
BLAS-on-flash : An Efficient Alternative for Large Scale ML Training and
Inference?

Suhas Jayaram Subramanya
Microsoft Research India
t-sujs@microsoft.com

Harsha Vardhan Simhadri
Microsoft Research India
harshasi@microsoft.com

Srajan Garg
IIT Bombay

srajan.garg@gmail.com

Anil Kag
Microsoft Research India
t-anik@microsoft.com

Venkatesh Balasubramanian
Microsoft Research India
t-venkb@microsoft.com

Abstract

Many large scale machine learning training and inference
tasks are memory-bound rather than compute-bound.
That is, on large data sets, the working set of these al-
gorithms does not fit in memory for jobs that could run
overnight on a few multi-core processors. This often
forces an expensive redesign of the algorithm for dis-
tributed platforms such as parameter servers and Spark.

We propose an inexpensive and efficient alternative
based on the observation that many ML tasks admit al-
gorithms that can be programmed with linear algebra
subroutines. A library that supports BLAS and sparse-
BLAS interface on large SSD-resident matrices can en-
able multi-threaded code to scale to industrial scale
datasets on a single workstation.

We demonstrate that not only can such a library pro-
vide near in-memory performance for BLAS, but can
also be used to write implementations of complex algo-
rithms such as eigensolvers that outperform in-memory
(ARPACK) and distributed (Spark) counterparts.

Existing multi-threaded in-memory code can link to
our library with minor changes and scale to hundreds of
gigabytes of training or inference data at near in-memory
processing speeds. We demonstrate this with two in-
dustrial scale use cases arising in ranking and relevance
pipelines: training large scale topic models and inference
for extreme multi-label learning.

This suggests that our approach could be an efficient
alternative to expensive distributed big-data systems for
scaling up structurally complex machine learning tasks.

1 Introduction

Data analysis pipelines in scientific computing as well
as ranking and relevance often work on datasets that are
hundreds of gigabytes to a few terabytes in size. Many
algorithms in these pipelines, such as topic modeling [6],
matrix factorizations [33], spectral clustering [32], ex-

treme multi-label learning [47], are memory limited as
opposed to being limited by compute. That is, on large
datasets, a training algorithm that requires a few hours
of compute on a multi-core workstation would run out of
DRAM for its working set.

This forces users to move the algorithm to distributed
big-data platforms such as Apache Spark [63, 64] or sys-
tems based on Parameter Servers [18, 37, 60], which in-
curs three costs: (1) the cost of rewriting code in a dis-
tributed framework, (2) the cost of a cluster of nodes or
non-availability in production environments, and (3) in-
efficiencies of the platform in using the hardware. Train-
ing on these platforms can require dozens of nodes for
moderate speedups over single threaded code for non-
trivial algorithms [22, 39]. This could be due to plat-
form overheads as well as mismatch between the struc-
ture of the algorithm and the platform’s programming
model [9, 17, 58], resulting in low processor utilization.

Several light-weight frameworks for single node
workstations demonstrate that this inefficiency is unnec-
essary for many classes of algorithms that admit multi-
threaded implementations that are orders of magnitude
more efficient [16, 34, 52, 53]. It is also widely ob-
served that many machine learning problems admit al-
gorithms that are essentially compositions of linear alge-
bra operations on sparse and dense matrices. High per-
formance implementations of these algorithms typically
invoke linear-algebra operations through standard APIs
such as BLAS [10] and sparseBLAS [20]. High perfor-
mance implementations for these standard APIs are pro-
vided by hardware vendors [26, 27, 43, 44].

Linear algebra kernels offer plenty of locality, so much
so that the bandwidth required to run them on high-end
multiprocessors can be provided by a non-volatile mem-
ory over PCIe or SATA bus [5, 13, 56]. Non-volatile
memory is already widely deployed in cloud and de-
velopments in hardware and software eco-system posi-
tion non-volatile memory as an inexpensive alternative
to DRAM [4, 19, 49, 50]. Hardware technology and

interfaces for non-volatile memories have increasingly
lower end-to-end latency (few µs) [25] and higher band-
width: from 8 GT/s in PCIe3.0 to 16GT/s in PCIe4.0 [45]
and 32GT/s in PCIe5.0. Hardware manufactures are also
packaging non-volatile memory with processing units,
e.g. Radeon PRO SSG [2] to increase available memory.

These observations point to a cost-effective solution
for scaling linear algebra based algorithms to large
datasets in many scenarios – use inexpensive PCIe-
connected SSDs to store large matrices corresponding to
the data and the model, and exploit the locality of linear
algebra to develop a library of routines that can operate
on these matrices with a limited amount of DRAM. By
conforming to the standard APIs, such a library could be
a replacement for code that would have linked to BLAS
libraries such as Intel MKL or OpenBLAS [59].

We present empirical evidence that this approach can
be practical, easy, and fast, by developing a library which
provides near in-memory speeds on NVM-resident data
for subroutines on dense matrices and sparse matrices.

Performance of our BLAS-on-flash library is compa-
rable to that of in-memory Intel MKL implementations
for level-3 BLAS and sparseBLAS kernels such as gemm
(dense-dense matrix multiplication) and csrmm (sparse-
dense matrix multiplication) on multiprocessor machines
with SSDs. The key to this performance is using the
knowledge of data-access patterns arising in linear alge-
bra kernels to effectively pipeline IO with computation.
Using these kernels, we can implement algorithms such
as k-means clustering that run at near in-memory speeds.

To illustrate that this approach is not limited to sim-
ple kernels, we consider one of the most structurally
complex numerical algorithms – eigensolvers. Using the
BLAS-on-flash library, we built a general purpose sym-
metric eigensolver, which is critical to dimensionality
reduction (e.g. PCA) and spectral methods. Specifi-
cally, we adapted the restarted block Krylov-Schur [67]
algorithm to compute thousands of eigenvectors on SSD-
resident data faster than standard in-memory solvers
based on the IRAM algorithm [54] (e.g., Spectra [48],
ARPACK [35]). On large bag of words text datasets
running into hundreds of gigabytes, our implementation
running on one multi-core workstation with under 50GB
DRAM outperforms Spark MLlib’s computeSVD [40]
deployed on hundreds of executors, representing an or-
der of magnitude efficiency gain in hardware utilization.
Further, our solver can compute thousands of eigenval-
ues, while computeSVD is limited to 500 or fewer.

We present two use cases of the library for algorithms
used in ranking and relevance pipelines that process hun-
dreds of gigabytes of data: training topic models, and
inference in Extreme Multi-Label learning.

Topic modeling [11] summarizes a corpus of docu-
ments, where each document is a collection of words

from a fixed vocabulary, as a set of topics that are prob-
ability distributions over the vocabulary. Although most
large scale algorithms are based on approximating and
scaling an intractable probabilistic model on parameter
servers [14, 61, 62], recent research [6] has shown that
linear algebra based approaches can be just as good qual-
itatively. We take a highly optimized version of the algo-
rithm in [6] that already outperforms prior art on single
node workstations, and link to the eigensolvers and clus-
tering algorithms written using our framework. This al-
lows the algorithm to train a 2000 topic model on a 60
billion token corpus (500GB on disk) in under 4 hours.

Extreme Multi-Label Learning (XML) is the problem
of learning to automatically annotate a data point with
the most relevant subset of labels from an extremely large
label set (often many millions of labels). This is an im-
portant task with many applications in tagging, ranking,
and recommendation [8]. Models in extreme multi-label
learning tasks are often ensembles of deep trees with
small classifier(s) at each node. e.g. PfastreXML [47],
Parabel [46]. In production, models that exceed DRAM
in size need to score (i.e. infer) several hundreds of mil-
lions sparse data points from a space with million+ di-
mensions every week on a platform that provides ma-
chines with moderate sized DRAM. As datasets grow in
size, XML algorithms need to scale 10x along multiple
axes: model size, number of points scored and dimen-
sionality of the data.

