
IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 1

Active Rearranged Capturing of Image-Based
Rendering Scenes — Theory and Practice

Cha Zhang, Member, IEEE, and Tsuhan Chen, Senior Member, IEEE

Abstract— In this paper, we propose to capture image-based
rendering scenes using a novel approach called active rearranged
capturing (ARC). Given the total number of available cameras,
ARC moves them strategically on the camera plane in order to
minimize the sum of squared rendering errors for a given set of
light rays to be rendered. Assuming the scene changes slowly so
that the optimized camera locations are valid in the next time
instance, we formulate the problem as a recursive weighted vector
quantization problem, which can be solved efficiently. The ARC
approach is verified on both synthetic and real-world scenes.
In particular, a large self-reconfigurable camera array is built
to demonstrate ARC’s performance on real-world scenes. The
system renders virtual views at 5-10 frames per second depending
on the scene complexity on a moderately equipped computer.
Given the virtual view point, the cameras move on a set of rails
to perform ARC and improve the rendering quality on the fly.

Index Terms— Active sampling, active rearranged capturing,
image-based rendering, camera array, self-reconfigurable.

I. INTRODUCTION

IMAGE-based rendering (IBR) has attracted much attention
recently [1], [2]. By capturing a dense set of images of a

scene, IBR is capable of rendering 3D novel views with little
or no scene geometry. Compared with traditional model-based
rendering methods, IBR bypasses the most difficult geometry
reconstruction stage, and is easy to capture and fast to render.

While geometric models are often considered the most
compact representation for real-world scenes, images are very
redundant. In IBR, in order to synthesize novel views directly
from light ray interpolation, thousands or millions of images
need to be taken from nearby view points, making them
difficult to store and manage. The following question thus
becomes very important for IBR: How many images are
necessary for rendering high-quality images of an IBR scene?
This problem is widely referred as the IBR sampling problem
or plenoptic sampling problem, and was addressed by work
in [3], [4]. In short, the plenoptic sampling problem is a multi-
dimensional signal sampling problem. If the light rays are
sampled uniformly in the space, the sampling rate in order
to achieve interpolation without aliasing is determined by the
range of depths of the scene, the surface property of the scene
objects, and the occlusions between them [4]. The sampling
rate is also related to the amount of information we know
about the scene geometry, and at what resolution the rendering
will be carried out [3]. The plenoptic sampling theory is
deeply grounded on the multi-dimensional signal processing

Manuscript received xxx xx, 2005; revised xxx xx, 200x. Work performed
at CMU and supported by NSF Career Award 9984858.

C. Zhang is with Microsoft Research, Redmond; T. Chen is with Depart-
ment of Electrical and Computer Engineering, Carnegie Mellon University.

framework, and greatly enhances our understanding of IBR
from a signal processing point of view.

Unfortunately, the above plenoptic sampling theory does not
provide a practical guidance for capturing IBR scenes. In order
to estimate the minimum sampling rate, one has to know the
scene well, including its depth variation, the object surface
property, and occlusions between objects. These characteristics
are often difficult to measure before capturing. To overcome
the limitation, Zhang and Chen [5] proposed to sample the
scene with a high sampling rate, and then throw away samples
by analyzing the Fourier spectrum of the over-sampled data.
After the down-sampling process, the amount of data stored is
minimized according to the sampling theory. The drawback is
that the oversampling stage is often too expensive to perform
due to time or storage constraints.

One practical approach to capturing IBR scenes is through
active sampling, more accurately, active incremental sam-
pling [6], [7]. The idea is to start with a sparse set of images
of the scene, and gradually add more samples or take more
images of the scene from where the rendering quality is not
good. Here the rendering quality is estimated by measuring
the local color consistency score [6], which has been proved
to be a good indicator of the final rendering quality. In
active incremental sampling, we assume once an image is
taken, it will not be discarded, and as the sampling proceeds,
potentially infinite number of images can be taken for the
scene. Obviously, active incremental sampling is useful for
capturing static scenes.

Recently there has been increasing interest in capturing
dynamic scenes with IBR [8], [9]. As the scene is changing, we
can no longer use a single camera to capture it. Instead, tens
or hundreds of cameras need to be performing the capturing
task simultaneously. This brings new challenges to the IBR
sampling problem. Namely, if the number of images one can
take is limited, where shall we capture these images? In this
paper, we will address this problem with an approach we
call active rearranged capturing (ARC). Based on what the
cameras saw in the previous instance and what views need
to be synthesized, active rearranged capturing re-positions
the cameras so that the quality of a given set of rendered
views is optimized. We formulate the problem as a recursive
weighted vector quantization (VQ) problem, which can be
solved efficiently.

This paper goes beyond the theoretical analysis and also
presents a self-reconfigurable camera array that verifies the
above ARC theory. The system is composed of 48 cameras
mounted on mobile platforms. These cameras are controlled
by a single computer, which performs image decoding, camera



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 2

Fig. 1. The capturing and rendering of IBR scenes.

calibration, lens distortion correction, rough scene geometry
reconstruction and novel view synthesis, all in real time (5-10
fps). More importantly, we utilize a simplified ARC algorithm
and demonstrate that by reconfiguring the camera locations on
the platform, the rendering quality of the virtual views can be
significantly improved.

The paper is organized as follows. Related work is presented
in Section II. The active rearranged sampling process is de-
scribed in Section III. Section IV shows our self-reconfigurable
camera array and how the active rearranged sampling theory
is used in practice. Conclusions are given in Section V.

II. RELATED WORK

A. IBR Scene Capturing and Rendering

We first give a brief introduction on IBR scene capturing
and rendering. Fig. 1 shows a typical IBR system. We place
a set of cameras around the object and shoot images. In the
light field [10] setup, the cameras are uniformly distributed
on a plane (namely the camera plane), and point to the
same direction. In the concentric mosaics [11], the cameras
are arranged along a circle. In the most general form, the
cameras can be anywhere, which can still be rendered through
the unstructured Lumigraph rendering [12]. In this paper, we
assume that the cameras are constrained on a camera plane,
but on that plane the distribution of the cameras can be non-
uniform. The directions of the cameras are assumed to be the
same, although this requirement is not crucial to the proposed
algorithm.

