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Abstract: The morphological discretization is most commonly used for curve and surface discretization,
which has been well studied and known to have some important properties, such as preservation of topo-
logical properties (e.g., connectivity) of an original curve or surface. To reduce its high computational cost,
on the other hand, an approximation of the morphological discretization, called the analytical approxima-
tion, was introduced. In this paper, we study the properties of the analytical approximation focusing on dis-
cretization of 2D curves and 3D surfaces in the form of y = f (x) (x, y ∈ R) and z = f (x, y) (x, y, z ∈ R).
We employ as a structuring element for the morphological discretization, the adjacency norm ball and use
only its vertices for the analytical approximation. We show that the discretization of any curve/surface by the
analytical approximation can be seen as the morphological discretization of a piecewise linear approxima-
tion of the curve/surface. The analytical approximation therefore inherits the properties of themorphological
discretization even when it is not equal to the morphological discretization.
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1 introduction
A curve or surface is continuous in the real world, while in the computer it is discretized to be stored and
manipulated. It is therefore important to know how a discretized curve or surface is represented, where the
representation di�ers depending on the employed discretization method. In the computer, the 2D plane is
usually represented by a set of pixels, where each pixel is identi�ed by its center coordinates; see Fig. 1(a).
The 2D discrete space is therefore identi�ed as Z2.

The discretizationmost commonly used is themorphological discretization1[13–15]. The discretized shape
of a continuous curve or surface is there de�ned as a set of the integer points, whose Minkowski additions
with a so-called structuring element intersect with the original shape. For example, the morphological dis-
cretization of a 2D curve using the unit square as a structuring element is given as the set of red pixels in
Fig. 1(b). Some structuring elements are known to preserve topological properties of an original object [7–
11, 19, 26–28].

How to discretize a curve or surface and how to compute the discretized curve or surface are di�erent
issues. Representing a discretized object (such as curve or surface) by the set of integer solutions of a system
of inequalities, called the analytical representation, has been studied [1–6, 12, 21, 27, 28]. For some curves
and surfaces, themorphological discretization (with some speci�c structuring elements) is known to have its
analytical representation [2, 5, 6, 27, 28].With the analytical representation, themorphological discretization
is straightforwardly computed, just by evaluating inequalities for each integer point. This property is useful
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(a) 2D discrete space. (b) Discretization of a curve.

Figure 1: 2D discrete space and curve discretization.

also for �tting problems [17, 18, 20, 22, 24, 29, 30]. For complicated curves and surfaces, however, solving
the corresponding inequality system is computationally expensive. To reduce the computational cost, an ap-
proximation of the analytical representation of themorphological discretizationwas introduced [27], where a
discretized curve or surface is represented by a system of inequalities corresponding only to a �nite subset of
the employed structuring element.We call this the analytical approximation. In [27], the authors employed as
a structuring element the α-adjacency �ake (α = 0, . . . , d−1, where d is the dimension of the space) of radius
1
2 and used only the end-points of the line segments composing the adjacency �ake for the analytical approx-
imation. They then proved that the discretization by the analytical approximation is equal to that by themor-
phological discretization if the boundary of the original curve or surface is r-regular [25]with r >

√
d−α+

√
d

2 . For
curves and surfaces not satisfying this condition (e.g., those with a curvature radius smaller than

√
d−α+

√
d

2 ),
however, the discretization by the analytical approximation can be di�erent from that by the morphological
discretization. An example of such a curve in 2D is y = 2x sin (1/x) (if x = ̸ 0), 0 (otherwise) (x, y ∈ R).

It is therefore signi�cant to know the properties of the analytical approximationwhen it is not equal to the
morphological discretization. In this paper, we study the properties of the analytical approximation focusing
on discretization of continuous 2D explicit curves and 3D explicit surfaces, i.e., curves and surfaces in the
form of y = f (x) (x, y ∈ R) and z = f (x, y) (x, y, z ∈ R). Such curves and surfaces are useful for representing
an object by its contour or surface. We employ as our structuring element the adjacency norm ball [28] of
radius 1

2 and use only its vertices for the analytical approximation. We then show that the discretization of
any continuous explicit curve or surface can be seen as themorphological discretization of a piecewise linear
approximation of the curve or surface. This means that the analytical approximation inherits the properties
of the morphological discretization even when it is not equal to the morphological discretization. We remark
that the vertices of the adjacency norm ball are identical with the end-points of the line segments composing
the adjacency �ake, and therefore the analytical approximation in this paper is equivalent with that in [27].
We also remark that a part of this work has been reported [23].

