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Reflexive boundary conditions (BCs) assume that the array values outside the viewable
region are given by a symmetry of the array values inside. The reflection guarantees the
continuity of the image. In fact, there are usually two choices for the symmetry: symmetry
around the meshpoint and symmetry around the midpoint. The first is called whole-sam-
ple symmetry in signal and image processing, the second is half-sample. Many researchers
have developed some fast algorithms for the problems of image restoration with the half-
sample symmetric BCs over the years. However, little attention has been given to the
whole-sample symmetric BCs. In this paper, we consider the use of the whole-sample sym-
metric boundary conditions in image restoration. The blurring matrices constructed from
the point spread functions (PSFs) for the BCs have block Toeplitz-plus-PseudoHankel with
Toeplitz-plus-PseudoHankel blocks structures. Recently, regardless of symmetric proper-
ties of the PSFs, a technique of Kronecker product approximations was successfully applied
to restore images with the zero BCs, half-sample symmetric BCs and anti-reflexive BCs,
respectively. All these results extend quite naturally to the whole-sample symmetric
BCs, since the resulting matrices have similar structures. It is interesting to note that when
the size of the true PSF is small, the computational complexity of the algorithm obtained
for the Kronecker product approximation of the resulting matrix in this paper is very small.
It is clear that in this case all calculations in the algorithm are implemented only at the
upper left corner submatrices of the big matrices. Finally, detailed experimental results
reporting the performance of the proposed algorithm are presented.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Image restoration is a fundamental problem in digital image processing. It can be viewed as an estimation process in
which operations are performed on an observed image to estimate the ideal image. Such problems arise in a variety of
applications in astronomy, medicine, physics and biology [2,3,5,8,21–23,39,49]. Motivated by these applications, both math-
ematicians and engineers have developed some fast algorithms for the computation of image restoration over the years.
Among these methods, many popular direct methods such as truncated SVD, Wiener filtering method and Tikhonov regu-
larization method as well as other direct filtering methods are widely used to get restored images of high quality for small
or medium-sized image restoration problems [29,17,22,24,30,31,35]. As an alternative to direct methods for large-scale
. All rights reserved.
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problems, iterative methods may be more attractive; see [22,28,36,11,45] for more details. Besides, partial differential-equa-
tion-(PDE-) based methods have recently received much attention [4,6,13,18,34,38,40].

In general, a spatially invariant image degradation can be linearly modelled as
g ¼ Kf þ g; ð1Þ
where K is a matrix associated with the point spread function (PSF) and with the boundary conditions (BCs), g is the recorded
image, f is the original image to be recovered and g is additive noise. In this work, the PSF is assumed to be known or to be
estimated from the data. Many techniques are available for estimating the PSF by a variety of means [26,27,43].

The exact structure of matrix K depends on the imposed boundary conditions. Four frequently used BCs and their corre-
spondence with K are list here [1,2,7,10,12,16,21,33,37]:

� Periodic boundary conditions. It assumes that the true infinite scene can be represented as a mosaic of a single finite
dimensional image, repeated periodically in all directions. The associated matrix K with this BCs is a block circulant with
circulant blocks (BCCB) matrix.
� Zero boundary conditions. In this case, all pixels outside the image domain is zero. With the BCs, the matrix K has a block

Toeplitz with Toeplitz blocks (BTTB) structure.
� Half-sample symmetric boundary conditions. This is usually used reflexive boundary conditions.It assumes that the scene

outside the viewable region is a mirror reflection of the scene inside the viewable region. In the case of the frequently-
used reflexive BCs, the matrix K is a block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks (BTHTHB) matrix.
� Antireflexive boundary conditions. It extends the pixel values across the boundary in such a way that continuity of the

image and of the normal derivative are preserved at the boundary. The matrix arising from the BCs has a block Toep-
litz-minus-Hankel-plus-Rank-2 with Toeplitz-minus-Hankel-plus-Rank-2 blocks (BTH2TH2B) structure.

The four BCs are very attractive, since the operations of algorithms involving the resulting matrices are inexpensive. In the
first case, it is well known that the computations with BCCB matrices can be done very efficiently by using fast Fourier trans-
forms (FFTs). In the second case, for zero BCs, although direct methods cannot be implemented as efficiently as in the case of
circulant structures, it is possible to efficiently use iterative methods, since matrix–vector multiplication involving BTTB
matrices can be performed very efficiently using FFTs. In the last two cases, if the PSF is symmetric, the resulting BTHTHB
matrices from half-sample symmetric BCs and the BTH2TH2B matrices arising from antireflexive BCs can be diagonalized
by the two-dimensional discrete cosine transform matrix and sine transform matrix, respectively.