To render novel views from the captured images, we split
them into many light rays and obtain their intensities one
by one. As shown in Fig. 1, consider one of the light rays
being rendered. We first trace the light ray back to the scene
geometry, and obtain the crossing point O. Since the geometry
is typically unknown for real-world scenes, people usually
assume a constant depth plane. We then project O to the neigh-
boring captured images (circled by an ellipse in Fig. 1) and
obtain the light ray’s intensity through weighted interpolation
of all the projected pixels. The weights are usually determined
by the angular differences between the rendered light ray and
the projection directions from O to the captured images, which
are also used to select neighboring images. The smaller the

angular difference, the higher the weight to the associated
image. Other factors such as resolution or field of view may
also affect the weights [12], however they are not considered
in this paper.

Image-based rendering covers a huge research field, and we
refer the reader to [1], [2] for a detailed survey on this topic.

B. IBR Sampling

Early work on IBR sampling focused on the uniform
sampling analysis of IBR. Work by Lin and Shum [13], Chai
et al. [3], as well as Zhang and Chen [4] all greatly enhanced
the understanding of IBR from the signal processing’s point
of view. In this section, we review some of the nonuniform
sampling work for IBR, as they are more closely related to
what we propose in this paper.

Fleishman et al. [14] proposed an automatic camera place-
ment algorithm for IBR. A mesh model of the scene is known.
The goal is to place the cameras optimally such that the
captured images can form the best texture map for the mesh
model. They found that such problem can be regarded as a
3D art gallery problem, which is NP-hard [15]. They then
proposed an approximation solution for the problem by testing
a large set of camera positions and selecting the ones with
higher gain rank. The gain was defined based on the portion
of the image that can be used for the texture map. A similar
approach was proposed in [16], where the set of reference
views were selected from a large image pool in order to
minimize a certain target function. In [17], Namboori et al.
developed an adaptive sample reduction algorithm for layered
depth image, which is another representation of IBR.

Schirmacher et al. [18] proposed an adaptive acquisition
scheme for a light field setup. Assuming the scene geometry
is known, they added cameras recursively on the camera plane
by predicting the potential improvement in rendering quality
when adding a certain view. This a-priori error estimator
accounts for both visibility problems and illumination effects
such as specular highlights to some extent. A similar approach
was proposed by Zhang and Chen for concentric mosaics setup
in [7], where a real system was built to demonstrate the idea.

The previous approaches mentioned above are examples
of sample reduction or active incremental sampling. The
active rearranged capturing concept is new, and was only
very briefly mentioned in our previous paper [19] with very
preliminary results. In this paper, we will re-formulate the
problem in a more rigorous way, propose a weighted vector
quantization based algorithm to solve the problem, and show
the effectiveness of the algorithm with a self-reconfigurable
camera array.

C. Existing Camera Arrays

In recent years there has been increasing interest in building
camera arrays. For instance, Schirmacher et al. [18] built a
6-camera system which was composed of 3 stereo pairs and
claimed that the depth could be recovered on-the-fly. The novel
views are then synthesized using these depth maps. Naemura
et al. [20] constructed a camera array system consisting of 16
cameras. A single depth map was reconstructed from 9 of the



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 3

16 images using a stereo matching PCI board, and was then
used for rendering. Matusik et al. [21] used 4 cameras for
IBR using the image-based visual hull (IBVH) technique. The
IBVH algorithm was later extended to image based photo hull
in [22], which also used a 4-camera array. More recently, Yang
et al. [23] built a 5-camera system for real-time rendering with
the help of modern graphics hardware.

Several large arrays consisting of tens of cameras have
also been built, such as the Stanford multi-camera array [8],
the MIT distributed light field camera [9] and the CMU 3D
room [24]. These three systems have 128, 64 and 49 cam-
eras, respectively. The Stanford system focused on grabbing
synchronized video sequences onto hard drives. They also
explored various applications of such a camera array, such
as high dynamic video, high speed video, hybrid aperture
photography, etc [25]. The CMU 3D room was able to generate
good-quality novel views both spatially and temporarily [26].
It utilized the scene geometry reconstructed from a scene
flow algorithm that took several minutes to run. While this is
affordable for off-line processing, it cannot be used to render
scenes on-the-fly. The MIT system did render live views at a
high frame rate. Their method assumed constant depth of the
scene, however, and suffered from severe ghosting artifacts
due to the lack of scene geometry. Such artifacts are expected
according to the plenoptic sampling analysis [3], [4].

In this paper we will present a self-reconfigurable camera
array that consists of 48 cameras. Compared with the previous
camera arrays, a unique characteristic of our camera array
is that the cameras are mobile. A central computer controls
where the cameras should move, based on our active rear-
ranged capturing theory, in order to render the best quality
images.

III. ACTIVE REARRANGED CAPTURING

A. Problem Statement
Assume we have N cameras to capture a static or slowly-

moving scene. The cameras can move freely on the camera
plane, and point to the same direction. The field of view
of each camera is assumed to be wide enough to cover
the interested objects. During the capturing, we also have
P viewers who are watching the scene. These P views are
rendered through the method mentioned in Section II-A from
the N captured images. The goal is to arrange these N cameras
such that the P views can be rendered at their best quality. Here
both N and P are finite.