In this work, we start with PfastreXML and Parabel
models and a dataset that needed 440 and 900 compute
hours respectively on a VM with large RAM. We opti-
mized this code to reduce in-memory run time by a factor
of six. When the optimized code is linked to our library,
it runs at about 90% of in-memory speed with a much
smaller memory footprint.

These results suggest that, for complex numerical al-
gorithms, our approach is capable of running at near in-
memory speeds on large datasets while providing sig-
nificant benefits in hardware utilization as compared to
general-purpose big-data systems. Further, we envi-
sion our library being useful in the following scenar-
ios: (1) Environments without multi-node support for
MPI, Spark etc., (2) Laptops and workstations or VMs
in cloud with limited RAM but large non-volatile memo-
ries, (3) Batch mode periodic retraining and inference of
large scale models in production data analysis pipelines,
(4) Extending the capabilities of legacy single-node ML
training code.

Roadmap. Sections 2, 3 and 4 provide an overview of
the interface, design, and the architecture of the library.
Section 5 presents an evaluation of the performance of
our library and algorithms written using the library.

Source code for our library has been released at
github.com/Microsoft/BLAS-on-flash.

2 BLAS-on-flash : Overview and Interface
The BLAS-on-flash library provides an easy way to write
external memory parallel algorithms, especially numeri-
cal algorithms processing large matrices, that run at near
in-memory speed on SSD-resident data. At its core, it
pipelines calls to an existing math library (like Intel MKL
or OpenBLAS) on in-memory data blocks. Coupled with
prefetching and intelligent scheduling, BLAS-on-flash al-
lows the programmer to define computation on inputs
that are limited only by the size of storage.

Our library is intended for programmers who already
write multi-threaded code in C++ using shared memory
pointers. BLAS-on-flash provides a rich interface utiliz-
ing C++ templates and inheritance to allow easy integra-
tions with existing code with minimal modifications.

Typically, programmers writing high-performance na-
tive code track data objects with pointers and manipu-
late these objects by passing their pointers to functions
or linked libraries that perform operations such as matrix
multiplication.

The BLAS-on-flash library provides a custom pointer
type, flash ptr<T>, to track large SSD-resident ob-
jects, and replaces the standard T* pointer type. A pro-
grammer can either invoke BLAS-on-flash library func-
tions operating on flash ptr<T> types or define new
functions that operate on flash ptr<T> types by spe-
cializing the Task class. The Task class allows a pro-
grammer to define inputs, outputs, and a compute func-
tion mapping inputs to outputs. A directed acyclic graph
(DAG) of tasks defines a higher-level kernel (e.g. block
matrix multiplication). In this section, we show how to
use each of these functionalities.

2.1 The flash ptr<T> type
The flash ptr<T> is a replacement for standard
T* pointers that allows programmers to handle large
blocks of SSD-resident data. An object of type
flash ptr<T> can be created by one of two methods.
Allocation - Using an allocator provided by the library
to allocate a large block on the disk. Akin to
int *mat=(int *)malloc(len);

the library allows creation of a scratch space on SSD:
flash ptr<int> mat=flash malloc<int>(len);

Mapping - Using a mapper provided by the library,
one can create a flash ptr<T> backed by an existing
file. For example, flash ptr<float> mat fptr =

map file<float>(matfile, READWRITE); allows
read/write access to the float matrix in matfile.
Using flash ptr<T>, programmers can read and
write to the backing file through our library calls. For
example, one can write N elements to the file mapped
to mat fptr from an in-memory mat ptr as follows:
flash::write sync(mat fptr, mat ptr, N);

The flash ptr<T> type supports pointer arithmetic
and can be cast and used as a normal pointer through
memory mapping for functionality not supported by the
library (albeit with worse performance).
float* mmap mat ptr = mat fptr.ptr;

2.2 Library Kernels

BLAS-on-flash kernels are functions that operate on
flash ptr<T> types, designed to be drop-in replace-
ments for in-memory calls operating on T* types. Ker-
nels we have implemented include:

• gemm: Takes two input matrices A, B of type
flash ptr<float|double> and outputs
C := α · op(A) * op(B) + β · C,
where α and β are scalars, and op(X)=X or XT. The
library allows striding and all layout choices a standard
BLAS gemm call would offer.

• csrmm : Performs same computation as gemm, but
on a sparse A in Compressed Sparse Row (CSR)
format and allows for op(·) only on B. In addi-
tion to the version where all matrices are of type
flash ptr<float>, we also provide a variant
where B and C are in memory pointers. The CSR for-
mat stores three arrays: the non-zeros values ordered
first by row and then columns, the column index of
each non-zero value, and the offsets into the two pre-
vious arrays where each row starts.

• csrgemv : Takes a sparse matrix A on disk and
computes c := op(A)∗ b, where b and c are in-
memory vectors and op(X)=X or XT.

• csrcsc : Converts a sparse matrix in CSR form into
its Compressed Sparse Column (CSC) form with both
inputs and outputs as flash ptr<T> types. This is
equivalent to transposing the input matrix.

In addition to basic kernels, we also implemented some
higher-level algorithms like:

• kmeans : Given seed centers and input data points,
all as flash ptr<float> types, the kernel runs a
specified number of Lloyd’s iterations and overwrites
the seeds with final cluster centroids.

• sort : Parallel sample sort on a flash ptr<T> ar-
ray using a user-defined comparator.

Using BLAS-on-flash kernels, programmers can elimi-
nate memory limitations of their in-memory variants. For
example, using csrmm and csrgemv, one could imple-
ment an eigensolver for flash-resident matrices. In a later
section, we describe complex algorithms using these and
other custom kernels to process large amounts of flash-
resident data.

Figure 1: The gemm kernel, its DAG using the Task interface, and sector-sharing among adjacent output blocks in C.

Figure 2: 〈b, {l, s, n}〉 is an access specifier for block b
of a flash-resident matrix B stored in Row-Major layout.

2.3 Tasks and Computation Graphs
A BLAS-on-flash kernel operating on large inputs is com-
posed of smaller units of computation called tasks. New
tasks are defined using the Task interface of the library.
The Task interface allows users to define in-memory
computations on smaller portions of the input. It also
provides a mechanism to compose a computation graph
by allowing parent-child relationships between tasks to
encode dependencies.

Task inputs and outputs are uniquely described using
an access specifier: 〈flash_ptr<T>, StrideInfo〉.
Here, flash ptr<T> points to the start of the data
and StrideInfo describes an access pattern starting
at flash ptr<T>. An access pattern could be a:

• Strided access to retrieve a matrix block that touches
a small strip – i.e. a subset – of each row/column of
a dense matrix. This is specified using 3 parameters -
number of strides, access length per stride (strip size)
and the stride length before next access. For the matrix
block b in Figure 2, these are n, l, and s respectively.

• Single contiguous access to a chunk of data, equivalent
to a strided access with only one strip.

In addition to specifying the inputs and outputs, the
user must implement the execute function that com-
putes outputs using the inputs. The BLAS-on-flash run-
time maps a flash_ptr<T> to an in-memory T* and
makes this mapping available in execute. With inputs

and outputs available as T* types, the programmer must
detail operations on inputs using only in-memory func-
tion calls to produce outputs.

Figure 1a illustrates a task Gk
i,j , its inputs

(Ai,k, Bk,j , Ci,j) and the computation in its execute
as a block-matrix multiplication on its inputs using an
in-memory gemm call.

A user can create a new kernel by specifying a directed
acyclic graph (DAG) with a task at each node and di-
rected edges from parent tasks to their child tasks. Once a
task’s parents are specified, the user injects it through the
BLAS-on-flash Scheduler interface. By allowing tasks to
be injected into the scheduler at runtime, the user can
specify data-dependent computation graphs required for
certain algorithms like eigensolvers.