However, if there are significant features that overlap the edge of the viewable region, then it may be very effective to use
reflexive boundary conditions. As we all know, reflexive BCs imply that the array values outside the viewable region are gi-
ven by a symmetry of the array values inside. In fact, there are usually two choices for the symmetry: symmetry around the
meshpoint and symmetry around the midpoint. The first is called whole-sample symmetry in signal and image processing,
the second is half-sample [9,33,47]. More precisely, we take a signal vector u of order 13 for example; see Fig. 1.

Many authors studied the problems of the half-sample symmetric BCs in image restoration [21,35,37]. However, little
attention has been given to the whole-sample symmetric BCs. In this paper we consider the use of the whole-sample
symmetric BCs. By a simple discussion, we obtain that the resulting matrix K from the whole-sample symmetric BCs is a
Toeplitz-plus-PseudoHankel matrix in the one-dimensional case and a block Toeplitz-plus-PseudoHankel with Toeplitz-
plus-PseudoHankel blocks matrix in the two-dimensional case.

In [25,35,41], Kronecker product approximations were obtained for the resulting matrices from the zero BCs, half-sample
symmetric BCs and anti-reflexive BCs, respectively. Their theoretical analysis and numerical experiments have shown that
these approximation algorithms are quite efficient. These motivate us to consider the Kronecker product approximations for
the whole-sample symmetric BCs. In the present paper, we propose a similar algorithm for constructing the Kronecker prod-
uct approximation by using the given PSF. Using this approximation, we can obtain the solution of linear systems (1) by the
truncated singular value decomposition (TSVD) method with the truncation parameter chosen by the generalized cross val-
idation (GCV) method.

We summarize briefly the content of our paper. In Section 2, we introduce definitions and notations that will be used
throughout the paper. A simple discussion about the structure of the resulting matrices from the whole-sample symmetric
BCs is given in Section 3. In Section 4, we study the Kronecker product approximation to the resulting matrix K from the
whole-sample symmetric BCs and provide an algorithm for constructing this approximation by using the given PSF. Detailed
Fig. 1. An example of symmetry types.
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experimental results reporting the performance of the proposed algorithm are given in Section 5. Section 6 contains conclud-
ing remarks.

2. Notations and conventions

At first, for purposes of presentation, let us introduce some notations that will be used throughout the paper and recall
some results about the Kronecker product approximations.

The matrix I denotes the identity matrix and the shift matrix Z is given by
Z ¼

0 1
. .

. . .
.

. .
.

1
0

2666664

3777775:

el represents the lth column of the identity matrix I. A zero matrix or a zero vector is represented by O, regardless of its
dimension.

Some basic properties of the shift matrix are quite predictable:

1. Zkel ¼
0; l ¼ 1; . . . ; k
el�k; l ¼ kþ 1; . . . ;n

�
,

2.

ðZkÞT Zk ¼ diagð½0; . . . ;0;1; . . . ;1�Þ
"
kþ 1 entry

ZkðZkÞT ¼ diagð½1; . . . ;1;0; . . . ;0�Þ
"
n� k entry

8>>>>>><>>>>>>:
,

3.
Pn�1

k¼1ððZ
kÞT Zk þ ZkðZkÞTÞ ¼ ðn� 1ÞI,

4. For 0 < a; b < n; ðZaÞT Zb þ Zn�1�aðZn�1�bÞT ¼ Zb�a þ Eaþ1;bþ1; a < b
ðZa�bÞT þ Eaþ1;bþ1; a > b

(
, where Ea+1,b+1 is an n-by-n matrix whose

(a + 1,b + 1)-entry is one and zero elsewhere.

To describe banded Toeplitz and PseudoHankel matrices, we use the following notations:
toepða; kÞ ¼ Zk�1a; Zk�2a; . . . ; Z1a; Z0a; ZT a; . . . ; ðZn�kÞT a
h i

:

toep(a,k) is an n � n banded Toepltiz matrix whose kth column is a 2 Rn. In fact, if a = (a1,a2, . . . ,an)T, then
toepða; kÞ ¼

ak � � � � � � a1 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
.

0

an
. .

. . .
. . .

. . .
. . .