Formally, as shown in Fig. 2, let the cameras’ positions
on the camera plane be cj , j = 1, 2, · · · , N . Since during
the rendering, each rendered view will be split into a set of
light rays, we combine the P virtual views into L light rays
in total. Denote them as li, i = 1, 2, · · · , L. For a number of
reasons such as insufficient sampling and inaccurate geometric
modeling, the rendered light rays are not perfect. Denote the
rendering errors of the light rays as ei, i = 1, 2, · · · , L, or,
in vector form, e. In our application, the rendering error can
be considered as the difference between the rendered light ray
and the actual light ray intensity, although other definitions
are possible. Obviously, e depends on the camera locations
cj . The camera rearrangement problem is stated as:

il
ix

jc

ijd

ijθ

ir

iα

Fig. 2. The formulation of the problem.

Definition 3.1: Given light rays li, i = 1, 2, · · · , L to
be rendered, find the optimal camera locations ĉj , j =
1, 2, · · · , N , such that a function Ψ(e) over the rendering
errors is minimized. That is:

ĉj = arg
cj

minΨ(e) (1)

The definition of function Ψ(e) depends on the particular
application. In this paper, we focus on the widely adopted
squared error criterion, namely:

Ψ(e) =
L∑

i=1

e2
i ; (2)

We will show, in the next subsections, that such an error
function leads to a weighted vector quantization solution for
active rearranged capturing, which can be solved efficiently
using a modified LBG-VQ algorithm [27].

Note the above camera rearrangement problem is trivial if
all the P virtual views are on the camera plane, and P ≤ N,
because one may simply move the cameras to the virtual view
positions and capture the scene at those places directly, leading
to zero error for the rendered light rays. However, the problem
is non-trivial as long as one of the virtual viewpoints are out
of the camera plane (even if P = 1), or P > N, because any
out of plane view will have to be synthesized from multiple
images, which can be potentially improved by rearranging the
capturing cameras.

B. Formulation Based on the Angular Difference

In Fig. 2, denote the intersection of the light rays and the
camera plane as xi, i = 1, 2, · · · , L. Consider a certain light
ray li, which crosses the scene geometry at O, and one of its
neighboring camera cj . Denote the distance between cj and
xi as dij = ‖xi − cj‖ and the angular difference as θij . Let
the distance between O and xi be ri, which is known during
the rendering. From the figure, we know that when the scene
depth ri À dij (which is almost always true), we have:

θij ≈ dij cos αi

ri
= wi‖xi − cj‖ (3)



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 4

where αi is the angle between the light ray li and the normal
of the camera plane, and wi = cos αi

ri
. Let

θ̃i = min
j=1,··· ,N

θij (4)

be the minimum angular difference between light ray li and all
the capturing cameras. Intuitively, if the minimum angle θ̃i is
very small, the rendered light ray will be almost aligned with a
captured light ray, hence the rendering quality should be high,
even if the scene geometry is inaccurate or the scene surface is
non-Lambertian. The relationship between the rendering error
ei and θ̃i, however, is very complex for practical scenes due to
various factors such as geometry accuracy and scene surface
property. As a very coarse approximation, we assume:

ei = εi(θ̃i) ≈ kiθ̃i, (5)

where ki is a scaling factor. The right side of Equ. 5 is indeed
a linear approximation of εi(θ̃i), which is valid when θ̃i is
very small. The scaling factor ki, however, differs from light
ray to light ray, and is generally unknown.

Active rearranged capturing then minimizes the summation
of squared errors as:

ĉj = arg
cj

minΨ(e) = arg
cj

min
L∑

i=1

e2
i

≈ arg
cj

min
L∑

i=1

(kiθ̃i)2

= arg
cj

min
L∑

i=1

γi min
j=1,··· ,N

‖xi − cj‖2, (6)

where γi = w2
i k2

i . Note the last equality is due to Equ. 3
and 4. The above formulation is a standard weighted vector
quantization problem, and can be easily solved if the weights
γi are known. Unfortunately, as mentioned earlier, ki depends
on the geometry accuracy and scene surface property, which
is generally unknown.

Although Equ. 6 cannot be solved directly, it has some nice
properties. For instance, if a certain light ray has a large scaling
factor ki, which means it tends to have a large rendering error,
the weight γi becomes large. The vector quantization process
will then reduce more on min

j=1,··· ,N
‖xi−cj‖2, effectively mov-

ing the capturing cameras closer to that light ray. Therefore,
if the weights γi can be adjusted according to the rendering
quality, the same weighted VQ algorithm can still be used to
achieve the best rendering quality. These observations make it
clear that we need an iterative solution for active rearranged
capturing, which adjusts the weights γi according to some
estimation of the final rendering quality.

C. A Recursive Algorithm for Active Rearranged Capturing

Fig. 3 shows the flow chart of the proposed recursive active
rearranged capturing algorithm applicable for static or slowly-
moving scenes. Given a set of newly captured images, we first
estimate the rendering errors of all the light rays. If the viewers
have moved (which can cause significant changes to the set
of to-be-rendered light rays), the weights γi in Equ. 6 will be

i
γ

i
γ

Fig. 3. The flow chart of our proposed active rearranged capturing algorithm
for static or slowly-moving scenes.

reinitialized. Afterwards, the weights γi are updated based on
the estimated rendering quality. Weighted VQ is performed as
Equ. 6, and the cameras are moved to capture the next set of
images.

Two problems need to be addressed in the above flow chart,
i.e., how to estimate the rendering quality given a set of
captured images, and how to update the weights γi.

We propose to use the local color consistency as an esti-
mation of the rendering quality. The local color consistency
was first proposed in [19] for measuring the PIE functions.
It states that a good rendering quality can be expected if the
projected pixels used to interpolate a given light ray share the
same intensity. Therefore, an easy implementation of the local
color consistency is to use the variance of the projections.
Take the light ray li in Fig. 2 as an example. The local color
consistency Ci of li can be calculated as:

Ci =
1
σi

(7)

where σi is the variance of the projections of O to the K nearest
neighboring images. Usually K is small, e.g., K = 4. In [19]
it has been shown that such measurement is indeed a good
estimate of the rendering quality. In the follow discussions,
we simply use ei ≈ σi to model the rendering errors that we
want to minimize in Equ. 6.