Figures 1a and 1b illustrate the gemm kernel and the
DAG associated with its implementation using the Block
Matrix Multiplication algorithm. For inputs A,B, and
C, shown with 16 blocks for each matrix, an output block
Ci,j is given byCi,j := β·Ci,j+α·

∑k=3
k=0Ai,k·Bk,j . The

inner summation is converted into an accumulate chain
by using a taskGk

i,j in Figure 1a, for each k. Gi,j depicts
the dependence between successive tasks in the accumu-
late chain using arrows from a parent task to its child
task. Figure 1a illustrates the composition of the gemm
kernel using accumulate chains and Figure 1b gives the
complete DAG for A,B, and C as the inputs and C as
the output. The parallel composition operator X||Y al-
lows both X and Y to execute in parallel while the serial
composition operator X → Y allows Y to execute only
after X .

The task injection and logic required for creating a
DAG corresponding to a kernel are then packaged into
a single function call. This method of packaging allows
programmers to replace in-memory calls with BLAS-
on-flash variants with minimal modifications to existing
pipelines. We demonstrate this by replacing memory-
intensive kernels in the ISLE topic modeling algorithm,
with a BLAS-on-flash variant, one kernel at a time.

3 Library Design
BLAS-on-flash supports online scheduling of tasks from
a user-defined dynamic graph using a limited DRAM
budget with the aim of executing it at near in-memory
performance. This requires addressing two resource
management problems: (1) effective utilization of the
limited DRAM budget by avoiding redundant copies of
data shared between tasks, and (2) realizing effective
pipelining of computation and IO by better utilization
of the limited disk bandwidth offered by PCIe-based
SSDs. The library addresses these problems by improv-
ing buffer reuse, and determining a task schedule likely
to minimize disk reads and writes.

We use the gemm kernel operating on single preci-
sion floating point matrices as an example. The follow-
ing calculation illustrates the gap between the running
times of an in-memory and an SSD-based version on a
machine, test, with 32 cores capable of 1TFLOPs, and
an NVMe SSD with sustained read and write bandwidths
of 3GB/s and 0.5GB/s, respectively. Assume that the in-
put and output matrices are of size 32768× 32768 each,
blocked as in Figure 1. Assume that the matrix block
size is 8192 × 8192. Each task in the gemm kernel re-
quires 1TFLOP of compute on 768MB of input to pro-
duce 256MB output. On the test system, each such
task requires 0.75s of IO time for 1s of compute, when
using all 32 threads for one task. Since every task has
the same IO and compute requirements, a gemm kernel
with 64 tasks would take 112s to execute out of memory
without pipelining, instead of 64s if executed completely
in memory. It is to be noted that, in reality, mixing reads
and writes results in reduced read throughput [3]. We do
not address this issue here. We instead focus on solving
the two problems stated above within the constraints set
by the hardware and OS. We are specifically interested in
buffer management policies that optimize performance
for DAGs arising from linear algebra kernels and algo-
rithms involving matrix operations.

3.1 Buffer Reuse
A task scheduler executing the DAG in Figure 1b might
execute tasks G1

0,0 and G0
1,0 concurrently. If the sched-

uler is naive, it might prefetch block B0,0 twice, thus
replicating it in memory. In addition to wasting limited
DRAM, this would waste the limited disk bandwidth.
Redundant reads can be eliminated, where possible, by
enforcing uniqueness of data in memory. The BLAS-on-
flash runtime ensures such uniqueness by using reference
counters for in-memory buffers (described Section 4), al-
lowing data reuse, where possible.

3.2 Prioritized Scheduling
Although Buffer Reuse reduces disk reads, the program-
mer still needs to carefully manage the order of task in-

File Handle

OS Kernel I/O

I/O Executor

Program Cache Prioritizer

Scheduler

Kernels

Figure 3: The BLAS-on-flash software stack.

jection to maximize data reuse between tasks active in
memory. To avoid the programmer this burden, and al-
low the scheduler to takeover this task, we propose a
heuristic to select a task for prefetching, based on data
currently buffered into memory and the IO requirements
of the tasks in the ready list. Our heuristic selects the
task that requires the minimum number of bytes to be
prefetched given the current contents of the memory
buffer. For kernels like gemm and csrmm, this heuris-
tic minimizes the number of input matrix blocks read by
scheduling tasks with high input and output locality. If
all matrix blocks are uniform in size, this also reduces
the number of write-back operations.

Suppose that, at some point, in an execution of the
gemm DAG in Figure 1, M = {A0,0, A1,0, A1,1, B0,0,
B1,0, B1,1, C0,0, C1,0, C1,1} is the set of blocks in mem-
ory, and the following tasks are executing concurrently.

G1
0,0 := gemm(A0,1, B1,0, C0,0, α, 1)

G0
1,0 := gemm(A1,0, B0,0, C1,0, α, β)

G1
1,1 := gemm(A1,1, B1,1, C1,1, α, 1)

G1
1,0 := gemm(A1,1, B1,0, C1,0, α, 1)

If G1
0,0, G

0
1,0, and G1

1,1 are the latest 3 tasks to com-
plete execution, G0

1,0’s child task, G1
1,0, is now ready for

execution. By scheduling G1
1,0 instead of the next-in-

queue task, G1
1,0 can immediately start execution with-

out requiring any IO. Since outputs from the accumulate
chains G0,0, G0,1, G1,0, and G1,1 exhibit high locality,
our heuristic schedules tasks from such nearby accumu-
late chains to reduce disk operations.

4 Architecture
The BLAS-on-flash library implementation consists of
the software stack in Figure 3. We describe the role of
each of the 5 layers:

File Handle provides a read-write interface using ac-
cess specifiers for all library calls. Implementations
can be specialized for hardware interfaces (e.g. NVMe,
SATA, or network) as required. We implement this in-
terface for SSDs using the Linux kernel asynchronous

IO syscall interface – io_submit to submit IO jobs
and io_getevents to reap job completions. Com-
pared to user-space NVMe drivers like SPDK [24] and
unvme [41], the io_submit syscall interface provides
a simpler interface for sector-level unbuffered asyn-
chronous IO with minimal performance penalties.

IO Executor maintains a thread-pool to service IO re-
quests generated by Program Cache. To exploit paral-
lelism and ensure correctness, IO Executor executes only
non-overlapping requests in parallel. A pair of requests
are overlapping if they modify at least one common sec-
tor on the disk. For example, consider Figure 1c. When
the leading dimension of a matrix block is aligned to
the device sector size, C2,2 and C2,3 can be operated
on concurrently. Otherwise, writes to common sectors
must be ordered to avoid data corruption. To detect over-
laps between requests, each write request is advertised to
other threads. A request is added to a thread-local back-
log queue if it overlaps with an advertised request. Each
thread in the thread-pool services its backlog queue with
a higher priority in its next cycle.

Program Cache is the memory subsystem for BLAS-
on-flash . It manages allocation, deallocation, prefetch,
and eviction of in-memory buffers. Program Cache al-
lows for buffer re-use by mapping access specifiers to
reference-counted in-memory buffers. Each map entry
is in one of four states - Active(A), Prefetch(P), Write-
Back(W), or Zero-Reference(Z). An entry in state A
indicates an active reference, i.e, at least one task has a
reference to the buffer. An entry in P is a prefetch in
progress, W is a write-back in progress, and Z is an en-
try with zero active references. Entries are one of 3 types
- R-only, W-only and RW, corresponding to read-only,
write-only and read-write entries. It uses this information
to serve four types of requests.

• COMMIT - commits a task to memory by ensuring all
inputs and outputs are mapped to in-memory buffers.
If some inputs/outputs are not already mapped, it
evicts some in-memory buffers to free up memory, al-
locates memory, and queues up prefetches to IO Ex-
ecutor. It also increases reference counts for mapped
buffers. State is unchanged if the request fails because
no entries were eligible for eviction.