.
a1

0 . .
. . .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 an � � � � � � ak

26666666666666664

37777777777777775
:

At the same time, a PseudoHankel matrix Pseudohank(a,k) is defined as an n � n modified Hankel matrix given by
Pseudohankða; kÞ ¼ O; Zka; . . . ; Zn�2a; Zn�1aþ ðZn�1ÞT a; ðZn�2ÞT a; . . . ; ðZn�kþ1ÞT a;O
h i

:

As we all know, a matrix with constant skew diagonals is called Hankel. Therefore, it is easy to see that Pseudohank(a,k) is
formed from a Hankel matrix with relation to vector a by replacing both the first column and last column with zero vectors.
For example,
a ¼

a1

a2

a3

a4

26664
37775) Pseudohankða;3Þ ¼

0 a4 0 0
0 0 0 0
0 0 a1 0
0 a1 a2 0

26664
37775:
As reported in [35], we use the notations TOEP(A,k) and PseudoHANK(A,k) for similar definitions with block matrices.
With these notations,
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A ¼

A1

A2

A3

A4

26664
37775) TOEPðA;2Þ ¼

A2 A1 0 0
A3 A2 A1 0
A4 A3 A2 A1

0 A4 A3 A2

26664
37775
and
PseudohankðA;3Þ ¼

0 A4 0 0
0 0 0 0
0 0 A1 0
0 A1 A2 0

26664
37775:
If B 2 Rm1�n1 and C 2 Rm2�n2 , then their Kronecker product is defined as B � C which is an m1 � n1 block matrix whose (i, j)
block is the m2 � n2 matrix bijC. We require the following properties of Kronecker products:

1. (B � C)T = BT � CT.
2. (B � C)(E � F) = (BE) � (CF).

Let p be the true point spread function and the size of the original image be n � n. It is often the case that the PSF array p
has much smaller dimensions than the associated image arrays. For the convenience of presentation, we often need to pad
with zeros so that it has the same dimension as the original image. Here the zero padding is done by keeping p in the upper
left corner of the big PSF P. Hence both p and P have the same center; see [21] for details. Suppose the center of P is at (i, j) and
let pT

k be the kth row of P, and define
T ¼

T1

T2

..

.

Tn

266664
377775; H ¼

H1

H2

..

.

Hn

266664
377775;
where
Tk ¼ toepðpk; jÞ; Hk ¼ Pseudohankðpk; jÞ:
In Kronecker product approximations, matrices are sometimes regarded as vectors and vectors are sometimes made into
matrices. To be precise about these reshaping the vec operation and tilde transformation will be used. If X 2 Rm1�n1 , then
vec (X) is an n1m1-dimension column vector obtained by stacking columns of X. Let A be a block matrix
A ¼

A11 � � � A1n1

..

. ..
.

Am11 � � � Am1 ;n1

2664
3775:
The tilde transform of A is a matrix which is obtained by rearranging A with the vec operation as follows
eA ¼ tildeðAÞ ¼

vecðA11ÞT

..

.

vecðAm11ÞT

..

.

vecðA1n1 Þ
T

..

.

vecðAm1 ;n1 Þ
T

26666666666666664

37777777777777775
:

3. Whole-sample symmetric BCs

In this section, we consider how to obtain the blurring matrix K in (1) for the whole-sample symmetric BCs. For conve-
nience, we begin with the one-dimensional deblurring problem. Let the original signal
f̂ ¼ ð. . . ; f�mþ1; . . . ; f0; f1; . . . ; fn; fnþ1; . . . ; fnþm; . . . ÞT
and the PSF be given by
h ¼ ð. . . ;0;0; h�m; h�mþ1; . . . ;h0; h1; . . . ; hm�1;hm; 0;0 . . . ÞT ;
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with center h0 and
Pm

j¼�mhj ¼ 1. The convolution of h and f̂ adding the noise g leads to the blurred signal g, with
gi ¼

P1
j¼�1hi�jfj þ gi. In matrix form, we have
g1

..

.

gn

2664
3775 ¼

hm � � � h0 � � � h�m

hm
. .

.
h0 � � � h�m 0

. .
. . .

. . .
. . .

. . .
.

. .
. . .

. . .
. . .

. . .
.

0 hm � � � h0 � � � h�m

hm � � � h0 � � � h�m

2666666666664

3777777777775

f�mþ1

f�mþ2

..

.

f0

f1

..

.

fn

fnþ1

..

.

fnþm�1

fnþm

26666666666666666666666664

37777777777777777777777775

þ

g1

..

.

gn

2664
3775: ð2Þ
The purpose of the signal restoration is to recover the vector f = (f1, . . . fn)T given the PSF h and a blurred signal g = (g1, . . . ,gn)T.
Thus the blurred and noisy signal g is determined not only by f, but also by (f�m + 1, . . . , f0)T and (fn+1, . . . , fn+m)T. For the whole-
sample symmetric BCs, the data outside f satisfies
f0 ¼ f2

..

.

f�mþ1 ¼ fmþ1

8>><>>: and

fnþ1 ¼ fn�1

..