2 Morphological discretization and analytical approximation
In this section, we �rst review the morphological discretization of continuous 2D explicit curves and 3D ex-
plicit surfaces, where we employ as a structuring element the α-adjacency norm ball [28] of radius 1

2 . We then
give their analytical approximation based on the approach introduced in [27].

Let E2 be a continuous 2D explicit curve, and E3 be a continuous 3D explicit surface, namely,

E2 =
{
(x, y) ∈ R2 ∣∣ y = f (x)} ,

E3 =
{
(x, y, z) ∈ R3 ∣∣ z = g (x, y)} , (1)

where f : R→ R and g : R2 → R are continuous functions.
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Figure 2:Morphological discretizations DS (E2) with S = S02 , S12 (see Eq. (3)). Grid points depict the integer points, where the red
ones are in DS (E2).

(a) S02. (b) S12. (c) S03. (d) S13. (e) S23.

Figure 3: Sαd for d = 2, 3 and α = 0, . . . , d − 1.

2.1 Morphological discretization

Themorphological discretization [14, 15] of Ed (d = 2, 3), with a structuring element S ⊂ Rd, is de�ned by

DS(Ed) =
{
v ∈ Zd

∣∣∣ ({v} ⊕ S) ∩ Ed = ̸ ∅} , (2)

where ⊕ denotes the Minkowski addition (A ⊕ B = {a + b : a ∈ A, b ∈ B}). Figure 2 illustrates DS(Ed) for
d = 2.

Using di�erent structuring elements results in di�erent discretizations (see Fig. 2 for example). How to se-
lect an appropriate structuring element is therefore an important issue. In this paper, we focus on structuring
elements Sαd (d = 2, 3 and α = 0, . . . , d − 1) de�ned by

Sαd =
{
s ∈ Rd

∣∣∣∣ [s]α ≤ 12
}
, (3)

where [·]α denotes the α-adjacency norm [28], i.e., for s ∈ Rd,

[s]α = max
{
‖s‖∞ , ‖s‖1d − α

}
.

Figure 3 depicts Sαd for d = 2, 3 and α = 0, . . . , d − 1.

2.2 Analytical approximation

Computing DSαd (Ed) requires evaluating for each v ∈ Zd whether or not {v} ⊕ Sαd intersects with Ed, which is
computationally expensive. Based on the approach introduced in [27], however, we can compute it approxi-
mately at low cost.

We �rst give the analytical approximation for d = 2. From Eqs. (1) and (2), DSα2 (E2) is written as

DSα2 (E2) =
{
(i, j) ∈ Z2

∣∣∣∣∣ there exists (x, y) ∈ Sα2 satisfying
j + y = f (i + x)

}
. (4)
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Figure 4: DS02 (E2) and DV02 (E2) (red integer points) for E2 =
{
(x, y) ∈ R2 ∣∣ y = f (x) = 0.5x3 − 3.3x2 + 5x + 1.5

}
. In (b), points

(x, y) ∈ Z2 ⊕ V0
2 satisfying y > f (x) are depicted in green, while those satisfying y < f (x) in orange; an integer point v ∈ Z2 is

in DV02 (E2) i� {v} ⊕ V
0
2 (four points) are depicted in both colors, or include a point on E2.

Note that j + y = f (i + x) for ∃(x, y) ∈ Sα2 in Eq. (4) means
(
{(i, j)} ⊕ Sα2

)
∩ E2 = ̸ ∅. Since f is continuous and

Sα2 is connected, the intermediate-value theorem allows us to rewrite Eq. (4) as

DSα2 (E2) =

(i, j) ∈ Z2

∣∣∣∣∣∣∣∣∣∣
min

(x,y)∈Sα2
[f (i + x) − y]

≤ j ≤
max

(x,y)∈Sα2
[f (i + x) − y]

 . (5)

Since Sα2 has in�nite elements, unfortunately, evaluating the minimum and maximum of f (i + x) − y with
respect to (x, y) ∈ Sα2 is practically di�cult. Following [27], the analytical approximation DVα2 (E2) for DSα2 (E2)
is obtained by replacing Sα2 in Eq. (5) with Vα2 :

V0
2 =

{(
−12 , −

1
2
)
,
(
−12 ,

1
2
)
,
(1
2 , −

1
2
)
,
(1
2 ,

1
2
)}

,
V1
2 =

{(
−12 , 0

)
,
(
0, −12

)
,
(
0, 12

)
,
(1
2 , 0

)}
,

i.e., the vertices of Sα2. Figure 4 illustrates the di�erence between the morphological discretization and its
analytical approximation. Note that DVα2 (E2) ⊆ DSα2 (E2) since V

α
2 ⊆ Sα2.

