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D
uring the past decade, com-
pressed sensing has delivered
significant advances in the
theory and application of mea-

suring and compressing data. Consider
capturing a 10-megapixel image with
a digital camera. Emailing an image of this
size requires an unnecessary amount of
storage space and bandwidth. Instead,
users employ a standard digital compres-
sion scheme, such as JPEG, to represent
the image as a 64-kb file. The compressed
image is completely recognizable even
though the dimension of the compressed
version is a tiny fraction of the original
10 million dimensions. Compressed sens-
ing takes this mathematical phenomenon
one step further. Is it possible to capture
the pertinent information, such as the
64-kb image, without first measuring the
full 10 million pixel values? If so, how
should we perform the measurements?
If we capture the important information,
can we still reconstruct the image from
this limited number of observations?
Compressed sensing exploded in 2004
when Donoho (1, 2) and Candes and
Tao (3) definitively answered these ques-
tions by incorporating randomness in the
measurement process. Because engineer-
ing a truly random process is impossible, a
major open problem in compressed sens-
ing is the search for deterministic methods
for sparse signal measurement that cap-
ture the relevant information in the signal
and permit accurate reconstruction. In
PNAS, Monajemi et al. (4) provide a
major step forward in understanding the
potential for deterministic measurement
matrices in compressed sensing.
Capturing digital images on a camera

is simple; however, there are many appli-
cations in which the measurement process
has a much greater underlying cost. MRI
is a prime example of a high-impact com-
pressed sensing application. For most
MRI examinations, a patient is required to
lie still in a confined space for approximately
45 min. In some situations, compressed
sensing has generated diagnostic-quality
magnetic resonance images using only 10%
as many measurements (5). MRI is only
a single example of compressed sensing
applications, which extend well beyond
imaging and include computed tomogra-
phy, electrocardiography, multispectral
imaging, seismology, analog-to-digital con-
version, radar, X-ray holography, astron-
omy, DNA sequencing, and genotyping
(Rice Compressed Sensing Resources;
http://dsp.rice.edu/cs).

Traditional signal processing proce-
dures measure the full signal directly and
apply standard compression routines for
storage or transmission. When needed, the
original signal can be reconstructed by
inverting the linear compression pro-
cedure. Compressed sensing transfers the
workload from the measurement process
to the signal reconstruction. Although the
measurement process remains linear, the
reduced number of measurements forces
a highly nonlinear reconstruction process.
Rather than taking point measurements

of the entire signal, compressed sensing
uses more sophisticated measurement
schemes that acquire information through-
out the signal and mix the information into
relatively few numerical values. Decoding
these complicated measurements from the
underdetermined system of equations is
therefore considerably more challenging
than most other signal reconstruction
techniques. In fact, because the system is
underdetermined and at least one signal
could have generated the linear measure-

ments, there exist infinitely many signals
that generate the exact same measure-
ments. Compressed sensing relies on the
assumption that the original signal has
a low information content compared with
its physical dimension. Typically, the low
information content is interpreted as
sparsity whereby a signal is “sparse” when
the number of nonzero entries in the sig-
nal’s digital representation is dramatically
smaller than its ambient dimension. This
assumption is justified by the vast litera-
ture on signal processing in which, for
example, images are known to be sparse
in, say, the wavelet domain. That is, im-
ages have very few large coefficients when
represented in a wavelet basis and can
be accurately approximated by using only
these large coefficients.
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Fig. 1. Universality hypothesis: random Fourier measurements. Let k be the number of nonzero entries
in a signal of length N, and n the number of linear measurements observed through the n × N mea-
surement matrix with k < n < N. Two ratios, ρ = k/n (vertical axis) and δ = n/N (horizontal axis), define the
compressed sensing phase space in the unit square 0 < ρ, δ < 1. The black curve is the Gaussian measurement
matrix phase transition defined by a function ρ*(δ): if ρ < ρ*(δ), then l1 minimization successfully reconstructs
almost every signal; it almost always fails when ρ > ρ*(δ). Shaded attribute represents the fraction of real-
izations in which l1 minimization successfully reconstructs a signal measured by a random subset of n rows
of a Fourier matrix. [Reprinted from ref. 8 by permission of the Royal Society.]
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A traditional technique for selecting a
particular solution of an underdetermined
linear system is to form the least-squares
solution by simply multiplying the mea-
surement values by the pseudoinverse of
the measurement matrix. Solving the least-
squares problem produces the signal with
the minimum l2 norm (the square root
of the sum of the squares of the entries)
among the infinite set of signals that pro-
duce the same measurements. Minimizing
the l2 norm returns a signal whose total
energy is distributed throughout the signal
and therefore fails to meet the sparsity
assumption. In the compressed sensing
regime, one wishes to obtain the signal
with the fewest number of nonzero entries.
This presents a combinatorial optimization
problem whose naive solution is as hard
as the famous traveling salesman problem.
For some time, it has been observed that
replacing the least-squares problem with
a minimization of the l1 norm (the sum
of the absolute values of the entries) pro-
duces a sparse solution. The frenzy sur-
rounding compressed sensing began when
Donoho (1, 2, 6) and Candes et al. (3, 7)
proved sufficient conditions that ensure
the solution to the l1 minimization prob-
lem coincides with the sparsest solution
from the combinatorial optimization
problem. The beauty of this finding is that
the intractable combinatorial optimiza-
tion is replaced by a tractable convex
optimization problem.
The geometric condition of Donoho