.

fnþm ¼ fn�m

8>><>>: :
By straightforward computation, it is not difficult to see that (2) becomes
Kf ¼ g � g;
where K is an n � n Toeplitz-plus-PseudoHankel matrix given by
K ¼

h0 � � � h�m

..

. . .
. . .

. . .
.

hm
. .

. . .
. . .

.
h�m

. .
. . .

. . .
. ..

.

hm � � � h0

2666666664

3777777775
þ

0 h1 � � � hm O 0

..

. ..
.

q

0 hm O ..
.

..

.

..

.
O h�m 0

q ..
.

0 O h�m � � � h�1 0

26666666666666664

37777777777777775
:

This result may be extended in a nature way to two-dimensional image restoration problems. In the case of n-by-n
images, the resulting matrix K has a block Toeplitz-plus-PseudoHankel with Toeplitz-plus-PseudoHankel blocks structure.
Using the notations in Section 2, we can formulate the resulting matrix K 2 Rn2�n2

under the whole-sample symmetric
BCs as
K ¼ Ktt þ Kth þ Kht þ Khh;
where Ktt = TOEP(T, i), Kth = TOEP(H, i), Kht = PseudoHANK(T, i) and Khh = PseudoHANK(H, i). Using the tilde transformation, we
have
 eK ¼ eK tt þ eK th þ eK ht þ eK hh:
4. Kronecker product approximation

Similar to [25,35,41], we hope to obtain a Kronecker product approximation of K arising from the whole-sample symmet-
ric BCs. Given s 2 [1,rank(P)], all that we need is to find the 2s vectors ak and bk (k = 1, . . . ,s) of size n such that the matrices
Atk ¼ toepðak; iÞ; Ahk ¼ Pseudohankðak; iÞ;
Btk ¼ toepðbk; jÞ; Bhk ¼ Pseudohankðbk; jÞ
minimize K �
Ps

k¼1ðAtk þ AhkÞ � ðBtk þ BhkÞ
�� ��

F
.
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Let Ck be an n � n Toeplitz-plus-Hankel-minus-1 rank matrix related with parameter k given by
Ck ¼ Ct þ Ch;
where Ct is an n � n symmetric Toeplitz matrix with its first row (n,0,1,0,1, . . .), Ch is an n � n Hankel-minus-1 rank matrix
with Ch(i, j) = 1 for i + j = 2k (i – j) and zeros for others. In the following we have our main theorem.

Theorem 1. Let P be an n � n PSF with center at (i, j), K be the blurring matrix arising from the whole-sample symmetric BCs and
Atk, Ahk, Btk, Bhk be defined as above. Given s 2 (1, rank(P)), it has
K �
Xs

k¼1

ðAtk þ AhkÞ � ðBtk þ BhkÞ
�����

�����
F

¼ RiPRj �
Xs

k¼1

ðRiakÞðRjbkÞT
�����

�����
F

;

where for k = i and j i; j 6 n
2

� �
;Rk is the Cholesky factor of the n � n matrix Ck defined as above.
Proof. For convenience, we only prove the case s = 1. Similar techniques can be used to show other cases. Hence we only
need to find four matrices At1, Ah1, Bt1 and Bh1 so that kK � (At1 + Ah1) � (Bt1 + Bh1)kF is minimized, where At1 = toep(a1, i),
Ah1 = Pseudohank(a1, i), Bt1 = toep(b1, j), Bh1 = Pseudohank(b1, j).

Let pT
k be the kth row of P. Then
Kht ¼ PseudoHANKðT; iÞ ¼

O toepðpiþ1; jÞ � � � toepðpn; jÞ O � � � O

..

.
q

..

.
toepðpn; jÞ O ..

.

..

.
O toepðp1; jÞ ..

.

q ..
.

O � � � O toepðp1; jÞ � � � toepðpi�1; jÞ O

266666666666664

377777777777775

Let KðkÞht be the kth block column of Kht. We may immediately obtain that
eK ðkÞht ¼

vecðtoepðpiþk�1; jÞÞ
T

..

.

vecðtoepðpn; jÞÞ
T

OT

..

.

OT

2666666666664

3777777777775
; for 2 6 k 6 n� i:
Set Dt,k and Dh,k be block diagonal matrices given by
Dt;k ¼ diag Zk�1; Zk�2; . . . ; Z1; Z0; ZT ; . . . ; ðZn�kÞT
h i

2 Rn2�n2
and
Dh;k ¼ diag O; Zk; . . . ; Zn�2; Zn�1 þ ðZn�1ÞT ; ðZn�2ÞT ; . . . ; ðZn�kþ1ÞT ;O
h i

2 Rn2�n2
:

Then we obtain
eK ðkÞht ¼

pT
iþk�1 � � � pT

iþk�1

..