Now that the rendering quality has been estimated, we shall
adjust the weights γi in Equ. 6 to find better locations for the
capturing cameras. In the following, we present two weight
updating mechanisms we experimented.

The first algorithm is based on the observation that if the
weight associated with a certain light ray is increased, the
weighted VQ algorithm that follows will tend to move the
capturing cameras closer to the light ray. To improve the low
quality light rays, we first define:

si = log σi (8)

as the score for each light ray. Let smin and smax be the
minimum and maximum value of si, i = 1, · · · , L. s be the
average value of si. The weight γt+1

i at time instance t+1 is



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 5

s

1

ξ

ς

k
s

k
s

min

k
s

max

Fig. 4. Scaling factor for updating the auxiliary weights.

updated from those γt
i at time instance t as:

γt+1
i =

{
γt

i ∗ (1 + (ξ − 1) s−si

s−smin
), si ≤ s;

γt
i ∗ (1 + (ζ − 1) si−s

smax−s ), si > s.
(9)

where ξ and ζ are the minimum and maximum weight scaling
factor. They are set as 0.5 and 4 respectively in the current
implementation. As illustrated in Fig. 4, Equ. 9 says that if the
variance of the projected pixels for a light ray is greater than
the average (thus the local color consistency is bad), its weight
will be increased. During the weighted VQ, the cameras will
then move closer to that light ray. Otherwise, the cameras will
move away. Note that after the weight update with Equ. 9, one
should normalize the new weights such that

∑L
i=1 γt+1

i = 1.
Equ. 9 requires initial values of γ0

i to start the iteration. We
find in practice the following initialization works well:

γ0
i ∝ min

j=1,··· ,N
‖xi − cj‖, (10)

which gives higher weights to light rays that are far from any
capturing cameras.

The second weight updating algorithm is based on the linear
approximation between the rendering error and the minimum
angular difference in Equ. 5, it is straightforward that:

γi = w2
i k2

i

≈ e2
i

min
j=1,··· ,N

‖xi − cj‖2

≈ σ2
i

min
j=1,··· ,N

‖xi − cj‖2 (11)

Since the rendering errors ei are estimated from the local color
consistency, the second weight updating algorithm does not
require initial values of γi. That is, even if the viewers keep
moving around, the weight reinitialization step in Fig. 3 can
be skipped, making it more adaptable for viewer changes and
dynamic scenes.

The recursive active rearranged capturing algorithm is thus
summarized in Fig. 5.

D. Discussions

If we adopt the second weight updating algorithm in the
previous section, the proposed recursive ARC algorithm is
guaranteed to converge if all the assumptions made in the
paper are correct. This can be seen as follows. The weight

Given a set of images newly captured, perform:
1) Error estimation, estimate the rendering error

using local color consistency for any light ray li:

Rendered color: mi =
∑K

k=1 µkIik

Variance: σ2
i =

∑K
k=1 µk(Iik −mi)2

where the summations are for the K nearest neigh-
bors. µk is the weight for each captured light ray
determined by the rendering algorithm, Iik is the
captured light ray intensity.

2) Weight update, update the weights γi as Equ. 9
or 11.

3) Weighted VQ, perform weighted vector quantiza-
tion with a modified LBG-VQ algorithm [27]:
a. Nearest neighbor condition:

xi ∈ Rj , if ‖xi−cj‖ ≤ ‖xi−cj′‖, ∀j′ = 1, · · · , N

where Rj is the neighborhood region of centroid
cj .
b. Centroid condition:

cj =
P

xi∈Rj
γixiP

xi∈Rj
γi

, j = 1, · · · , N

4) Capture images, move the cameras according to
the VQ result and capture images. Go back to 1).

Fig. 5. The recursive active rearranged capturing algorithm.

update step in Equ. 11 will not change the error function,
while the weighted VQ that follows will guarantee to reduce
the error function. Hence after each iteration the error function
will be reduced, until it converges1. However, one may argue
that although moving cameras closer to a rendered light ray
may increase the rendering quality, the relationship may not
be linear, hence Equ. 5 may not hold. Subsequently, after
weighted VQ the rendering error may increase. In addition,
although the local color consistency works well, it may not
reflect the exact rendering error a light ray has.

In practice, we find both updating algorithm converges
well for the sequences we tested. In fact, as shown in the
next subsection, we always notice significant improvements
after the first iteration. Further iterations only increase the
rendering quality slightly. This characteristic surprises us but
is good for active rearranged capturing, because it allows the
algorithm to track viewer movements and dynamic scenes
almost instantaneously, as long as the camera can move fast
enough.

E. Synthetic experimental results

We verify the effectiveness of the proposed view-dependent
active rearranged capturing algorithm with three synthetic

1Although weighed VQ guarantees convergence, it does not guarantee
to converge to the global minimum. The same problem will exist in our
algorithm.



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 6

Fig. 6. Setup of experiments on synthetic scenes.

18

20

22

24

26

28

30

32

34

0 2 4 6 8 10 12

Number of iterations

P
S

N
R

 (
d

B
)

Teapot, update with Equ.9

Teapot, update with Equ.11

Vase, update with Equ.9

Vase, update with Equ.11

Wineglass, update with Equ.9

Wineglass, update with Equ.11

Teapot

Vase

Wineglass

Fig. 8. PSNR of ARC with respect to the number of iterations. Each iteration
contains weighted VQ, camera movement and new image set capturing.

scenes, namely, teapot, vase and wineglass (Fig. 7), all ren-
dered from POV-Ray [28], which creates 3D photo-realistic
images using ray tracing. The scenes contain complex textures,
occlusions, semi-reflection, transparency, etc. In all cases, we
use 64 cameras on the camera plane to capture the scene, as
shown in Fig. 6. The initial camera locations are uniformly
distributed on the camera plane. The virtual viewpoints can
be anywhere for light field rendering, but for experimental
purpose we place them on a plane in front of the camera
plane, at a distance z0, where z0 roughly equals to the distance
between neighboring initial camera locations d0. The virtual
viewpoints are assumed to be on a rectangular grid, indexed
from 1 to 9, as shown in Fig. 6. The distance between
neighboring virtual viewpoints is d.