For d = 3, similarly to the 2D case, DSα3 (E3) is �rst rewritten as

DSα3 (E3) =

(i, j, k) ∈ Z3

∣∣∣∣∣∣∣∣∣∣
min

(x,y,z)∈Sα3
[g (i + x, j + y) − z]

≤ k ≤
max

(x,y,z)∈Sα3
[g (i + x, j + y) − z]

 . (6)

The analytical approximation DVα3 (E3) for DSα3 (E3) is then obtained by replacing Sα3 in Eq. (6) with its vertices
Vα3 :

Vα3 =
{
(x, y, z)

∣∣ x, y, z ∈ {−12 , 0, 12} and ‖(x, y, z)‖1 = 3−α
2
}
.
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Figure 5: Piecewise linear approximation Eα2 (α = 0, 1) of E2 for which DVα2 (E2) = DSα2
(
Eα2

)
.

3 Properties of morphological discretization preserved by
analytical approximation

Now we show that the analytical approximation can be seen as the morphological discretization of a piece-
wise linear approximation of the original curve or surface, and therefore inherits the properties of the mor-
phological discretization. Let Ed (d = 2, 3) denote the set of all Ed.

Theorem 1 For any Ed with d = 2, 3 and α = 0, . . . , d − 1, there exists Eαd ∈ Ed satisfying DVαd (Ed) = DSαd
(
Eαd
)
.

Proof. We �rst consider the case of d = 2. For each α ∈ {0, 1}, we give a continuous function f α : R → R
such that Eα2 =

{
(x, y) ∈ R2 ∣∣ y = f α (x)} satis�es DVα2 (E2) = DSα2

(
Eα2
)
.

First, f 0 is de�ned as a piecewise linear approximation of f (the function determining E2), which is
uniquely determined as, for ∀i ∈ Z, f 0

(
i + 1

2
)
= f

(
i + 1

2
)
, and f 0(x) is linear for x ∈

[
i − 1

2 , i +
1
2
]
. Figure

5(a) shows E02 determined by this f 0.
On the other hand, f 1 is de�ned as another piecewise linear approximation of f , which is uniquely deter-

mined as, for ∀i ∈ Z, f 1
(
i
2

)
= f
(
i
2

)
, and f 1 (x) is linear for x ∈

[
i
2 ,

i+1
2

]
. Figure 5(b) shows E12 determined

by this f 1.
It is proven in essentially the same fashion for all α ∈ {0, 1} that f α de�ned above satis�es DVα2 (E2) =

DSα2
(
Eα2
)
. We therefore give the proof only for α = 1. We transform DS12

(
E12
)
in the form of Eq. (5) into DV1

2
(E2).

Since −12 + |x| ≤ y ≤
1
2 − |x| for (x, y) ∈ S

1
2, DS12

(
E12
)
is rewritten as

DS12 (E
2
1) =


(i, j) ∈ Z2

∣∣∣∣∣∣∣∣∣∣∣∣

min
x∈[− 1

2 ,
1
2 ]

[
f 1 (i + x) − 1

2 + |x|
]

≤ j ≤

max
x∈[− 1

2 ,
1
2 ]

[
f 1 (i + x) + 1

2 − |x|
]

.
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(b) Triangulation for E03.

Figure 6: Triangulation of R2 based on which the piecewise linear approximation E03 of E is de�ned to have DV03 (E3) =
DS03

(
E03

)
. The triangulation is constructed in terms of two triangles T01 and T02 in (a). In (b), black grid points depict integer

points.

The minimum of f 1 (i + x) − 1
2 + |x| and the maximum of f 1 (i + x) + 1

2 − |x| with respect to x ∈
[
−12 ,

1
2
]
are

achieved at x ∈
{
−12 , 0,

1
2
}
, since they are linear for x ∈

[
−12 , 0

]
and x ∈

[
0, 12

]
. We therefore obtain

DS12 (E
2
1) =


(i, j) ∈ Z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min


f 1
(
i − 1

2
)
,

f 1
(
i + 1

2
)
,

f 1 (i) − 1
2


≤ j ≤

max


f 1
(
i − 1

2
)
,

f 1
(
i + 1

2
)
,

f 1 (i) + 1
2




,

in which we can replace f 1 by the original f since f 1
(
i
2

)
= f
(
i
2

)
for ∀i ∈ Z. We have DS12

(
E12
)
= DV1

2
(E2),

consequently.
We next consider the case of d = 3. Similarly to the d = 2 case, we give a continuous function gα : R2 → R

(α ∈ {0, 1, 2}) such that Eα3 =
{
(x, y, z) ∈ R3 ∣∣ z = gα (x, y)} satis�es DVα3 (E3) = DSα3

(
Eα3
)
.