• RELEASE - returns a task’s inputs and outputs; also
decreases reference counts for returned buffers.

• UPDATE - Checks and updates status of pending IO
operations.

• Batch HIT/MISS - Typical HIT/MISS queries on a
cache to aid prioritization during scheduling.

Program Cache entries transition states according to
Figure 4. R-Only, W-only and RW are transitions cor-
responding to read-only, write-only, and read-write en-
tries, respectively. If a COMMIT request is successful

Figure 4: State transition diagram for Program Cache
entries.

and a new entry is created, memory is allocated using
malloc. If the entry requires data on disk to be read
(R-only, RW), a prefetch is queued. Since entries in Z
already contain prefetched data, COMMIT requests tran-
sition them directly to A, avoiding a redundant read. En-
tries enter state A with exactly one active reference. Ad-
ditional COMMIT requests for entries inA only increase
reference counts, and RELEASE requests decrease the
same. Entries with zero active references in A transition
toZ, making them available for eviction. Evicting a dirty
entry (RW, W-only) queues a write-back and transitions
the entry from Z to W . Entries in P transition into A,
and those in W get de-allocated once their IO operations
are complete

Prioritizer uses Batch HIT/MISS queries on Program
Cache to rank the list of ready tasks in increasing order
of their prefetch sizes given the current cache state.

Scheduler provides an interface to inject tasks at run-
time. Once injected, tasks are executed using a 5-stage
pipeline — Wait, Ready, Prefetch, Compute, and Com-
plete. All tasks start out in Wait stage, and advance to
Ready stage when all its parents have finished Compute
stage. In each scheduling round, Scheduler tries a COM-
MIT request to Program Cache with the highest priority
task obtained from Prioritizer. If successful, this task
advances to Prefetch stage. When all its inputs and out-
puts are mapped to in-memory buffers, the task moves
to Compute stage. Tasks in Compute stage are executed
using a thread-pool maintained by Scheduler. Tasks fin-
ishing Compute stage are recorded as Complete, and
Scheduler issues a RELEASE request to Program Cache
with these completed tasks. Once all tasks in a kernel are
complete, Scheduler allows the programmer to flush any
outputs in Program Cache to persist results to disk.

5 Algorithms and Evaluation
We now discuss the implementation of the kernels pro-
vided by the library and complex algorithms built us-
ing these kernels, and compare the running times and
memory requirements of in-memory and SSD-based ver-
sions. We implemented an eigensolver, an SVD-based

0.6

0.8

1

1.2

1.4

1.6

1.8

16384 32768 65536 131072 262144

Reduction Dimension (d) ⟶

z840 L32s VM sandbox

0.6

0.8

1

1.2

1.4

1.6

1.8

15000 31000 63000 127000 255000

Reduction Dimension (d) ⟶

z840 L32s VM sandbox

Figure 5: Ratio of in-memory MKL gemm to BLAS-on-flash gemm running times for 512-aligned (left) and unaligned
(right) instances for various values of reduction dimension (d). The matrix dimensions are 215× d× 215 and 31000×
d × 31000 for the aligned and unaligned plots. BLAS-on-flash library has a 8GB Program Cache. gemm tasks in
BLAS-on-flash library use 4 threads each. Program Cache budget determines the number of simultaneous tasks.

algorithm for topic modeling, and two inference algo-
rithms for XML models. This choice of algorithms rep-
resents the state-of-the-art for a subset of non-deep learn-
ing problems used in ranking and relevance pipelines.
Where available, we compare our implementations of
these algorithms with prior implementations.

5.1 Experimental setup
The library allows the user to control the number of
threads per task (T) and the maximum number of tasks
that can be simultaneously executed (K). On a machine
with N cores, one would typically choose T ×K = N .
Within this constraint, the optimal values of T andK are
determined by the compute-communication ratio of the
task and the parallelism within the task. For the pipeline
to execute K tasks in parallel in steady state, the Sched-
uler needs to hold 3K tasks in memory to account for K
tasks each in Prefetch, Compute and Complete stages of
the pipeline. Therefore, in the case of gemm and csrmm
kernels, setting T=1 and K=N increases pressure on
disk and Program Cache. On the other hand, when K=1
with T=N , MKL does not realize T -fold parallelism
with small block sizes. We find T=4, K=N/4 to be a
good tradeoff, empirically.

Table 1 lists the configurations of machines used to
evaluate our library. sandbox is a high-end bare-metal
server with enterprise class Samsung PM1725a SSD ca-
pable of sustained read speeds of up to 4GB/s and write
speeds of up to 1GB/s. z840 is chosen to represent a
typical bare-metal workstation machine configured with
two Samsung 960EVO SSDs in RAID0 configuration,
providing sustained read speed of about 3GB/s and write
speed of about 2.2GB/s. L32s VM is a virtual machine
on Azure configured for heavy IO with I/O throttled to a
sustained 1.6GB/s or 160K IO ops/second. M64-32ms
VM is a virtual machine on Azure with 1.7TB RAM
that we’ll use for running experiments with large mem-

Name Processor Cores RAM SSD

sandbox Gold 6140 36 512GB 3.2TB
z840 E5-2620v4 16 32GB 2TB

L32s VM E5-2698Bv3 32 256GB 6TB
M64-32ms VM E7-8890v3 32 1.7TB –
DS14v2 VM E5-2673v3 16 112GB –

Table 1: Intel Xeon-based machines used in experiments.

ory requirements. We use Intel MKL 2018 and Ubuntu
16.04LTS on all the machines listed above. Apache
Spark instances run Apache Spark MLlib 2.1 on a cluster
of Azure DS14v2 VM instances.

5.2 Matrix kernels
General Matrix Multiply (gemm) and Sparse (CSR) Ma-
trix Multiply (csrmm) are perhaps the most used kernels
in math libraries. Therefore, it is important to optimize
their performance with careful selection of tiling patterns
and prefetch and execution orders in order to minimize
IO. For this, we build on well-established results on ex-
ploiting locality in matrix multiplications [5, 28, 30]. We
also use the fact that BLAS and sparseBLAS computa-
tions can be tiled so that they write the output to disk just
once [12, 13], thus saving on write bandwidth.
gemm. The block matrix multiplication algorithm in
Figure 1 requires O(n3) floating point operations for
n × n matrices. With block size b, it reads O(n3/b)
bytes from disk and writes O(n2) bytes back. It is ideal
for the library to increase the block size b as much as its
in-memory buffer allows so as to decrease the amount of
IO required. Figure 5 presents the ratio of running times
of the in-memory MKL gemm call to that of our library
for various reduction dimension sizes in two cases:
• 512-aligned. A matrix is 512-aligned if the size

of its leading dimension is a multiple of 512. e.g., a
1000x1024 floatmatrix in row-major layout, that
would require 4096 bytes for each row.

• unaligned. A matrix is unaligned if it is not 512-
aligned, e.g., a 500x500 float matrix in row-
major form, that would require 2000 bytes per row.

The distinction between 512-aligned and unaligned
matrices is important as the two cases generate a different
number of disk access when a block of the matrix is to be
fetched or written to. Flushing an unaligned matrix block
to disk requires two reads and one write per row – read
the start and end sectors of each row in the block, and
write-back the overwritten values. A 512-aligned block
requires only one write per row.

We define the reduction dimension (RD) to be the di-
mension along which summation happens during matrix
multiplication. Using notation from Figure 1, if A,B,
and C are all stored in row-major form, the RD is the
number of columns in A. Given a block size, increas-
ing the RD increases the length of the accumulate chain,
resulting in fewer disk writes per chain. Pipelining effi-
ciency increases with longer accumulate chains, due to
lower write-back operations per chain, as demonstrated
by Figure 5. In fact, due to careful pipelining, our library
outperforms in-memory MKL calls in many instances.