We first consider the case where a single virtual view is
rendered from the viewpoint indexed as 1 in Fig. 6. We use
a constant depth plane as the geometric model. Fig. 8 shows
the peak signal to noise ratio (PSNR) of the rendered image
with respect to the number of iterations ARC performs. The
improvement from no ARC (iteration number = 0) to ARC
is very significant. Another interesting phenomenon is that
the PSNRs improve dramatically when ARC was first applied
(iteration number = 1), but then they improve very slowly
when the number of iterations increases. This was unexpected

20

21

22

23

24

25

26

27

28

0 2 4 6 8 10

Number of viewpoints

P
S

N
R

 (
d

B
)

d=z0, no ARC

d=z0, ARC

d=2z0, no ARC

d=2z0, ARC

d=4z0, no ARC

d=4z0, ARC
ARC

No ARC

Teapot

20

22

24

26

28

30

32

34

36

0 2 4 6 8 10

Number of v iewpoints

P
S

N
R

 (
d

B
)

d=z0, no ARC

d=z0, ARC

d=2z0, no ARC

d=2z0, ARC

d=4z0, no ARC

d=4z0, ARC

Vase

ARC

No ARC

Fig. 9. Performance of ARC for multiple virtual viewpoints. The symbols
such as d and z0 were defined in Fig. 6.

but very useful for applying ARC to dynamic scenes and
adapting to viewer movements.

Both weight updating algorithms work well and achieve
similar performance. On the teapot scene, the second updating
algorithm performs slightly better. This can be explained by
Fig. 7, where we show some of the rendering results before
and after ARC. The red dots in Fig. 7(c)(e)(g)· · · shows
the projection of the camera locations to the virtual imaging
plane of the rendering camera. It is interesting to observe
that in teapot, many cameras are stuck in the pure black
background when Equ. 9 is used to update the weights. In
contrast, they immediately move to the foreground object when
using Equ. 11. This is because although Equ. 9 adjust the
weights up or down exponentially, it cannot directly set the
weights of those background pixels to zero like Equ. 11 will
do. Hence the convergence of ARC with Equ. 9 as the updating
mechanism is slower. On the other hand, after 10 iterations, the
first updating algorithm achieves slightly better PSNR on vase
and wineglass. This is because the second algorithm relies on
a linear approximation in Equ. 5, which is less flexible than
the first algorithm in adjusting the weights.

We next examine the performance of ARC when multiple
views are rendered. In Fig. 9, we show PSNR curves of teapot
and vase with respect to the number of virtual viewpoints
and their relative distances d (Fig. 6). In Fig. 9, if the



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 7

Teapot scene

(a)

(b)

(c)

(d)

(f)

(h)

(e)

(g)

(i)

(j)

(l)

(n)

(k)

(m)

(o)

Vase scene

(a)

(b)

(c)

(d)

(f)

(h)

(e)

(g)

(i)

(j)

(l)

(n)

(k)

(m)

(o)

(a)

(b)

(c)

(d)

(f)

(h)

(e)

(g)

(i)

(j)

(l)

(n)

(k)

(m)

(o)

Wineglass scene

Fig. 7. Results of our active rearranged capturing (ARC) algorithm. (a) Virtual view to be rendered (ground truth). (b)(c) Rendering results before ARC
and projection of the camera locations on the virtual imaging plane. (d)(e) Update with Equ. 9, 1 iteration of ARC. (f)(g) Update with Equ. 9, 3 iteration of
ARC. (h)(i) Update with Equ. 9, 10 iteration of ARC. (j)(k) Update with Equ. 11, 1 iteration of ARC. (l)(m) Update with Equ. 11, 3 iteration of ARC. (n)(o)
Update with Equ. 11, 10 iteration of ARC.



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 8

Fig. 10. Our self-reconfigurable camera array system with 48 cameras.

number of viewpoints is P , we use all viewpoints whose
indexes are less than or equal to P in Fig. 6. The weight
updating algorithm in Equ. 11 is adopted in this comparison,
with 3 iterations of ARC. Note in all cases, capturing with
ARC produces significantly higher PSNR than if no ARC is
performed. On the other hand, the improvement drops when
the number of viewpoints increases. This is expected because
when the number of viewpoints increases, ARC needs to seek
balance between multiple views in order to achieve the best
average rendering quality. Similarly, when the virtual views
are more and more far apart, the to-be-rendered light rays
have less overlap, which increases the difficulty for ARC
to find camera locations that can render all the light rays
well. Note the above conclusions are not definite (e.g. the
vase scene), because different viewpoints may see completely
different scene objects.

IV. A SELF-RECONFIGURABLE CAMERA ARRAY

In this section, we present a self-reconfigurable camera array
that makes use of the above developed ARC algorithm and
adjusts the camera locations automatically based on the virtual
views to be rendered. To the best of the authors’ knowledge,
this is the world’s first camera array at such scale that can
perform self-reconfiguration for the purpose of image-based
rendering.

A. System Overview

The system is composed of inexpensive off-the-shelf com-
ponents. As shown in Fig. 10, there are 48 (8×6) Axis 205
network cameras placed on 6 linear guides. The linear guides
are 1600 mm in length, thus the average distance between
cameras is about 200 mm. Vertically the cameras are 150 mm
apart. The cameras can capture up to 640×480 pixel images
at maximally 30 fps. They have built-in HTTP servers, which
send motion JPEG sequences upon request. The JPEG image
quality is controllable. The cameras are connected to a central
computer through 100Mbps Ethernet cables.

