duous when the task is recognizing dynamic gestures in
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videos. The velocity and angle of performers showing a

gesture can be different since there are no standards for

the gesture performing. The increasing number of classes

can also be a difficulty for the overlap between classes will

be higher. A good gesture recognition approach should be

able to generalize over intra-class variations and distinguish

inter-class ones. Therefore, extracting discriminative spa-

tiotemporal features plays a crucial role in accomplishing

the recognizing task.

In this paper, we propose a multimodal gesture recogni-

tion method using a ResC3D network [32] for large-scale

video-based gesture recognition. We first perform a video

enhancement on both RGB and depth data (which is cap-

tured concurrently with the RGB counterpart by Kinect) to

normalize the illumination and denoise. Then we propose

a scheme of weighted frame unification to sample the most

representative frames for identifying gesture. That scheme

is based on key frame attention mechanism, which deems

the movement intensity as an indicator for selecting frames.

Then multimodal data, including RGB, depth and optical

flow data generated from the RGB ones, are sent to the

ResC3D network, which is based on the work of Tran et

al.[31] and He et al.[8], to extract spatiotemporal features.

Finally, the features are blended together in terms of a s-

tatistical analysis method - canonical correlation analysis,

and the final recognition result is obtained by a linear SVM

classifier. The pipeline of our method is depicted in Figure

1. Our main contributions can be summarized as below:

• A pre-processing of video enhancement. Since the

RGB videos are captured under different environ-

ments, the illumination condition is a gesture irrelevant

variable. Meanwhile, the depth videos also suffer from

noise. Therefore, we first employ Retinex and median

filter for RGB and depth videos to eliminate the influ-

ence of illumination variation and noise.

• A weighted frame unification scheme. Convolutional

neural networks require a fixed input dimension, thus

we need to unify the frame numbers before sending
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Figure 1. The pipeline of our method.

them to the network. However, it is crucial to preserve

the motion information while sampling the videos.

Based on an observation that we call “key frame atten-

tion mechanism”, we utilize the optical flow to charac-

terize the intensity of movement, and weight different

parts of the video when select frames.

• A ResC3D model for learning and feature extracting.

We employ a ResC3D model to learn and extract fea-

tures of various data, which leverages the benefits of

ResNet [8] and C3D [31].

• A statistical analysis based fusion scheme. We adopt

a canonical correlation analysis based method, which

analyzes the pair-wise correlation between features

from different modalities to fuse the features togeth-

er.

2. Related Works

Gesture taxonomies and representations have been stud-

ied for decades. The vision based gesture recognition tech-

niques include the static gesture oriented and the dynam-

ic gesture oriented methods [26]. To recognize static ges-

tures, namely postures in still images, a general classifier

like random forest [28] or template-matching method [25] is

enough. As the dynamic gesture recognition has a temporal

aspect, more endeavors should be made to demonstrate the

motion in videos. In the early stage, the silhouette of per-

formers is used for global gesture recognition. Two famous

indicators are motion energy image (MEI) and motion his-

tory image (MHI) [1], which represents where motion oc-

curs or a recency function of the silhouette motion, respec-

tively. As an extension, Weinland et al.[40] combine the sil-

houettes taken by multiple cameras to construct motion his-

tory volumes. Some of the handcrafted features, such as his-

togram of oriented gradient (HOG) and histogram of opti-

cal flow (HOF) are thereafter employed to describe gestures

[17, 21, 22]. Then some researchers extend those handcraft-

ed features into spatiotemporal ones to handle videos more

effectively. Klaser et al.[16] propose a 3D HOG feature for

action recognition. Sanin et al.[27] use a spatiotemporal

covariance descriptor to achieve gesture recognition. Wan

et al.extend scale-invariant feature transform (SIFT) to 3D

enhanced motion SIFT [35] and propose the mixed features

around sparse keypoints (MFSK) for one-shot learning in

gesture recognition [33]. Meanwhile, techniques that han-

dle the addition temporal dimension like hidden Markov

models (HMMs) [22, 41], condition random field (CRF)

[39] and dynamic time warping (DTW) [3] are applied to

model gestures. Automata-based methods are another al-

ternative to solve this issue in the literature. Finite state

machines (FSMs) [44, 9] is commonly employed, in which

the states can represent the postures whereas the transitions

are used to represent the motion information.