We also evaluated the performance of gemm when
DRAM overflow is serviced by OS paging mechanisms.
We timed a problem of dimension 49K × 49K × 49K
(30GB size) on the z840 machine with 32GB and 16GB
of RAM. For runs with 16GB RAM, we pin a 128GB
swap partition to the SSD. The OS-paged version with
16GB RAM ran 1.6× slower than the in-memory ver-
sion with 32GB RAM. On a larger problem size (64K ×
64K×64K, 48GB size) and 16GB RAM, OS paging re-
sults in a more substantial slowdown – about 13x slower
than what in-memory version would have taken.
csrmm. The csrmm kernel performs O(n3s) float-
ing point operations on n × n size input matrices with
sparsity s, representing inputs of size O(n2(1 + s)) and
output of n2 size. For a matrix whose sparsity is uni-
form across rows and columns, with a block size of b,
the compute to IO ratio is only O(bs) as opposed to
O(b) for gemm. For sparse matrices such as those in
Table 2 arising from text data (e.g. bag-of-words repre-
sentation), sparsity can be as low as s = 10−4. There-
fore, although the execution of in-memory csrmm tasks
is slower (sparse operations are 10 − 100× slower than
dense operations), the low locality (bs as opposed to b)
makes it hard to always obtain near in-memory perfor-
mance. Figure 6 demonstrates the effect of sparsity on
csrmm by fixing the problem dimensions at 220× 217×
212 and measuring the ratio of in-memory to BLAS-on-
flash running times for s ∈ {10−4, 10−3, 10−2}. It is ev-
ident that the efficiency of the csrmm kernel decreases
with sparsity.

We also benchmark the csrmm call required to project
the sparse bag-of-words datasets listed in Table 2 into

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01

Sparsity ⟶

z840

L32s VM

sandbox

Figure 6: Ratio of in-memory MKL csrmm to BLAS-
on-flash csrmm running times for (220 × 217 × 212)
sized instances and various values of sparsity. BLAS-on-
flash uses a 8GB Program Cache. Each csrmm task uses
4 threads and the number of simultaneous tasks is deter-
mined by number of cores in the system.

Dataset #Cols #Rows NNZs Tokens Size

Small 8.15M 140K 428M 650M 10.3GB
Medium 22M 1.56M 6.3B 15.6B 151GB

Large 81.7M 2.27M 22.2B 65B 533GB

Table 2: Sparse matrices bag-of-words text data sets.
Columns and rows of the matrix represent the documents
and words in the vocabulary of a text corpora. The (i, j)-
th entry of the matrix represents the number of times the
j-th word in the vocabulary occurs in the i-th document.

a 1024-dimensional space (say, obtained from Principal
Component Analysis). The dense input and output ma-
trices are 512-aligned and in row-major format. A per-
formance drop is expected in the unaligned case.

Table 3 compares the performance of the csrmm in
BLAS-on-flash to the in-memory version provided by
MKL on z840 , L32s VM and sandbox machines.
z840 is too small to run the in-memory version for
all three data sets because it has only 32GB RAM.
Since projecting the Large dataset into 1024 dimen-
sions requires 559GB of RAM, both L32s VM and
sandbox are unable to do it in memory. As an ap-
proximation to the speed of an in-memory call on L32s
VM we ran it on M64-32ms VM which has 1.7TB RAM.

Despite a sparsity of 2×10−4, the csrmm in BLAS-on-
flash is about 50% as fast as its in-memory counterpart on
the Medium dataset (when the dense matrices are in row-
major layout). We picked row-major order for dense ma-
trices because our library was able to outperform MKL’s
csrmm implementation for column-major order by a fac-
tor of > 2× on Small and Medium datasets. We attribute
this to poor multi-threading in MKL’s implementation.

5.3 Eigensolver
Eigen-decomposition is widely used in data analytics,
e.g., dimensionality reduction. Given a symmetric ma-
trix A, a symmetric eigensolver attempts to find k

Dataset z840 L32s VM sandbox
flash in-mem flash in-mem flash

Small 34.7 8.2 24.5 6.9 35.2
Medium 135.75 58.5 101.3 49.5 98.0

Large 636.2 512.3* 390.6 – 354.9

Table 3: Running times in seconds for csrmm operations
that project datasets in Table 2 into 1024-dimensions.
BLAS-on-flash has a 16GB Program Cache. *This is run
on M64-32ms VM as an approximation to L32s VM .

eigenvalue-eigenvector pairs (λi,vi) such that
Avi = λivi ∀i

vT
i vj = 0, ‖vi‖2 = 1 ∀i 6= j, |λ1| ≥ |λ2| . . . ≥ |λk|
Popular dimensionality reduction techniques like Prin-

cipal Component Analysis (PCA) and Singular Value
Decomposition (SVD) use the symmetric eigenvalue de-
composition (syevd) to compute the projection matri-
ces required for dimensionality reduction. The SVD of
a matrix M can be formulated as a symmetric eigen-
decomposition problem as follows:

Mui = σivi, ‖vi‖2 = ‖ui‖2 = 1∀i
uT
i uj = 0, vT

i vj = 0∀i 6= j, |σ1| ≥ |σ2| ≥ . . . ≥ |σk|
MMTui = σ2

i ui, M
TMvi = σ2

i vi

svd(M) = syevd(MMT) = syevd(MTM)

To showcase the versatility of our library, we imple-
ment a symmetric eigensolver and time it on large sparse
matrices (in CSR format) obtained from text corpora in
Table 2. Among the many flavors of eigensolvers, we
picked the Krylov-subspace class of algorithms as they
have been shown to be stable for a wide variety of matri-
ces. These algorithms use iterated Sparse Matrix-Vector
(csrgemv) products to converge on eigen-pairs.

Since csrgemv is bandwidth-bound, it is not suitable
for an eigensolver operating on SSD-resident matrices.
To overcome this limitation, we implement the Restarted
Block Krylov-Schur (Block KS) algorithm [67]. The
Block KS algorithm can potentially use fewer matrix ac-
cesses to achieve the same tolerance by using a csrmm
kernel in place of csrgemv. Although the Block KS
algorithm performs extra computation compared to its
non-block variants, this extra work is highly parallel and
the IO savings offset the extra compute.

Analysis of eigenvalues of our sparse matrices reveals
a large gap between successive eigenvalues. Since time
to convergence is inversely correlated with this gap, the
Block KS algorithm converges quickly, to the desired tol-
erance, on our test datasets.

Evaluation. We benchmark both our in-memory and
SSD-based single node implementations of the Block
KS algorithm against single node and distributed imple-
mentations of the Implicitly Restarted Arnoldi Method

(IRAM) algorithm. The single node version is pro-
vided by Spectra [48], a C++ header-only implemen-
tation of ARPACK [35], while the distributed version
(computeSVD) is provided by Apache Spark MLlib li-
brary v2.1. The Spark job was deployed on both a shared
and a dedicated Hadoop cluster through YARN [55] to
workers with 1 core and 8GB memory each and a driver
node with 96GB memory. The shared cluster runs Xeon
E5-2450L processors with 10Gb Ethernet, while the
dedicated cluster uses DS14v2 VM nodes. Other dis-
tributed SVD solvers, such as those provided by ScaLA-
PACK and Spark KeystoneML, do not adequately sup-
port sparse matrices, and are omitted from this compari-
son.

Table 4 compares the time taken to solve for the top
singular values of sparse matrices in Table 2 to a toler-
ance of 10−4 (this is sufficient for the SVD-based topic
modeling algorithm described in Section 5.4). It must be
noted that computeSVD uses double precision floating
point numbers while our algorithm uses single precision.
We solve for 200 singular values on the large data set and
500 on the Medium data set because the Spark solver was
unable to solve for more. Our implementation, on the
other hand, easily scales to thousands of singular values
on a single node.