Each camera is mounted on a mobile platform (see Fig. 11),
and is fastened to a pan servo capable of rotating through 90
degrees. They are mounted on a platform, which is equipped
with another sidestep servo. The sidestep servo has been

Fig. 11. The mobile camera unit.

modified to rotate continuously. A gear wheel is attached to the
sidestep servo, which allows the platform to move horizontally
with respect to the linear guide. The gear rack is added to avoid
slippery during the motion. The two servos on each camera
unit allow the camera to have two degrees of freedom—pan
and sidestep. However, the 12 cameras at the leftmost and
rightmost columns have fixed positions and can only pan.

The servos are controlled by the Mini SSC II servo con-
troller [29]. Each controller is in charge of up to 8 servos
(either standard servos or modified ones). Multiple controllers
can be chained, thus up to 255 servos can be controlled si-
multaneously through a single serial connection to a computer.
In the current system, we use 11 Mini SSC II controllers to
control 84 servos (48 pan servos, 36 sidestep servos).

Unlike any of the existing camera array systems mentioned
in Section II-C, our whole system uses only a single computer.
The computer is an Intel Xeon 2.4 GHz dual processor
machine with 1GB of memory and a 32 MB NVIDIA Quadro2
EX graphics card. We developed a rendering algorithm that is
very efficient and can perform region of interest identifica-
tion, JPEG image decompression and camera lens distortion
correction in real time (5-10 fps) [30].

Fig. 12(a) shows a set of images about a static scene
captured by our camera array. The images are acquired at
320×240 resolution. The JPEG compression quality is set
to be 30 (0 being the best quality and 100 being the worst
quality). Each compressed image is about 12-18 Kbytes. In
a 100 Mbps Ethernet connection, 48 cameras can send such
JPEG image sequences to the computer simultaneously at 15-
20 fps, which is satisfactory.

B. Software Architecture

The system software runs as two processes, one for cap-
turing and the other for rendering. The capturing process is
responsible for sending requests to and receiving data from the
cameras. The received images (in JPEG compressed format)
are directly copied to some shared memory that both processes
can access. The capturing process is often lightly loaded,
consuming about 20% of one processor in the computer. When
the cameras start to move, their external calibration parameters
need to be re-calculated in real-time. Camera calibration is also
performed by the capturing process. As will be described in the
next section, calibration of the external parameters generally
runs fast (150–180 fps).

The rendering process runs on the other processor. It is
responsible for ROI identification, JPEG decoding, lens distor-



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 9

(a)

(b) (c)

(d) (e)

Fig. 12. Images captured by our camera array. (a) All the images; (b–e)
sample images from selected cameras.

tion correction, scene geometry reconstruction and novel view
synthesis. Due to page limits, we will not discuss the real-time
rendering aspect of the system. Interested readers are referred
to [30] for more details.

C. Camera Calibration

Since our cameras are designed to be self-reconfigurable,
calibration must be performed in real-time. Fortunately, the
internal parameters of the cameras do not change during
their motion, and can be calibrated offline. We use a large
planar calibration pattern for the calibration process (Fig. 12).
Bouguet’s calibration toolbox [31] is used to obtain the internal
camera parameters.

To calibrate the external parameters, we first need to extract
the features on the checkerboard. We assume that the top two
rows of feature points will never be blocked by the foreground
objects. The checkerboard boundary is located by searching for
the red strips of the board in the top region of the image. The
pan servos are used here to make sure that the checkerboard is
always centered in the captured images. Once the left and right
boundaries are identified (as shown in Fig. 13), we locate the
top two rows of corner features through linear filtering [30].
The feature positions are then refined to sub-pixel accuracy
by finding the saddle points, as in [31]. The corners below

Fig. 13. Locate the feature corners of the calibration pattern.

the second row are extracted row by row. At each row, we
predict the feature locations based on the previous two rows
of features. The accurate positions of the features are then
found through the same approach above. The results of such
feature extraction are shown in Fig. 13. Note that if the corner
detector cannot find a feature along a column for a certain row
due to various reasons such as occlusions, it will stop finding
features below that row in that column.

Finally, to obtain the 6 external parameters (3 for rotation
and 3 for translation) of the cameras, we use the algorithm
proposed by Zhang [32]. The Levenberg-Marquardt method
implemented in MinPack [33] is adopted for the nonlinear
optimization. The above calibration process runs very fast on
our processor (150–180 fps at full speed). As long as there are
not too many cameras moving around simultaneously, we can
perform calibration on-the-fly during the camera movement.
In the current implementation, we constrain movement to one
camera per row at any time instance. After a camera has
sidestepped, it will pan if necessary in order to keep the
calibration board in the middle of the captured image.

D. Real-Time Rendering

We developed a real-time rendering algorithm that takes the
48 captured frames at any instance and renders virtual views
at arbitrary viewpoints for dynamic scenes. Briefly speaking,
the algorithm reconstructs a mesh model of the scene on the
fly, and renders the virtual views with unstructured Lumigraph
rendering [12]. The algorithm achieves 5-10 frames per sec-
ond rendering speed on a moderate computer. The rendering
software is downloadable from:

http://amp.ece.cmu.edu/projects/MobileCamArray/.
A thorough explanation of the rendering algorithm is out of the
scope of this paper, and we refer the interested reader to [30].

E. Self-Reconfiguration of the Cameras

In Section III we presented an active rearranged capturing
algorithm. There we assumed that all the capturing cameras
can move freely on the camera plane. Such assumption is very
difficult to implement in practical systems. In this section,



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 10

(i-a) (ii-a) (iii-a) (iv-a)

(i-b) (ii-b) (iii-b) (iv-b)

(i-c) (ii-c) (iii-c) (iv-c)

(i-d) (ii-d)

(iii-d) (iv-d)

Fig. 14. Scenes rendered by reconfiguring our camera array. (i) Scene flower, cameras are evenly spaced; (ii) scene flower, cameras are self-reconfigured (6
epochs); (iii) scene Santa, cameras are evenly spaced; (iv) scene Santa, cameras are self-reconfigured (20 epochs); (a) the camera arrangement; (b) reconstructed
depth map, brighter intensity means smaller depth; (c) the score of the mesh vertexes and the projection of the camera positions to the virtual imaging plane
(red dots), darker intensity means better consistency; (d) rendered image.