First, g0 is de�ned as a piecewise linear approximation of g (the function determining E3), i.e., a trian-
gle mesh surface, which is uniquely determined as, for ∀ (i, j) ∈ Z2, g0

(
i + 1

2 , j +
1
2
)
= g

(
i + 1

2 , j +
1
2
)
, and

g0 (x, y) is linear with respect to (x, y) ∈ {(i, j)} ⊕ T0n (n = 1, 2), where

T01 =
{
(x, y) ∈ R2 ∣∣ −12 ≤ x ≤ y ≤ 1

2
}
,

T02 =
{
(x, y) ∈ R2 ∣∣ −12 ≤ y ≤ x ≤ 1

2
}
.

Figure 6(a) shows T01 and T02. We remark that g0 has the same value with g on each vertex of the red triangles
in Fig. 6(b), and it is locally linear within any of these triangles.

Next, g1 is de�ned as another piecewise linear approximation of g, which is uniquely determined as
follows: for ∀ (i, j) ∈ Z2,

g1
(
i, j + 1

2
)
= g
(
i, j + 1

2
)
,

g1
(
i + 1

2 , j
)
= g
(
i + 1

2 , j
)
,

g1
(
i + 1

2 , j +
1
2
)
= g
(
i + 1

2 , j +
1
2
)
,

(7)
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Figure 7: Triangulation of R2 based on which the piecewise linear approximation E13 of E is de�ned to have DV13 (E3) =
DS13

(
E13

)
. The triangulation is constructed in terms of six triangles T11 , . . . , T16 in (a). In (b), black grid points depict integer

points.

and g1 (x, y) is linear with respect to (x, y) ∈ {(i, j)} ⊕ T1n (n = 1, . . . , 6), where

T11 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≤ 0
}
,

T12 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≥ 0
}
,

T13 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≥ 1

2 , −
1
2 ≤ x ≤ 0, −

1
2 ≤ y ≤ 0

}
,

T14 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≥ 1

2 , −
1
2 ≤ x ≤ 0, 0 ≤ y ≤

1
2
}
,

T15 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≥ 1

2 , 0 ≤ x ≤
1
2 , −

1
2 ≤ y ≤ 0

}
,

T16 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≥ 1

2 , 0 ≤ x ≤
1
2 , 0 ≤ y ≤

1
2
}
.

Fig. 7(a) shows T11 , . . . , T16. We remark that g1 has the same value with g on each vertex of the red triangles
in Fig. 7(b), and it is locally linear within any of these triangles.

Finally, g2 is de�ned as yet another piecewise linear approximation of g, which is uniquely determined
as, for ∀ (i, j) ∈ Z2, g2

(
i
2 ,

j
2

)
= g

(
i
2 ,

j
2

)
, and g2 (x, y) is linear with respect to (x, y) ∈ {(i, j)} ⊕ T2n for

n = 1, . . . , 6, where
T21 =

{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≤ 0, y ≤ 0
}
,

T22 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≤ 0, y ≥ 0
}
,

T23 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≥ 0, y ≤ 0
}
,

T24 =
{
(x, y) ∈ R2 ∣∣ |x| + |y| ≤ 1

2 , x ≥ 0, y ≥ 0
}
,

T25 =
{
(x, y) ∈ R2 ∣∣ −12 ≤ x ≤ 0, x ≤ y − 1

2 ≤ −x
}
,

T26 =
{
(x, y) ∈ R2 ∣∣ 0 ≤ x ≤ 1

2 , −x ≤ y −
1
2 ≤ x

}
.

Figure 8(a) shows T21 , . . . , T26. We remark that g2 has the same value with g on each vertex of the red triangles
in Fig. 8(b), and it is locally linear within any of these triangles.

It is proven in essentially the same fashion for all α ∈ {0, 1, 2} that gα de�ned above satis�es DVα3 (E3) =
DSα3

(
Eα3
)
. We therefore give the proof only for α = 1. We transform DS13 (E

1
3) in the form of Eq. (6) into DV1

3
(E3).

For (x, y, z) ∈ S13, z is related to x and y as −h (x, y) ≤ z ≤ h (x, y) where

h (x, y) =
{

1
2 if |x| + |y| ≤ 1

2

1 − |x| − |y| if |x| + |y| > 1
2

.
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Figure 8: Triangulation of R2 based on which the piecewise linear approximation E23 of E is de�ned to have DV23 (E3) =
DS23

(
E23

)
. The triangulation is constructed in terms of six triangles T21 , . . . , T26 in (a). In (b), black grid points depict integer

points.