(1, 2, 6), namely neighborliness of an as-
sociated polytope, and the linear algebraic
condition of Candes et al. (3, 7), known as
the restricted isometry property, are de-
terministic conditions. However, checking
the validity of either of these conditions is
also a combinatorial problem. This theo-
retical obstacle was overcome by analyzing
random matrices such as Gaussian matri-
ces whose entries are drawn independently
and identically from a normal distribution.
They proved that measurement matrices
drawn from certain random matrix

ensembles captured the pertinent in-
formation with very few measurements.
Moreover, sparse signals could then be
accurately reconstructed by solving the
tractable, convex l1 minimization problem.
This combined the measurement and
compression processes into a single random
measurement process.
Monajemi et al. (4) bring together two

major lines of research in compressed
sensing, the universality hypothesis and
the search for deterministic measurement
matrices. The universality hypothesis, for-
mally stated by Donoho and Tanner (8),
claims that many families of random
matrices exhibit the same signal recovery
performance via l1 minimization as the
Gaussian matrices. Donoho and Tanner
(1, 2, 9) formally proved that the Gaussian
measurement ensemble exhibits a phase
transition whereby the probability of
successful recovery abruptly changes from
1 to 0 as a function of two parameters
defining the compressed sensing problem
(Fig. 1). The universality hypothesis was
empirically established by Donoho and
Tanner (8) for several random matrix
ensembles in that their observed success
and failure of signal reconstruction under
l1 minimization matches the performance
of the Gaussian ensemble. A proof of
the universality hypothesis would extend
nearly all of the compressed sensing theory
established for Gaussian ensembles to
a much larger class of random matrix
ensembles. In mid-2012, Bayati, Lelarge,
and Montanari announced a major ad-
vance proving the Universality Hypothesis
for a wide class of random matrices (10).
An independent line of research seeks to

remove randomness from the compressed
sensing regime. The main tool in this pur-
suit is the restricted isometry property of
Candes and Tao (3). DeVore presented
explicit constructions of matrices satisfying
the restricted isometry property, but
these constructions require the number
of measurements to scale with the square
of the sparsity (11). In contrast, the

Gaussian matrices require the measure-
ments to scale linearly with the sparsity
plus a minor logarithmic penalty. Several
other groups have continued this line of
work, improving on the requisite number
of measurements, for example (12, 13);
so far, no theoretical results for de-
terministic matrices match the optimal
measurement rate achieved by Gaussian
matrices. Alternative approaches for
analyzing deterministic matrices (14–16)
established theoretical justification for
their successful sparse signal recovery.
This important line of research has not
yet established deterministic compressed
sensing performance on par with the
random measurement models.
Monajemi et al. (4) present over-

whelming empirical evidence that the
universality hypothesis should now also
include many deterministic measurement
ensembles. Through considerable experi-
mental analysis, they have shown that
nine deterministic matrix families exhibit
the same phase transition behavior as
Gaussian matrices when the signal is
reconstructed via l1 minimization. Most of
these deterministic matrices come from
the work discussed in the preceding
paragraph. The potential advantages of
deterministic measurements in applica-
tions cannot be understated. Not only does
randomness present considerable engi-
neering challenges for implementation,
but dense random matrices consume large
amounts of memory and require compu-
tationally expensive matrix multiplications.
Most of the reported deterministic matrix
families avoid the need to store the entire
matrix and boast fast matrix multiplica-
tions akin to the fast Fourier transform,
providing massive computational gains.
The incorporation of deterministic
measurement matrices in the universality
hypothesis not only bolsters the impor-
tance of this conjecture, it opens a wide
range of new possibilities and intriguing
questions for compressed sensing.
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