The flash version of Block KS runs almost as fast
as the in-memory version on datasets with sparsity up
to 10−3; the gap widens as sparsity decreases below
10−4. Further, both Block KS implementations outper-
form Spectra and Spark jobs in time to convergence.
Spark does not see any benefit from adding more work-
ers beyond a point; in fact it becomes slower. These
results demonstrate that our flash-based eigensolver uti-
lizes hardware order(s) of magnitudes more efficiently
than distributed methods.

5.4 SVD-based Topic Modeling
Topic modeling involves the recovery of underlying top-
ics from a text corpus where each document is repre-
sented by the frequency of words that occur in it. Mathe-
matically, the problem posits the existence of a topic ma-
trix M whose columns M.l are probability distributions
over the vocabulary of the corpus. The observed data
is assumed to be generated by (1) picking a matrix W ,
whose columns sum to one and represent linear combina-
tions of topic columns in M , (2) calculating P = MW ,
where the j-th column P.j represents the probability of
words in the document j, and (3) sampling the observed
documentsA.j using a multinomial distribution based on
the p.d.f. P.j . The computational problem is to recover
the underlying topic matrixM , given the observationsA.

ISLE, or Importance Sampling for Learning Edge top-
ics, is a direct adaption of the TSVD algorithm [6] for
recovering topic models [42]. Unlike the LDA class

Dataset Block Krylov-Schur Spectra computeSVD (shared) computeSVD (dedicated)
(#eigenvalues) L32s VM sandbox Number of Spark Executors Number of Spark Executors

in-mem flash in-mem flash 64 128 256 512 64 128 256 512

Medium(500) 76 182 63 95 934 320 275 365 450 460 225 228 226
Large (200) 154∗ 429 – 153 – – – 169 230 236 126 104 164

Table 4: Time, in minutes, to compute eigenvalues. For both Medium and Large datasets, Block KS is run with
block=25. For Medium, nev=500 and ncv=2500 and for Large, nev=200 and ncv=1500. We run Block KS in-memory
on M64-32ms VM as an approximation to L32s VM . Spark MLlib’s computeSVD was timed with 64, 128, 256,
512 workers with 8GB memory on both a shared and a dedicated cluster. The Large dataset needs at least 256 workers
to run on the shared cluster. On stand alone cluster with 64 works, the Large dataset needed 10GB memory per worker.

of algorithms (based on MCMC techniques), ISLE uses
linear-algebraic techniques to provably recover the un-
derlying topic matrix under reasonable assumptions on
the observed data. Empirically, it has been shown to
yield qualitatively better topics on real world data. The
open source implementation [42] is faster than other
single node implementations of any topic modeling al-
gorithms. It takes as input bag-of-words representation
for documents in CSR or CSC format, and does the fol-
lowing steps: (1) threshold to denoise the data, (2) use
SVD to compute a lower dimensional space to project the
documents into, (3) cluster documents using k-means++
initialization and the k-means algorithm in the projected
space, (4) use the resultant clusters to seed clustering in
the original space using the k-means algorithm, and fi-
nally (5) construct the topic model. For large datasets,
sampling techniques can be used to pick a subset of data
for the expensive steps (2), (3), and (4). We adapt ISLE
to use the BLAS-on-flash framework by leveraging our
flash-based Block KS eigensolver and the clustering al-
gorithms built using our framework.

Evaluation. Table 5 compares the running times of
the in-memory version and a flash-based version us-
ing the BLAS-on-flash library. Using this redesigned
pipeline, we were able to train a 5000-topic model with
a DRAM requirement of 1.5TB on both L32s VM and
sandbox machines with only 32GB allocated to Pro-
gram Cache. We note that the number of tokens in this
dataset (about 65 billion) is in the same ballpark as the
number of tokens processed by LDA-based topic mod-
eling algorithms in Parameter Server based systems that
use multiple nodes [37].

On the Medium dataset, where it is possible to run
an in-memory version, notice that the code linked to
BLAS-on-flash achieved about 65−80% in-memory per-
formance using less than 128GB RAM. On the Large
dataset, the flash version run on sandbox is faster than
the in-memory version on M64-32ms VM . We attribute
this to newer hardware on sandbox , and near in-
memory performance of eigensolver and kmeans kernels
written with BLAS-on-flash .

Dataset Sample
Rate

sandbox L32s VM
(# Topics) in-mem flash in-mem flash

Small(1K) 1.0 15 27 18 37
Medium(1K) 0.1 46 66 63 72
Medium(2K) 0.1 119 144 158 212

Large(1K) 0.1 – 149 163* 172
Large(2K) 0.1 – 228 285* 279
Large(5K) 0.1 – 522 980* 664
Large(2K) 0.4 – 532 684* 869

Table 5: Running time of the ISLE algorithm in minutes.
*We use M64-32ms VM as an approximation to L32s
VM for the Large dataset.

5.5 Extreme Multi-Label Learning
Extreme multi-label learning (XML) addresses the prob-
lem of automatically annotating a data point with the
most relevant subset of labels from an extremely large
label set. It has many applications in tagging, ranking
and recommendation. Many popular XML algorithms
use tree based methods due to their low training and pre-
diction complexity. In this subsection, we present exper-
iments with two such algorithms that use ensembles of
trees: PfastreXML [29] and Parabel [46].

In a current deployment, both algorithms train an en-
semble of trees (50 trees for PfastreXML, 3 for Parabel)
using 40 million data points, each of which is a sparse
vector in 4.5M dimensions. Once trained, each tree in the
ensemble predicts label probabilities for 250M test data
points. Both training and inference are difficult to scale –
training requires weeks on a machine with few terabytes
of RAM, and inference currently requires dozens of ma-
chines. As XML algorithms are applied to larger prob-
lems (e.g. web search), they need to scale to datasets with
billions of points and hundreds of millions of labels, and
train trees that are hundreds of gigabytes in size.

Because of the memory limitations of the platforms on
which these algorithms are deployed, orchestrating data
and models out of SSDs becomes critical. We demon-
strate the capabilities of our library in such cases. We
focus on inference since it is run more frequently than
training. Similar techniques can be applied for training.

Algorithm 1 PfastreXML Inference
1: function CLASSIFY(N , v)
2: if N is leaf then
3: return N.prob
4: else
5: if 〈N.w, v〉+N.b > 0 then
6: return CLASSIFY(N.right, v)
7: else
8: return CLASSIFY(N.left, v)

Algorithm 2 Parabel Inference
1: function SCORE(T , v, α, k)
2: L← [(T, 0.0)]
3: for each level in T from root to leaves do
4: L′ ← []
5: for (N, s) in L do
6: sl ← 〈N.wl, v〉+N.bl
7: sr ← 〈N.wr, v〉+N.br
8: sl ← α · s−max(0, 1− sl)2
9: sr ← α · s−max(0, 1− sr)2

10: Append [(N.left, sl), (N.right, sr)] to L′

11: L← topk(L
′, k)

return L

PfastreXML: During training, trees are grown by re-
cursively partitioning nodes starting at the root until each
tree is fully grown. A node N is split by learning a hy-
perplane N.w and bias N.b to partition training points
between its left and right children, N.left and N.right.
Node partitioning terminates when a node contains fewer
points than a threshold. Leaf nodes contain a probability
distribution over the label set (N.prob). During infer-
ence, a tree with root R assigns the probability vector
over labels for a point v dictated by CLASSIFY(R, v).

Parabel: During training, a tree T is grown by recur-
sively partitioning its nodes to distribute the labels. La-
bels assigned to a node N are partitioned in equal num-
bers to its two children, N.left and N.right. A node
N containing fewer labels than a threshold is split into
multiple leaf nodes with one label per leaf node. Each
tree node N contains two probabilistic linear classifiers,
with weights and biases (N.wl, N.bl) and (N.wr, N.br),
that decide whether the data point has relevant labels in
its left and right subtrees. These classifiers are trained
to maximize the a-posteriori probability distribution over
the training data. The Parabel inference algorithm is de-
scribed in Algorithm 2. α is a discount factor and k is
the beam width for beam search on tree T . topk(L, k)
returns the top k entries in list L, ordered by their scores
in descending order. Given a point, v, and the root node,
R, likely labels and their associated scores for v are con-
tained in the return value of SCORE(R, v, α, k).