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 11

Fig. 15. Self-reconfiguration of the cameras.

we present a local rearrangement algorithm for the self-
reconfiguration of the cameras, given that they are constrained
on the linear guides.

Fig. 14 shows two real-world examples rendered from our
camera array. Fig. 14(i-c) and (iii-c) shows the score as
defined in Equ. 8 obtained during the rendering process. Note
most errors are located around object boundaries and complex
texture regions. The goal is again to move the cameras around
to enhance the quality of the rendered light rays.

Our revised ARC algorithm contains the following steps:
1. Locate the camera plane and the linear guides (as line

segments on the camera plane). The camera positions in the
world coordinate are obtained through the calibration process.
Although they are not strictly on the same plane, we use an
approximated one which is parallel to the checkerboard. The
linear guides are located by averaging the vertical positions
of each row of cameras on the camera plane. As shown in
Fig. 15, denote the vertical coordinates of the linear guides on
the camera plane as Yj , j = 1, · · · , 6.

2. Back-project the rendered light rays to the camera plane.
In Fig. 15, one such light ray was back-projected as (xi, yi)
on the camera plane. Note the light rays can be sub-sampled
to save computation.

3. Collect score for each pair of neighboring cameras on
the linear guides. The capturing cameras on each linear guide
naturally divide the guide into 7 segments. Let them be Bjk,
where j is the row index of the linear guide, k is the index of
bins on that guide, 1 ≤ j ≤ 6, 1 ≤ k ≤ 7. If a back-projected
vertex (xi, yi) satisfies

Yj−1 < yi < Yj+1 and xi ∈ Bjk, (12)

the score of the vertex is added to the bin Bjk. After all
the vertices have been back-projected, we obtain a set of
accumulated scores for each linear guide, denoted as Sjk,
where j is the row index of the linear guide, k is the index of
bins on that guide.

5. Determine which camera to move on each linear guide.
Given a linear guide j, we look for the largest Sjk, 1 ≤ k ≤ 7.
Let it be SjK . If the two cameras forming the corresponding
bin BjK are not too close to each other, one of them will
be moved towards the other (thus reducing their distance).

Notice each camera is associated with two bins. To determine
which one of the two cameras should move, we check their
other associated bin and move the camera with a smaller
accumulated score in its other associated bin.

6. Move the cameras. Once the moving cameras have been
decided, we issue them commands such as “move left” or
“move right”2. Once the cameras are moved, the process waits
until it is confirmed that the movement has finished and the
cameras are re-calibrated. Then it jumps back to step 1 for the
next epoch of movement.

The above algorithm can be viewed as a simplified version
of the active rearranged capturing algorithm described in
Section III. The three major simplifications are: 1. Cameras
can only move on a line. Effectively the 2D weighted vec-
tor quantization algorithm becomes a 1d vector quantization
problem. 2. Each time only one camera can move on a
row. 3. The camera movement has fixed step size, since the
only command we can issue is “move left” or “move right”.
The latter two simplifications may affect the convergence
speed and performance of the algorithm. Nevertheless, such
a simplified algorithm can still bring improvements on the
rendering quality of the virtual views.

We show results of the proposed algorithm in Fig. 14. In
Fig. 14 (i) and (iii), the capturing cameras are evenly spaced
on the linear guide. Fig. 14(i) is rendered behind the camera
plane, and Fig. 14(iii) is rendered in front of the camera plane.
Due to depth discontinuities, some artifacts can be observed
from the rendered images (Fig. 14 (i-d) and (iii-d)) along the
object boundaries. Fig. 14(b) is the reconstructed depth of the
scene at the virtual viewpoint. Fig. 14(c) is the rendering error
score computed during the rendering process. It is obvious
that along the object boundaries, the score is high, which
indicates bad rendering quality. The red dots in Fig. 14(c)
are the projections of the capturing camera positions to the
virtual imaging plane.

Fig. 14 (ii) and (iv) shows the rendering result after ARC.
Fig. 14 (ii) is the result of 6 epochs of camera movement,
and Fig. 14 (iv) is after 20 epochs. It can be seen from
the score map (Fig. 14(c)) that after the camera movement,
the consistency gets better. The cameras have been moved,
which is reflected as the red dots in Fig. 14(c). The cameras
moves towards the regions where the score is high, which
effectively increases the sampling rate around those regions.
Fig. 14 (ii-d) and (iv-d) shows the rendering results after self-
reconfiguration, which are much better than 14 (i-d) and (iii-d).
A video clip on the ARC process is available at:

http://amp.ece.cmu.edu/projects/MobileCamArray/.
The major limitation of our self-reconfigurable camera array

is that the motion of the cameras is slow. When the computer
write a command to the serial port, the command will be
buffered in the Mini SSC II controller for about 15 ms before
sending to the servo. After the servo receives the command,
there is also a long delay (hundreds of ms) before it moves
enough distance. Therefore, during the self-reconfiguration of

2We can only send such commands to the sidestep servos, because the
servos were modified for continuous rotation. The positions of the cameras
after movement is uncertain, and can only be obtained through the calibration
process.



IEEE TRANS. ON MULTIMEDIA, VOL. X, NO. X, XXX 200X 12

the cameras, we have to assume that the scene is either static
or moving very slowly, and the viewer is not changing his/her
viewpoint all the time. In our current implementation, the
calibration process and the rendering process run separately.
During self-reconfiguration, the moving cameras are not used
for rendering until their calibration parameters are successfully
computed. We observe some jittering artifacts of the rendered
images when the moved cameras have not been fully cali-
brated.