. ..
.

pT
n � � � pT

n

OT � � � OT

..

. ..
.

OT � � � OT

266666666664

377777777775

ðZj�1ÞT

. .
.

Z0

Z

. .
.

Zn�j

266666666664

377777777775
¼ Ziþk�2½P; � � � ; P�DT

t;j; for 2 6 k 6 n� i:
Similar techniques can show that
eK ðkÞht ¼ ðZ
2n�i�kÞT ½P; � � � ; P�DT

t;j; for n� iþ 2 6 k 6 n� 1;eK ðkÞht ¼ Ziþk�2 þ ðZ2n�i�kÞT
� �

½P; � � � ; P�DT
t;j; for k ¼ n� iþ 1
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and
 eK ðkÞht ¼ O; for k ¼ 1;n:
As a consequence, we further conclude that
eK ht ¼

gKð1Þht

..

.

gKðkÞht

..

.

gKðnÞht

266666666664

377777777775
¼

O½P; . . . ; P�DT
t;j

Zi½P; . . . ; P�DT
t;j

..

.

Zn�2½P; . . . ; P�DT
t;j

ðZn�1 þ ðZn�1ÞTÞ½P; . . . ; P�DT
t;j

ðZn�2ÞT ½P; . . . ; P�DT
t;j

..

.

ðZn�iþ1ÞT ½P; . . . ; P�DT
t;j

O½P; . . . ; P�DT
t;j

26666666666666666666664

37777777777777777777775

¼ Dh;i
bPDT

t;j;
where
bP ¼ P � � � P

..

. ..
.

P � � � P

264
375:
The following statements can be obtained similarly
eK tt ¼ Dt;i
bPDT

t;j;
eK th ¼ Dt;i

bPDT
h;j;

eK hh ¼ Dh;i
bPDT

h;j:
Therefore,
eK ¼ eK tt þ eK th þ eK ht þ eK hh ¼ ðDt;i þ Dh;iÞbPðDT
t;j þ DT

h;jÞ ¼ ðDt;i þ Dh;iÞbPðDt;j þ Dh;jÞT :
For a general block matrix, Loan and Pitsianis [32] have proved that
K � ðAt1 þ Ah1Þ � ðBt1 þ Bh1Þk kF ¼ eK � vecðAt1 þ Ah1Þ � vecðBt1 þ Bh1ÞT
��� ���

F
:

By a simple computation, it is not difficult to observe that
vecðAt1 þ Ah1Þ ¼ ðDt;i þ Dh;iÞ
a1

..

.

a1

2664
3775
and
vecðBt1 þ Bh1ÞT ¼ ½bT
1; . . . ; bT

1�ðDt;j þ Dh;jÞT :
Thus, we have
eK �vecðAt1þAh1Þ �vecðBt1þBh1ÞT ¼ðDt;iþDh;iÞðbP�
a1

..

.

a1

2664
3775½bT

1; � � � ;b
T
1�ÞðDt;jþDh;jÞT ¼ðDt;iþDh;iÞ

I

..

.

I

264
375ðP�a1bT

1Þ½I; � � � ; I�ðDt;jþDh;jÞT
Taking into account the QR factorizations
ðDt;i þ Dh;iÞ
I

..

.

I

264
375 ¼ Q iRi and ðDt;j þ Dh;jÞ

I

..

.

I

264
375 ¼ Q jRj;
We have
kK � ðAt1 þ Ah1Þ � ðBt1 þ Bh1ÞkF ¼ ðDt;i þ Dh;iÞ
I

..

.

I

264
375ðP � a1bT

1Þ½I; . . . ; I�ðDt;j þ Dh;jÞT

�������
�������

F

¼ kRiðP � a1bT
1ÞR

T
j kF :
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In the following we consider the computation of the matrices Ri and Rj. Firstly, construct a matrix Wk as
Wk ¼ ðDt;k þ Dh;kÞ
I

..

.

I

264
375:
Then
Wk ¼

Zk�1

Zk�2 þ Zk

..

.

Z1 þ Z2k�3

Z0 þ Z2k�2

ZT þ Z2k�1

ðZTÞ2 þ Z2k

..

.

ðZn�2kÞT þ Zn�2

ðZn�2kþ1ÞT þ Zn�1 þ ðZn�1ÞT

ðZn�2kþ2ÞT þ ðZn�2ÞT

..

.