Another way to handle gesture recognition is learning

based algorithms. Convolutional neural networks (CNNs)

can build high-level features from low-level images, and

is invariant to rigid transformation, therefore many gesture

recognition tasks are based on it. Nagi et al.[24] use max-

pooling convolutional neural networks for real-time hand

gesture recognition in human-robot interaction. Karpathy et

al.[15] classify videos on a large-scale dataset with a CNN-

based model. Simonyan and Zisserman [29] propose a two-

stream network to extract spatial concurrent with temporal

features. On the basis of their work, Wang et al.[36] develop

a temporal segment network which exploits RGB and opti-

cal flow data for extracting spatial and temporal features.

As the traditional CNN can only deal with 2D images in-

stead of videos, researchers try to modify the structure of

convolutional layer to handle temporal features. Ji et al.[12]

employ a hardwired layer to extract manual features like op-

tical flow and gradient and use 3D CNN to learn the features

further. Tran et al.[31] propose a more interesting 3D CN-

N model, called C3D, which is based on BVLC caffe [13].

Their method can process on videos directly and show a

great promise in action or gesture recognition tasks even on
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large-scale datasets. In [32], they combine it with ResNet

and that network seems more efficient. There are many

methods [19, 42, 5] developed based on the C3D model.

Since the input is sequence data in the video-based recogni-

tion, Recurrent neural networks (RNN) are also employed

in gesture recognition. Molchanov et al.[23] combine C3D

and RNN to form a recurrent 3D CNN for video-based de-

tection and classification issues. Donahue et al.[4] extract

traditional CNN features first and then utilize a LSTM net-

work for video labeling or caption. Zhu et al.[46] combine

C3D and LSTM for learning features.

3. Gesture recognition with ResC3D model

As depicted in Figure 1, the overall process can be di-

vided into five parts: video enhancement, weighted frame

unification scheme, multimodal feature extraction with

ResC3D model, canonical correlation analysis based fea-

ture fusion, and finally a SVM classifier. The optical flow

videos are first generated from the RGB data stream in

terms of Brox et al.[2]. The flow data is used as another

modality of data that concerns about the motion path. Then

a video enhancement pre-processing is manipulated on both

RGB and depth data. Such a process is proposed to elimi-

nate the variance of illumination of RGB data and denoise

for the depth one. After that, the number of input frames

is unified since the fixed dimension is required by convolu-

tional networks. However, in order to preserve the motion

information as much as possible, we propose a weighted

frame unification scheme to select “key frames” according

to the movement conditions. Following, a ResC3D model,

which adopt the strengths of deep residual network and C3D

model, is utilized to extract spatiotemporal features for all

the input videos. As our method is based on multimodal in-

puts, we need to make a comprehensive prediction based on

all the data. Therefore, we use canonical correlation anal-

ysis to maximize the pair-wise correlation among features

from different modalities and blend them together. At last,

a linear SVM classifier is used to give the final classification

result.

3.1. Video enhancement

As mentioned before, there are many variants that have

no relation with gestures in the RGB videos. The illumi-

nation is one sort of it. As shown in Figure 2, for videos

that share the same label, once they are captured in differ-

ent places, the illumination may vary a lot. The dusky en-

vironment even makes some videos hard to be recognized.

Undoubtedly, that is a huge barrier for gesture recognition.

We turn to Retinex theory for illumination normalization.