Note that |x| , |y| ≤ 1
2 . DS13 (E

1
3) is therefore written as

DS13 (E
1
3) =


(i, j, k)
∈ Z3

∣∣∣∣∣∣∣∣∣∣∣

min
|x|,|y|≤ 12

[
g1 (i + x, j + y) − h (x, y)

]
≤ k ≤

max
|x|,|y|≤ 12

[
g1 (i + x, j + y) + h (x, y)

]

.

|x| , |y| ≤ 1
2 is equivalent to (x, y) ∈

⋃6
n=1 T

1
n . For (i, j) ∈ Z2, furthermore, both g1 (i + x, j + y) and h (x, y)

are linear with respect to (x, y) ∈ T1n for n = 1, . . . , 6. The extrema of g1 (i + x, j + y) ± h (x, y) are therefore
obtained at (x, y) ∈

{(
±12 , 0

)
,
(
0, ±12

)
,
(
±12 , ±

1
2
)}

(the vertices of the triangles), where
(
±12 , 0

)
counts

(
−12 , 0

)
and

(1
2 , 0

)
, and similarly for the other elements. We thus obtain

DS13 (E
1
3) =


(i, j, k) ∈ Z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min


g1
(
i ± 1

2 , j ±
1
2
)
,

g1
(
i ± 1

2 , j
)
− 1

2 ,
g1
(
i, j ± 1

2
)
− 1

2


≤ k ≤

max


g1
(
i ± 1

2 , j ±
1
2
)
,

g1
(
i ± 1

2 , j
)
+ 1

2 ,
g1
(
i, j ± 1

2
)
+ 1

2




,

in which g1 can be replaced by the original g from Eq. (7). We have DS13
(
E13
)
= DV1

3
(E3), consequently.

4 Concluding remarks
We studied the properties of the morphological discretization preserved by the analytical approximation,
focusing on discretization of continuous 2D explicit curves and 3D explicit surfaces. We employed as our
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structuring element the α-adjacency norm ball of radius 1
2 and used only its vertices for the analytical ap-

proximation. We showed that the discretization of any continuous explicit curve or surface by the analytical
approximation can be seen as the morphological discretization of a piecewise linear approximation of the
curve or surface (Theorem 1). This means that, for continuous explicit curves and surfaces, any discussion
in the literature about the properties of the morphological discretization can be applied to the analytical
approximation. For example, the property that the morphological discretization with the 0-adjacency norm
ball of radius 1

2 preserves the connectivity [8] and the separability [11] of an original object, is inherited to
the analytical approximation, i.e., DV0

2
(E2) is 4-connected and 8-separating for any E2 ∈ E2, and DV0

3
(E3)

is 6-connected and 26-separating for any E3 ∈ E3. Such properties of the analytical approximation can be
also derived from the morphological discretization using the α-adjacency �ake of radius 1

2 . This is because
Theorem 1 holds true also in the case where the structuring element is the α-adjacency �ake of radius 1

2 . For
d = 2, 3 and α = 0, . . . , d−1, the piecewise linear approximation in the proof of Theorem 1 has been designed
so that the extrema in the inequalities determining the morphological discretization are always achieved by
vertices of the α-adjacency normball. Since the α-adjacency �ake is a subset of the α-adjacency normball (the
vertices are identical with the end-points of the line segments composing the α-adjacency �ake), those ex-
trema remain the same even if the structuring element is replacedwith the α-adjacency�ake. The α-adjacency
�ake thus yields the samemorphological discretization as the α-adjacency norm ball for the piecewise linear
approximation, which is equal to the analytical approximation.

This work might be extended to more general 2D curves and 3D surfaces in the form of f (x, y) = 0 and
f (x, y, z) = 0. This is because they can be split into pieces, each of which is represented in the form of y = f (x)
and z = f (x, y) where the domain of each function is bounded (not R or R2 as discussed in this paper). This
extension is however not straightforward because the analytical approximation cannot be directly applied to
a function whose domain is bounded. At the ends (2D) or edges (3D) of a (split piece) function, a point may
arise for which we cannot evaluate all the vertices in Vαd . We thus cannot determine whether or not it should
be involved in the discretization of the function. Simply excluding such points brings disconnection between
the discretized pieces. Investigating this issue and addressing the extension to more general 2D curves and
3D surfaces are left for future work.
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Notes
1 Some classical discretizations, such as the supercover discretization [11] or the grid-intersection discretization [16], can be

seen as special cases of the morphological discretization.
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