ðZn�k�1ÞT þ ðZn�kþ1ÞT

ðZn�kÞT

2666666666666666666666666666666664

3777777777777777777777777777777775

:

By directly computing and carefully rearranging, it is not difficult to show that
RT
k Rk ¼WT

k Wk ¼ Z0Z0 þ
Xn�1

m¼1

ðZmÞT Zm þ ZmðZmÞT
� �

þ
Xn�kþ1

m¼k

Z2k þ ðZ2kÞT
� �

þ
Xk�1

m¼1

ðZk�1�mÞT Zk�1þm þ Zn�kþmðZn�k�mÞT
� �

þ
Xk�1

m¼1

ðZk�1þmÞT Zk�1�m þ Zn�k�mðZn�kþmÞT
� �

:

Taking into account k ¼ i; j i; j 6 n
2

� �
and making use of some properties of the shift matrix Z, we obtain
Theorem 1 is now completely proved. h
Remark. In image restoration, the dimension of the true PSF array p frequently is much smaller than that of the original
image array. Since the zero padding PSF P has the same center with the true PSF p at ði; jÞ; i 6 n

2 and j 6 n
2 are almost always

satisfied. Actually, even if i > n
2 and j > n

2, we also obtain in Ck the symmetric Toeplitz matrix Ct whose first row is
[n,0,1,0,1 . . . ,0, . . . ,0]. By this theorem, we observe that the key to compute the nearest Kronecker product approximation
of the blurring matrix K is to find 2s vectors ak and bk (k = 1, . . . ,s) of size n and these vectors can be obtained simply by com-
puting the SVD of the n � n matrix RiPRT

j . Especially, when the dimension of the true PSF array p is smaller than that of the

zero padding PSF P, we have RiPRT
j ¼

Ri1pRT
j1 O

O O

� 	
, where P ¼ p O

O O

� 	
; n� n upper triangular matrices Ri ¼

Ri1 Ri2

O Ri3

� 	
and

Rj ¼
Rj1 Rj2

O Rj3

� 	
. Hence, for matrix multiplication RiPRT

j , it only needs Ri1, Rj1 and the small PSF p. Obviously it has great advan-

tage to only work on small matrices.



158 X.-G. Lv et al. / Information Sciences 186 (2012) 150–163
Based on Theorem 1, the algorithm for computing the Kronecker product approximation of K is given as follows.

Algorithm 1. Find K �
Ps

k¼1ðAtk þ AhkÞ � ðBtk þ BhkÞ

1. Compute Ri1 and Rj1

2. Construct pr ¼
: Ri1pRj1

3. Compute the SVD of the small matrix pr ¼
P

rkukvT
k .

4. Compute the 2s vectors: âk ¼
ffiffiffiffiffiffi
rk
p

R�1
i1 uk and b̂k ¼

ffiffiffiffiffiffi
rk
p

R�1
j vk and construct the 2s vectors of the approximation: ak ¼

âk

O

� �
and bk ¼ b̂k

O

� �
5. Construct the matrices: Atk = toep(ak, i), Ahk = Pseudohank(ak, i), Btk = toep(bk, j) and Bhk = Pseudohank(bk, j).

It is interesting to note that, in most cases, the computational operations of Algorithm 1 in this paper and the algorithms
in [35,25,41] for the Kronecker product approximation of K are very small, since all computations in these algorithms are
implemented only at the upper left corner submatrices of the big matrices. In addition, if the dimension of the true PSF array
p is just n � n, that is P = p, then we have Ri1 ¼ Ri; Rj1 ¼ Rj; ak ¼ âk and bk ¼ b̂k in Algorithm 1. In [42], Pitsianis has shown
that the Kronecker product approximation will be sensitive to perturbations or errors when the perturbed matrix of K has its
two largest singular values close together. When the largest singular value is isolated, the approximation factors in Algo-
rithm 1 will be very effective.

5. Implementation and numerical examples

In this section, we will focus our attention on the implementation of the Kronecker product approximation algorithm and
some applications in image restoration. All the experiments given in this paper were performed in Matlab 7.0. The results were
obtained by running the Matlab codes on an Intel Core (TM)2 Duo CPU (2.93 GHz, 2.93 GHz) computer with RAM of 2048 M.

In applications where K is very large, it is generally infeasible to calculate the SVD of K explicitly. We now describe how to
construct an SVD approximation to K by the Kronecker product approximation of K. We rewrite the Kronecker product
approximation of K as K �

Ps
k¼1Ak � Bk, where Ak = Atk + Ahk and Bk = Btk + Bhk. Given the SVDs of A1 and B1; A1 ¼ U1RAVT

1

and B1 ¼ U2RBVT
2, the SVD of K can be expressed as
K � URVT ;
where U = U1 � U2, V = V1 � V2 and R ¼ diag UT Ps
k¼1Ak � Bk

� �
V

� �
.