Retinex theory [18] is a form of color constancy, which

indicates the perceived color of objects remains relatively

constant under varying illumination conditions. According

to that theory, the observed illumination of an object is de-

Figure 2. An example of our video enhancement on RGB (left part)

and depth (right part) data. The first row represents videos without

pre-processing. It is obvious that the illumination of RGB videos

with different performers can vary a lot. The depth videos mainly

suffer from noises along with edges. Retinex is processed on RGB

and median filter on depth videos. The result on the second row

shows our strategy is effective to enhance both videos.

termined by the reflectance light from the object surface and

environmental illumination:

I(x) = L(x)×R(x) (1)

where x indicates a position in the image, I(x) is the ob-

served intensity of the image, L(x) and R(x) represent the

intensities of object reflectance and environmental illumi-

nation, respectively. The enhancement can be achieved by

eliminating L(x) and recovering R(x) as:

R(x) = exp(log(I(x))− log(L(x))) (2)

As L(x) is hard to obtain directly from a single image, it is

always approximated by filtering I(x) with low pass filter

[10]. In this paper, three scales of Gaussian filter with σ =
15, σ = 80, and σ = 250 are employed for obtaining it.

Compared with the RGB counterparts, the noise is a ma-

jor problem for depth videos as illustrated in the right part

of Figure 2, especially on the edges marked in the red box.

That is because the Kinect cannot estimate very well on

the depth discontinuous regions, and the noise (usually per-

forms as black points) are apparent in these regions.

Figure 3. An example of a RGB gesture video. The motion in

the beginning and end stage of the video is slight. However, in

the intermediate 18 frames, the movement is significant. That is a

crucial part for recognizing a gesture.

To eliminate the noise while preserving the edges, we

employ a common but fast to implement filter in digital im-

age processing - median filter. The result of median filter
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Figure 4. Structure of ResC3D network. It consists of 8 residual units that correspond to 8 convolutional layers in the C3D model [31].

Following a linear projection is achieved by a 1 × 1 × 1 convolutional layer for dimension expansion. The network ends with a spatial

global average pooling layer.

is shown below the original depth data in Figure 2. With

the help of that filter, it seems to be more smooth in these

regions and the influence of noise is alleviated a lot.

3.2. Weighted frame unification

Convolutional networks require fixed dimension input-

s, which means the length of videos should be uniform.

Therefore, for long videos, the information of the motion

path is inevitably lost. To preserve the motion information

as much as possible with limited frame numbers is a chal-

lenging task, and that is what we aim to solve in this sub-

section.

Noticing that in most videos with a single gesture, the

action can be intuitively generalized as three phases - be-

ginning, climaxing and end. Take the gesture in Figure 3 as

an example, between frame 1 and frame 8, the performer’s

movement is slight while preparing for the gesture. Then in

frame 9 and 10, she raises her arm and becomes ready for

the posture. The motion is continued for performing the tar-

get gesture until the frame 26, during which the movement

is relatively drastic. After that, the performer’s arm lays

back and the whole gesture is over. We can learn that the

frames in different phases share different importance. In the

beginning and end, the movement for preparing or returning

stage is slight, and it is of less importance to distinguish this

gesture, whereas that in the climax stage is sharp and cru-

cial to identify the gesture. Consequently, the frames of the

climax stage are key frames to the gesture and we should

pay more attention to them. We call that “key frame atten-

tion” mechanism. Based on that, we develop a weighted

frame selection method. For a given video S, we first cut

it into n sections, and calculate the average optical flow of

each section S1, S2,..., Sn, since the average optical flow

is leveraged as an indicator of movement. As the optical

flow videos is obtained following Brox et al.[2], the aver-

age optical flow can be calculated frame-by-frame and be

added up for each section. Then the importance of section

i (1 ≤ i ≤ n) is calculated as the ratio of this section’s

average value of the optical flow and the sum of that for

the whole video. That is also the proportion of the frame

amount for this section in the frame number unified video.

In this paper, we set the unification frame number (i.e., the

normalized length of videos for the network ) as 32, and n

as the rounding up ratio of frame numbers of the original

video and half of the unification benchmark, namely 16 in

this paper.