There is no collision detection in the current system while
moving the cameras. Although the calibration process is very
stable and gives fairly good estimation of the camera positions,
collision could still happen. In the previous subsection, we
have a threshold for verifying whether two cameras are too
close to each other. The current threshold is set as 10 cm,
which is reasonably safe in all our experiments.

V. CONCLUSION

This paper presented an active rearranged capturing algo-
rithm for IBR. We made two major contributions in this paper.
First, we showed that by observing the captured images at
some initial positions, active rearranged capturing can refine
the capturing positions using a recursive weighted vector
quantization algorithm. After rearrangement, the rendering
quality of the virtual views can be improved significantly.
Second, we have presented the world’s first large scale self-
reconfigurable camera array, which consisted of 48 mobile
cameras. Despite the constraints on how the cameras can move
on the camera plane in practice, the rendering quality of our
camera array was still shown to be better than the traditional
static camera arrays.

ACKNOWLEDGMENT

The authors would like to thank Ted Square for proof-
reading the paper. We also thank the anonymous reviewers
for their valuable suggestions to improve the paper.

REFERENCES

[1] C. Zhang and T. Chen, “A survey on image-based rendering - represen-
tation, sampling and compression,” EURASIP Signal Processing: Image
Communication, vol. 19, no. 1, pp. 1–28, 2004.

[2] H.-Y. Shum, S. Kang, and S.-C. Chan, “Survey of image-based rep-
resentations and compression techniques,” IEEE Trans. CSVT, vol. 13,
no. 11, pp. 1020 – 1037, 2003.

[3] J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,”
in Proc. SIGGRAPH, 2000, pp. 307–318.

[4] C. Zhang and T. Chen, “Spectral analysis for sampling image-based
rendering data,” IEEE Trans. on CSVT, vol. 13, no. 11, pp. 1038–1050,
2003.

[5] ——, “Generalized plenoptic sampling,” Carnegie Mellon Technical
Report, AMP01-06, 2001.

[6] ——, “Active scene capturing for image-based rendering,” Carnegie
Mellon University, Tech. Rep. AMP03-02, 2003.

[7] ——, “A system for active image-based rendering,” in Proc. ICME,
2003.

[8] B. Wilburn, M. Smulski, H.-H. K. Lee, and M. Horowitz, “The light
field video camera,” in Proc. of Media Processors, 2002.

[9] J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time
distributed light field camera,” in Eurographics Workshop on Rendering,
2002.

[10] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIGGRAPH,
1996, pp. 31–42.

[11] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” in
Proc. of SIGGRAPH, 1999, pp. 299–306.

[12] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen,
“Unstructured lumigraph rendering,” in Proc. SIGGRAPH, 2001, pp.
425–432.

[13] Z. C. Lin and H. Y. Shum, “On the number of samples needed in light
field rendering with constant-depth assumption,” in Proc. CVPR, 2000.

[14] S. Fleishman, D. Cohen-Or, and D. Lischinski, “Automatic camera
placement for image-based modeling,” in Computer Graphics Forum,
2000.

[15] J. O’Rourke, Art Gallery Theorems and Algorithms, ser. The Interna-
tional Series of Monographs on Computer Science. Oxford University
Press, 1987.

[16] T. Werner, V. Hlavác, A. Leonardis, and T. Pajdla, “Selection of
reference views for image-based representation,” in Proc. ICPR, 1996.

[17] R. Namboori, H. C. Teh, and Z. Huang, “An adaptive sampling method
for layered depth image,” in Computer Graphics International (CGI),
2004.

[18] H. Schirmacher, W. Heidrich, and H. P. Seidel, “Adaptive acquisition of
lumigraphs from synthetic scenes,” in Proc. EUROGRAPHICS, 1999.

[19] C. Zhang and T. Chen, “Non-uniform sampling of image-based render-
ing data with the position-interval error (pie) function,” in Proc. VCIP,
2003.

[20] T. Naemura, J. Tago, and H. Harashima, “Real-time video-based mod-
eling and rendering of 3d scenes,” IEEE Computer Graphics and
Applications, vol. 22, no. 2, pp. 66–73, 2002.

[21] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, “Image-
based visual hulls,” in Proc. SIGGRAPH, 2000, pp. 369–374.

[22] G. G. Slabaugh, R. W. Schafer, and M. C. Hans, “Image-based photo
hulls,” HP Labs, Tech. Rep. HPL-2002-28, 2002.

[23] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-based scene
reconstruction using commodity graphics hardware,” in Proc. Pacific
Graphics, 2002.

[24] S. V. T. Kanade, H. Saito, “The 3d room: digitizing time-varying
3d events by synchronized multiple video streams,” Technical Report,
CMU-RITR-98-34, 1998.

[25] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” in Proc. SIGGRAPH, 2005.

[26] S. Vedula, S. Baker, and T. Kanade, “Spatio-temporal view interpola-
tion,” in 13th ACM Eurographics Workshop on Rendering, 2002.

[27] Y. Linde, A. Buzo, , and R. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. on Communications, vol. 28, no. 1, pp. 84–95,
1980.

[28] Pov-Ray, “http://www.povray.org.”
[29] MiniSSC-II, “Scott edwards electronics inc.,

http://www.seetron.com/ssc.htm.”
[30] C. Zhang, “On sampling of image-based rendering data,” Ph.D. disser-

tation, Department of Electrical and Computer Engineering, Carnegie
Mellon University, 2004.

[31] J.-Y. Bouguet, “Camera calibration toolbox for matlab,
http://www.vision.caltech.edu/bouguetj/calib doc/,” 1999. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib doc/

[32] Z. Zhang, “A flexible new technique for camera calibration,” Technical
Report, MSR-TR-98-71, 1998.

[33] J. J. Moré, “The levenberg-marquardt algorithm, implementation and
theory,” G. A. Watson, editor, Numerical Analysis, Lecture Notes in
Mathematics, vol. 630, pp. 105–116, 1977.