The inference code downloaded for both algorithms
from the XML repository [8] is single-threaded and

takes about 440 hours and 900 hours for PfastreXML and
Parabel inference, respectively, on Azure D14v2 nodes
with 112GB RAM and 16 cores. The orchestration re-
quired to complete the inference in under two days is
complex and increases the likelihood of failures.

PfastreXML inference involves a depth-first traversal
of a non-balanced binary tree while Parabel inference
requires breadth-first beam search on a balanced binary
tree. In both cases, we noticed that the baseline code was
inefficient and modified the code to take a batch of test
data points (about 2-4 million per batch) and perform a
level-by-level, or breadth-first, traversal of the tree. With
this transformation, the new inference code was about
6× faster on nodes with a large amount of RAM. We
think this is close to the limit of how fast this inference
can run with DDR3 memory.

We use the BLAS-on-flash library to orchestrate the
level-by-level traversal of each tree for a batch of points.
For both algorithms, we construct one task for each
(level, batch) pair. For PfastreXML inference,
the DAG is data-dependent, while for Parabel, it is de-
pendent only on the tree height. Since inference is
data parallel, BLAS-on-flash can run tasks correspond-
ing to multiple batches concurrently. It also orders the
prefetches of tree levels and data to maximize re-use.

Evaluation. We compare the in-memory and BLAS-
on-flash variants of the inference code on models in two
regimes – Medium and Large. The Medium-sized mod-
els consist of 20GB trees containing about 25 million
nodes each, while the Large Parabel model consists of
122GB trees. The Medium-sized models fit in the mem-
ory of the largest machines used in the inference plat-
form, while the Large-sized model does not fit in the
memory of any machine in the platform. We use a to-
tal of 50 trees for PfastreXML and 3 for Parabel infer-
ence. Our test data consists of 250 million points, each a
sparse vector in 4.3M dimensions and taking up 500GB
of storage when stored in a compressed sparse format.

We benchmark both inference algorithms on z840 ,
L32s VM , and sandbox and use 221 points/batch
for z840 and 222 points/batch for L32s VM and
sandbox . The size of Program Cache for BLAS-
on-flash is set at 20GB for z840 and 40GB for L32s
VM and sandbox . We use 32 compute threads on
z840 and L32s VM and 64 threads on sandbox .

Table 6 presents the running times and memory re-
quirements of our code on the Medium and Large-sized
models. Inference code written with BLAS-on-flash runs
at over 90% of in-memory speed using only a third of the
required memory. The memory requirement can be fur-
ther reduced by decreasing the test batch size or by split-
ting each (level, batch) task into multiple tasks in
an accumulate chain. This reduction in working set, with
practically no impact on performance, critically enables

PfastreXML (50 trees) Parabel (3 trees)
in-mem flash in-mem flash

sandbox 45 (155) 51.0 (42) 27.3 (125) 25.3 (47.6)
L32s VM 69.2 (149) 67.0 (42) 44.3 (123) 45.8 (48)

z840 – 118 (26.2) – 71.5 (30.5)

Time (hours) RAM (GB)
in-mem flash in-mem flash

sandbox 51.7 57.0 241.3 80.1
L32s VM 108.4 118.2 235.5 80.9

Table 6: Running time in hours and peak DRAM usage in GB (inside parenthesis) for XML inference on 250 × 106

data points using an ensemble of medium-sized trees (left) and large Parabel trees (right). We used 64 threads on
sandbox and 32 threads on L32s VM and z840 . Inference with large Parabel tree uses 70GB Program Cache.

us to execute inference on larger models, that can provide
greater accuracy for ranking and relevance tasks.

6 Conclusion
We have demonstrated that (a) dense and sparse linear al-
gebra kernels can be designed to run at near in-memory
speeds on large SSD-resident datasets, (b) memory-
intensive algorithms built using the library can match
in-memory implementations, and (c) for complex nu-
merical algorithms like eigensolvers, careful co-design
of algorithm and software stack can offer large gains in
hardware utilization and keep the costs of data analytics
pipelines low.

Our results suggest that operating on data stored in
fast non-volatile memory on a single node could pro-
vide an efficient alternative to distributed big-data sys-
tems for training and inference of industrial scale ma-
chine learning models for algorithms with large memory
requirements. We do not make such claims about com-
putationally intensive workloads such as training CNNs
using GPUs. Further, our library provides a higher value
proposition for the large quantity of NVM storage al-
ready deployed as storage in data centers. Our library
can also be adapted to support GPU and other PCIe stor-
age devices like Optane with minor changes.

7 Other Related Work
Recent work [7, 12, 13] has studied parallel and se-
quential external memory algorithms in the setting where
writes to non-volatile memories are much more expen-
sive than reads. They conclude that for kernels like sort-
ing and FFTs, decreasing writes to non-volatile external
memory is possible at the price of more reads. However,
this is not the case in the case of linear algebra. Simple
reordering of the matrix tiles on which the in-memory
computation is performed can achieve asymptotic reduc-
tion in the amount of writes for gemm and csrmm calls
without increase in reads. We use this observation exten-
sively in our work.

FlashEigen [65] implements the Block KS eigensolver
for large-scale graph analysis using a custom filesys-
tem on an array of SSDs. While FlashEigen supports
only a limited set of matrix operations, our library al-
lows execution of user-defined computation graphs on

user-defined data structures. Our library uses separate
IO threads to effectively pipeline IO with computation
resulting in a narrow-gap with in-memory performance,
while FlashEigen worker threads perform IO and then
computation on matrix blocks assigned to them.

Partitioned Global Address Space systems such as
FaRM [19] and UPC [15, 21, 31, 66] that present an uni-
fied view of the entire memory available in a distributed
system present an alternative for programs considered
here to scale to larger data and model sizes. However,
the network bandwidth available presents a barrier to the
scalability of sparse kernels just as in the case of Spark.
Further, with careful co-design, we feel that a large range
of workloads (of up to a few terabytes in size) can be
processed on a single node without the cost overhead of
a cluster of RDMA-enabled nodes. Scaling our library to
such systems remains future work.

The problem of smart buffer-cache management for
SSDs and other non-volatile memories has been studied
in the database community. For example, Ma et al. [38]
evaluate design choices such as paging policies that arise
when one tries to extend in-memory database to hard-
drives, SSDs, 3D XPoint, etc. LeanStore [36] proposes
a new storage management system to extend in-memory
databases to SSDs with little overhead. In contrast, our
library relies on a task scheduler designed to better utilize
the buffer-cache for access patterns that typically arise in
linear algebra.

While our system uses existing processing and mem-
ory hardware, new hardware and accelerators that move
computation to the memory have been proposed. For ex-
ample, [1] proposes how expensive access patterns such
as shuffle, transpose, pack/unpack might be performed in
accelerator co-located with DRAM, and analyzes poten-
tial energy gains for math kernels from such accelerators.
Further, systems that proposes moving entire workloads
to memory systems have been proposed [23, 51, 57].

8 Acknowledgments
The authors would like to thank Anirudh Badam, Ravi
Kannan, Muthian Sivathanu, and Manik Varma for their
useful comments and advice.

References
[1] AKIN, B., FRANCHETTI, F., AND HOE, J. C. Data reorganiza-

tion in memory using 3D-stacked DRAM. In Proceedings of the
42nd Annual International Symposium on Computer Architecture
(2015), ISCA ’15, ACM, pp. 131–143.

[2] AMD. RadeonTM Pro SSG. https://pro.radeon.com/
en/product/pro-series/radeon-pro-ssg/, 2018.