3.3. Learning and feature extraction based on
ResC3D model

As the data is acquired, we can train a model to extract

features for classification. In recent years, the C3D mod-

el [31] has been proved efficient in video-based recogni-

tion tasks. Meanwhile, He et al.’s residual network [8] also

shows great promise to solve the degradation problem with

training deep networks. In this paper, we utilize a model

that combines these two networks, namely ResC3D model,

which can help to boost the performance. The structure of

ResC3D is depicted in Figure 4. Most of our convolutional

layers are with 3×3×3 filters, which process on the spatial

as well as temporal domain. Similar as [31], the number of

filters are set to 64, 64, 64, 128, 128, 256, 256, 512, 512,

and 1024 for an additional layer with 1× 1× 1 kernel size

to project the feature into a higher dimension. The pooling

layer is also replaced by convolutional layers with a stride

of 2 to achieve downsampling at conv3a, conv4a, and con-

v5a. Then a spatial global average pooling layer with kernel

size 7 × 7 is performed. Finally, a fully-connected layer is

used to corresponding to 249 classes.

3.4. Fusion scheme

The fusion of information is important for multimodal

gesture recognition, which can occur on either data level,

feature level or decision level. However, the data level fu-

sion requires frame registration to avoid the disturbing ar-

tificial effect like a ghost image. The decision level fusion

like consensus voting may lead to information loss since it

only concerns about the majority. Relatively, feature lev-

el is believed to be more effective since it holds sufficient

information of all features and avoids the complicated pre-

processing of registration owing to its uniform dimension.

Two kinds of traditional fusion schemes are serial [20]

and parallel [43] fusion, which are achieved simply by con-
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catenating or averaging the features. Although these meth-

ods are easy to be implemented, they have a drawback of

no consideration of the statistical correlations between pair-

wise features from different modalities. The average strat-

egy may counteract the strength of one good feature owing

to the addition of another one, while the stacking method

can cause redundancy and slow down the training process

since the high dimension of a fusion feature. In this paper,

we blend the features with the canonical correlation analysis

(CCA) [30] that tries to maximize the pair-wise correlations

across features with different modalities.

Supposing that two matrices X ∈ R
p×n and Y ∈ R

q×n

are two features containing n samples from different modal-

ities. The covariance matrix of

(

X

Y

)

can be denoted as:

S =

(

V ar(X) Cov(X,Y )
Cov(Y,X) V ar(Y )

)

=

(

Sxx Sxy

Syx Syy

)

(3)

where Sxx ∈ R
p×p, Syy ∈ R

q×q denotes the within-set

covariance matrices of X and Y , and Sxy ∈ R
p×q de-

notes between-set covariance matrix (ST

xy
= Syx). How-

ever, feature vectors from different modalities may not fol-

low a consistent pattern [7], and thus it is hard to obtain the

relationships between them through S directly. CCA tries

to find a pair of canonical variates with the transformation

X∗ = WT

x
X and Y ∗ = WT

y
Y , to maximize the pair-wise

correlation across two feature sets:

Corr(X∗, Y ∗) =
cov(X∗, Y ∗)

var(X∗) ∗ var(Y ∗)
(4)

where cov(X∗, Y ∗) = WT

x
SxyWy , var(X∗) =

WT

x
SxxWx and var(Y ∗) = WT

y
SyyWy . Lagrange mul-

tipliers are used to maximize the covariance between X∗

and Y ∗ with the constraints var(X∗) = var(Y ∗) = 1. Af-

ter obtaining Wx and Wy , the blended feature Z, named as

Canonical Correlation Discriminant Feature (CCDF), can

be performed as:

Z = WT

x
X +WT

y
Y =

(

Wx

Wy

)T (

X

Y

)

(5)

4. Experiments

4.1. Dataset

To evaluate the performance, we conduct our exper-

iments on a large-scale RGB-D gesture dataset - the

Chalearn LAP IsoGD database. This dataset is built by

Wan et al.[34], which is derived from the Chalearn Gesture

Dataset (CGD) [6]. This dataset is for the task of user inde-

pendent recognition, namely recognizing gestures without

considering the influence of performers. There are 47933

gestures labeling from 1 to 249 that are solely contained in

the same amount videos, which can be divided into three

subsets: training set (35878 videos), validation set (5784

videos) and testing set (6271 videos). Meanwhile, both RG-

B and depth data, which is obtained by a Kinect device si-

multaneously, are available in the dataset.