In fact, aside from the issue of boundary conditions, in image restoration, it is also difficult to solve the problem of noise
sensitivity in the computed solution. Image restoration is a highly ill-posed inverse problem. A small amount of noise in the
data can lead to enormous errors in the estimates. For this reason, many kinds of image restoration techniques have been
proposed such as the truncated singular value decomposition (TSVD), Tikhonov regularization, truncated iterative methods,
truncated total least squares and damped total least squares; see [21,24] for details. In this work, we apply the truncated
singular value decomposition method.

Using the approximate SVD as above, the TSVD solution can be simplified to
Ft ¼ V2 S � 	ðU2GU1Þ½ �VT
1;
where vec(G) = g, vec(Ft) = ft and vecðSÞ ¼ ðr�1
1 ; . . . ;r�1

t ;0; . . . ;0ÞT . The parameter t, 0 6 t 6 N, is called the truncation param-
eter and it determines the number of SVD components maintained in the regularized solution. Choosing an appropriate trun-
cation parameter is a non-trivial issue. Several methods such as the discrepancy principle, the generalized cross validation
and the L-curve criterion have been used to choose an appropriate value [15,20,21,48]. For our TSVD experiments, we use the
generalized cross validation:
t ¼ arg minkGðkÞ ¼ arg mink
kKfk � gk2

2

ðN � kÞ2
;

where N is the length of vector g, fk = vec(Fk) and K � URVT.
In test experiments, we hope that the natural boundary condition will contribute to the blur. Fortunately, this can be done

by performing the blurring operation on a large true image from which a central part is cut out, and adding Gaussian white
noise to the pixel values.

The aim of the first test is to give evidence of the effectiveness of the deblurring approach with the Kronecker product
approximation algorithm in the case of the whole-sample symmetric BCs. The first test image we used is shown in Fig. 2.
In the true 412 � 412 image, the original 256 � 256 image f to be deblurred is delimited by white lines. In this case the blur-
ring function is a nonsymmetric PSF given by
hij ¼
c

iþjþ1 if 0 6 i; j 6 13;

0 otherwise;

(
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where c is the normalization constant such that
P

i;jhi;j ¼ 1. Using the built-in MATLAB function randn, we add 1% Gaussian
white noise to the blur data.

A simple quantitative measure of the restoration quality, applicable when the true object is known, is relative error. Rel-
ative error of the restored image is defined as kf�ftk2

kfk2
, where f is the original image and ft is the TSVD restored image with trun-

cation parameter t. In Table 1, truncation parameters and the relative errors of the corresponding computed solutions are
shown for several values of s. Fig. 3 shows TSVD restorations for s = 1, 2, 3, 4 with the whole-sample symmetric boundary
conditions. From this figure, we observe that our algorithm generates high quality restoration results and the results for
the four values of s are visually indistinguishable.

In the following two tests, the same deblurring strategy based on the Kronecker product approximations will be applied
with four different boundary conditions. Our aim is to compare the efficiency of employing the whole-sample symmetric BCs
over the other three boundary conditions for some image restoration problems. In Test 2, we are dealing with a strongly non-
symmetric PSF arising from wavefront coding, where a cubic phase filter is used to improve depth of field resolution in light
efficient wide aperture optical systems. Extending the depth of field of incoherent optical systems has been an active
research topic for many years; see [14,35,50]. The data of Test 2 is shown in Fig. 4. The plot of the first 40 singular values
of the PSF suggests that a Kronecker approximation of K with s = 1 should suffice. Our third blurring function we consider
is a PSF caused by turbulence in atmosphere. This test problem is often popular in the literature concerned with astronomical
image restoration [19,44,46]. The PSF we used in this test is a symmetric truncated Gaussian blur given by
Table 1
Relative

t (GC
Erro
hij ¼
ce�0:1ði2þj2Þ if ji� jj 6 13;
0 otherwise;

(

where c is the normalization constant. The data of Test 3 is shown in Fig. 5. The separable property of the Gaussian blur
shows that we only need a Kronecker approximation of K with s = 1. In the two tests, we add 0.5% and 0.2% Gaussian white
noise to the two blurred images, respectively.
Fig. 2. True image, PSF and blurred image with noise of Test 1.

errors and truncation parameters with different parameter s.

s = 1 s = 2 s = 3 s = 4

V) 24,461 21,889 21,835 21,899
r 0.1611 0.1357 0.1354 0.1354

Fig. 3. TSVD restorations with the whole-sample symmetric BCs.



Fig. 4. True image, PSF and blurred image with noise of Test 2.