4.2. Training details

Experimental environment We conduct our experi-

ments on a PC with Intel Core i7-6700 CPU @ 3.40GHz

× 8, 16GB RAM and NVIDIA Geforce GTX TITAN X G-

PU. The model training and feature extracting are based on

the caffe framework [13], and the others are implemented

on Matlab R2015b.

Parameter setting The input videos are unified into 32-

frame ones and resized to 128 × 171. Then the video clips

are randomly cropped into 112×112. We use SGD with the

mini-batches of 2 clips. The starting learning rate is 0.001

and drops at a rate of 0.9 every 5000 iterations. The weight

decay and momentum are 0.0005 and 0.9, respectively. The

training process is stopped after 120000 iterations.

Batch normalization Batch normalization [11] is wide-

ly adopted to accelerate deep network training. It takes a

running mean and standard deviation of a mini-batch of in-

put data to achieve normalization and outputs training data

with zero mean and unit standard deviation. The BN layer is

utilized right after each convolutional layer in our network.

Data augmentation In order to increase the diversity of

data, we augment data by following two ways: on the one

hand, we use data obtained with different sampling strate-

gies (such as uniform sampling) as a kind of input. On the

other hand, as convolutional networks are invariant to rigid

transformation, we also mirror the videos for increasing the

number of samples.

4.3. Recognition results on different modalities

Figure 5. The performance on different modalities along with it-

eration. The primary y axis (left) indicates the variation of loss

while the secondary (right) stands for the accuracy.

In this subsection, we verify the performance of the pro-

posed model on different kinds of data. In this paper, we
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utilize three modalities of RGB, depth and optical flow. The

recognition results varying along with iterations of these da-

ta are shown in Figure 5. As can be seen, in the early stage,

the training loss and accuracy change a lot. After about

30000 iterations, both the loss and accuracy tend to be sta-

ble. And it shows almost no variation when the iteration

reaches 120000.

4.4. Effectiveness of fusion scheme

The effectiveness of our fusion scheme is discussed

in this subsection. In addition to the CCA-based fusion

method for the multimodal fusion, we also try a fusion of

features extracted by different models such as TSN [36].

The comparison across CCDF and individual feature of

RGB, depth, and flow, and simply serial and parallel fu-

sions are shown in Figure 6. There is no doubt that the im-

provement on recognition accuracy of fusion features is sig-

nificant when compared with the single modality features.

That proves the effectiveness of multimodal strategy owing

to the sufficient exploitation of comprehensive information.

Meanwhile, we can find that the CCA method for fusion al-

so outperforms the other simply fusion scheme to a large ex-

tent, which means that a sophisticated analysis of the statis-

tical correlation between pair-wise features from different

sets can be of benefit to maximize the correlation between

features of the same sample and lead to a better fusion.

Figure 6. Results of fusion schemes. The accuracy of simple serial

(concatenating) and parallel (averaging) fusion schemes together

with our CCA based fusion scheme are illustrated and compared

with the single modality result. Feature fusion can increase the

accuracy by at least 10% and the statistical analysis based scheme

achieves better results.

As indicated in [31], the cross-model fusion is a possi-

ble way to boost the performance as well. Therefore, we

also employ the features extracted by another state-of-the-

art method, temporal segment network [36]. As shown in

Figure 6, the participant of TSN features is beneficial to

recognize gestures.

Method Accuracy

MFSK+BoVW [34] 18.65%

SFAM (Multi-score Fusion) [37] 36.27%

CNN+depth maps [38] 39.23%

Pyramidal C3D [45] 45.02%

2SCVN+3DDSN [5] 49.17%

32-frame C3D [19] 49.20%

C3D+LSTM [46] 51.02%

proposed method 64.40 %

Table 1. Comparisons with state-of-the-art methods in accuracy.

Team Accuracy (validation) Accuracy (testing)

baseline [5] 49.17% 67.26 %

XDETVP 58.00% 60.47%

AMRL 60.81% 65.59%

Lostoy 62.02% 65.97%

SYSU ISEE 59.70% 67.02%

ASU (our) 64.40 % 67.71 %

Table 2. Final ranking in the Chalearn LAP Large-scale Isolated

Gesture Recognition Challenge.

4.5. Comparison with other methods

Comparisons with state-of-the-art methods The per-

formance of our final scheme is compared with several

state-of-the-art methods. As only the label of validation set

of Chalearn LAP IsoGD database is available, the compari-

son is conducted on it.

As can be found in Table 1, the neural network based

methods witness an improvement of at least 20% on the

handcrafted feature based method like [34]. And thanks

to the ResC3D network with the combination of a sensible

data pre-processing and a statistical analysis based fusion

scheme, our method can achieve about 13% accuracy gain

on the compound model of C3D and LSTM [46].

Comparisons with entries in the Challenge In Table

2, the result in the ChaLearn LAP Large-scale Isolated Ges-

ture Recognition Challenge (Round 2) [14] is also illus-

trated. Our method reaches 67.71% on the Chalearn LAP

IsoGD database and is the only one that outperforms base-

line method [5] on the testing set. This entry wins the 1st

place in this challenge.

4.6. Quantitative analysis

The confusion matrix and class-wise recognition rate are

shown in Figure 7 and Figure 8, respectively.

The confusion matrix shows that our method can classify

the gestures well overall. That can be further demonstrat-

ed in the Figure 8 - 30 classes of gestures are fully recog-

nized and over 57% classes are recognized with the accu-

racy higher than 60%. However, there are still four classes
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Figure 7. Confusion matrix of our method. The x− and y− axis refer to predicted label and ground truth, respectively. Point at the ith row

and jth column represents the sample with label i is classified to j and its color means the proportion of such a condition. Our method

yields a nice result on most classes.

are completely wrongly predicted. One reason to account

for is some of the gestures are too difficult to distinguish.

Take the wrongly classified gesture 11 as an example, they

are almost all the same as gesture 26 from the motion path

to the final posture as shown in Figure 9. There is also an

interesting phenomenon that only gestures with label of 11

are confused with 26, whereas the gesture 26 are all recog-

nized correctly. That may because the SVM classifier we

adopt is composed of 249 binary classifiers. That will up-

date for each label and consequently, the gesture 11 are all

given the label of 26.

Figure 8. Per-class recognition rate. Over 57% classes are recog-

nized with the accuracy higher than 60%. Nevertheless, there are

still four classes completely confused.

(a) (b)

Figure 9. The wrongly classified gestures. (a) gesture 11. (b) ges-

ture 26.

5. Conclusion

In this paper, we present a multimodal gesture recogni-

tion method. We first eliminate the gesture-irrelevant fac-

tors, such as illumination and noise in the RGB and depth

data. After that, we propose a key frame attention mecha-

nism and based on that we select the most representative

frames in a video. Following we extract features by the

ResC3D network and then blend them with canonical corre-

lation analysis. The final recognition result is derived with a

linear SVM classifier. We achieve 67.71% accuracy on the

testing set of Chalearn LAP IsoGD dataset and win the 1st

place in the isolated gesture recognition challenge.

However, there is still some room for improving the

recognition performance. One way is to find more sophis-

ticated feature to distinguish gestures with subtle differ-
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ences. Meanwhile, the influence of gesture-irrelevant fac-

tors caused by the performers, like the velocity of move-

ment or skin color, needs to be eliminated to better concen-

trate on the gesture itself.
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