Fig. 5. True image, PSF and blurred image with noise of Test 3.
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In Table 2, we give the results about relative errors and the choice of regularization parameters with the generalized cross
validation. We see from Table 2 that regardless of symmetry properties of the PSF, the TSVD method based on the Kronecker
product approximation algorithm under the whole-sample symmetric BCs is very efficient. In addition, it is obvious that by
imposing the whole-sample symmetric BCs the relative error of the reconstructed image is the smallest. Since the operation
for the deblurring strategy based on the Kronecker product approximation algorithm with four boundary conditions for
image restoration problems are nearly the same, we don’t show the CPU time for the two tests. Figs. 6 and 7 show the
restored images with the TSVD method under four different boundary conditions for Test 2 and Test 3, respectively. As
expected, the whole-sample symmetric BCs have addressed the problem of ringing effects at the image boundary. In addi-
tion, from these figures, it is obvious that reconstructions with the whole-sample symmetric BCs contain the least amount of
ringing artifacts. However, It is easy to see from Fig. 6 that the digits in the restored image under the antireflexive BCs are
clearer than under the other three boundary conditions. It is mainly because many entries of the restored digital image from
the antireflexive BCs are become zero. In Fig. 7, we observe that the restored image of using the whole-sample symmetric
BCs gives a higher quality than the other three boundary conditions. It should be noted that in all our experiments, using
various test images, we observe that the whole-sample symmetric BCs perform somewhat comparably to the half-sample
symmetric BCs and antireflexive BCs, in some cases comparing favorably and in other just the opposite. In almost all cases,
the restored effect using the whole-sample symmetric BCs is better than the zero BCs. All results are not shown here, in this
work we only report the two cases for comparison purposes.

In the fourth experiment, we compare the performance of the TSVD method based on the Kronecker product approxima-
tion algorithm with that of the CGLS method in 3D image restoration under the whole-sample symmetric BCs. The true im-
age is 128 � 128 � 27 simulated MRI of a human brain, available in the Matlab Image Processing Toolbox. Restoration of this
image was used as a test problem in [36,46]. To produce the distorted image, we build an out-of-focus PSF using the function
psfDefocus in [21], and convolve it with the MRI image, then add 0.5% Gaussian noise to the result. The test data is shown in
Fig. 8.

In this test, we evaluate our method and the CGLS method using the peak signal-to-noise ratio (PSNR) which compares

the restored image f with the original image ftrue. It is defined by PSNR ¼ 10log10
2552n2

kf�ftruek2
2
, where the size of the restored

images is n � n. Here the PSNR of the blurred and noisy image is 33.60 dB. Restored images using the whole-sample sym-
metric BCs appear in Fig. 9. On the left is an optimal approximate restoration using conjugate gradients on normal equations
(CGLS) with the exact blurring matrix. For the CGLS method, we terminate the iterations as soon as an optimal approximate
solution which satisfies the discrepancy principle has been found. The optimal approximate solution is obtained by 38



Table 2
Relative errors and the choice of regularization parameters.

Half-sample symmetric Antireflexive Zero Our method

Test two
t (GCV) 6360 8712 6519 5226
Error 0.2401 0.2851 0.9530 0.2254

Test three
t (GCV) 9456 13,667 10,502 19,704
Error 01362 0.3116 5.4641 0.1163

Fig. 6. TSVD restorations with different boundary conditions.

Fig. 7. TSVD restorations with different boundary conditions.

Fig. 8. True image and blurred image with noise of Test 4.
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iterations of CGLS. This restoration has a PSNR of 40.81. On the right is the experimental restoration using the TSVD method
with the Kronecker approximation for s = 1, with the truncation parameter chosen by the GCV method. The PSNR of this res-
toration is 36.54. However, there does not exist a precise and reliable stopping rule for choosing the optimal number of iter-
ations for CGLS when the true object is unavailable. As reported in [41], the optimal status of the CGLS restoration is
artificially produced, and the ability to achieve it is uncertain at best in experimental restorations. On the other hand, the
GCV method predicts an appropriate truncation parameter for TSVD with the Kronecker approximation, and no subjective



Fig. 9. Restorations using the whole-sample symmetric BCs.
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intervention is required. In addition, the CPU time for identifying the iteration count that yields an optimal approximate
solution and producing the corresponding solution is 3.899 s, while a total of 0.115 s is needed to produce a Kronecker
approximation and to obtain the Kronecker-based TSVD restoration.
6. Conclusion

In this paper, we investigate the use of the whole-sample symmetric BCs in image restoration. From a theoretical point of
view, the whole-sample symmetric BCs are more common than the half-sample symmetric BCs in many image restoration
issues. For the resulting matrix from the whole-sample symmetric BCs, a Kronecker product approximation algorithm is ob-
tained. We also discuss the implementation of the TSVD method based on the Kronecker product approximation algorithm
and some applications in image restoration. Numerical examples are given to illustrate the effectiveness of our method.
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