[3] ANANDTECH. Mixed Random Read/Write Per-
formance - Samsung 960 EVO (1TB) Review.
https://www.anandtech.com/show/10833/
the-samsung-960-evo-1tb-review/8, 2016.

[4] ARULRAJ, J., AND PAVLO, A. How to Build a Non-Volatile
Memory Database Management System. In Proceedings of the
2017 ACM International Conference on Management of Data
(2017), SIGMOD ’17, ACM, pp. 1753–1758.

[5] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O.
Minimizing Communication in Linear Algebra. SIAM Journal on
Matrix Analysis and Applications 32, 3 (2011), 866–901.

[6] BANSAL, T., BHATTACHARYYA, C., AND KANNAN, R. A prov-
able SVD-based algorithm for learning topics in dominant ad-
mixture corpus. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems - Volume 2
(Cambridge, MA, USA, 2014), NIPS’14, MIT Press, pp. 1997–
2005.

[7] BEN-DAVID, N., BLELLOCH, G. E., FINEMAN, J. T., GIB-
BONS, P. B., GU, Y., MCGUFFEY, C., AND SHUN, J. Parallel
Algorithms for Asymmetric Read-Write Costs. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (2016), SPAA ’16, ACM, pp. 145–156.

[8] BHATIA, K., DAHIYA, K., JAIN, H., PRABHU, Y., AND
VARMA, M. The extreme classification repository: Multi-
label datasets and code. http://manikvarma.org/
downloads/XC/XMLRepository.html.

[9] BILENKO, M., FINLEY, T., KATZENBERGER, S., KOCHMAN,
S., MAHAJAN, D., NARAYANAMURTHY, S., WANG, J., WANG,
S., AND WEIMER, M. Salmon: Towards Production-Grade,
Platform-Independent Distributed ML. In The ML Systems Work-
shop at ICML (2016).

[10] BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I.,
HAMMARLING, S., HENRY, G., HEROUX, M., KAUFMAN, L.,
LUMSDAINE, A., PETIET, A., POZO, R., REMINGTON, K.,
AND WHALEY, R. C. An Updated Set of Basic Linear Alge-
bra Subprograms (BLAS). ACM Trans. Math. Softw. 28, 2 (June
2002), 135–151.

[11] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993–1022.

[12] BLELLOCH, G. E., FINEMAN, J. T., GIBBONS, P. B., GU, Y.,
AND SHUN, J. Sorting with Asymmetric Read and Write Costs.
In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (2015), SPAA ’15, ACM, pp. 1–12.

[13] CARSON, E., DEMMEL, J., GRIGORI, L., KNIGHT, N.,
KOANANTAKOOL, P., SCHWARTZ, O., AND SIMHADRI, H. V.
Write-Avoiding Algorithms. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS) (May 2016),
pp. 648–658.

[14] CHEN, J., LI, K., ZHU, J., AND CHEN, W. WarpLDA: a Cache
Efficient O(1) Algorithm for Latent Dirichlet Allocation. Proc.
VLDB Endow. 9, 10 (June 2016), 744–755.

[15] CHEN, W.-Y., BONACHEA, D., DUELL, J., HUSBANDS, P.,
IANCU, C., AND YELICK, K. A Performance Analysis of the
Berkeley UPC Compiler. In Proceedings of the 17th Annual
International Conference on Supercomputing (2003), ICS ’03,
ACM, pp. 63–73.

[16] DHULIPALA, L., BLELLOCH, G., AND SHUN, J. Julienne: A
Framework for Parallel Graph Algorithms using Work-efficient
Bucketing. In Proceedings of the 29th ACM Symposium on Paral-
lelism in Algorithms and Architectures (2017), SPAA ’17, ACM,
pp. 293–304.

[17] DINH, D., SIMHADRI, H. V., AND TANG, Y. Extending the
Nested Parallel Model to the Nested Dataflow Model with Prov-
ably Efficient Schedulers. In Proceedings of the 28th ACM Sym-
posium on Parallelism in Algorithms and Architectures (2016),
SPAA ’16, ACM, pp. 49–60.

[18] DMTK. Multiverso: Parameter Server for Distributed Ma-
chine Learning. https://github.com/Microsoft/
Multiverso, 2015.

[19] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. FaRM: Fast Remote Memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
2014) (April 2014).

[20] DUFF, I. S., HEROUX, M. A., AND POZO, R. An Overview of
the Sparse Basic Linear Algebra Subprograms: The New Stan-
dard from the BLAS Technical Forum. ACM Trans. Math. Softw.
28, 2 (June 2002), 239–267.

[21] EL-GHAZAWI, T., AND SMITH, L. UPC: Unified Parallel C. In
Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (2006), SC ’06, ACM.

[22] GITTENS, A., DEVARAKONDA, A., RACAH, E., RINGEN-
BURG, M., GERHARDT, L., KOTTALAM, J., LIU, J.,
MASCHHOFF, K., CANON, S., CHHUGANI, J., SHARMA, P.,
YANG, J., DEMMEL, J., HARRELL, J., KRISHNAMURTHY, V.,
MAHONEY, M. W., AND PRABHAT. Matrix Factorizations at
Scale: a Comparison of Scientific Data Analytics in Spark and
C+MPI Using Three Case Studies. ArXiv e-prints (July 2016).

[23] GUO, Q., GUO, X., BAI, Y., AND İPEK, E. A Resistive TCAM
Accelerator for Data-Intensive Computing. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microar-
chitecture (2011), MICRO-44, ACM, pp. 339–350.

[24] INTEL. Storage Performance Development Kit (SPDK), 2016.

[25] INTEL R©. OptaneTM memory. https:
//www.intel.com/content/www/us/en/
architecture-and-technology/optane-memory.
html, 2017.

[26] INTEL R©. Math Kernel Library. https://software.
intel.com/en-us/mkl, 2018.

[27] INTEL R©. Math Kernel Library Sparse BLAS level 2
and 3 routines. https://software.intel.com/
en-us/mkl-developer-reference-c-sparse-\
blas-level-2-and-level-3-routines, 2018.

[28] IRONY, D., TOLEDO, S., AND TISKIN, A. Communication
lower bounds for distributed-memory matrix multiplication. J.
Parallel Distrib. Comput. 64, 9 (Sept. 2004), 1017–1026.

[29] JAIN, H., PRABHU, Y., AND VARMA, M. Extreme Multi-
label Loss Functions for Recommendation, Tagging, Ranking and
Other Missing Label Applications. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining
(August 2016).

[30] JIA-WEI, H., AND KUNG, H. T. I/O Complexity: The Red-
Blue Pebble Game. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing (1981), STOC ’81, ACM,
pp. 326–333.

[31] KAMIL, A., ZHENG, Y., AND YELICK, K. A local-view array li-
brary for partitioned global address space C++ programs. In Pro-
ceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (2014), AR-
RAY’14, ACM, pp. 26:26–26:31.

[32] KANNAN, R., VEMPALA, S., AND VETTA, A. On Clusterings:
Good, Bad and Spectral. J. ACM 51, 3 (May 2004), 497–515.

[33] KUMAR, A., SINDHWANI, V., AND KAMBADUR, P. Fast Coni-
cal Hull Algorithms for Near-separable Non-negative Matrix Fac-
torization. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28
(2013), ICML’13, JMLR.org, pp. I–231–I–239.

[34] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi:
Large-Scale Graph Computation on Just a PC. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 31–46.

[35] LEHOUCQ, R., MASCHHOFF, K., SORENSEN, D., AND YANG,
C. ARPACK Software. http://www.caam.rice.edu/
software/ARPACK/, 2009.

[36] LEIS, V., HAUBENSCHILD, M., KEMPER, A., AND NEUMANN,
T. LeanStore: In-Memory Data Management Beyond Main
Memory. In Proceedings of the 34th IEEE International Con-
ference on Data Engineering (2018).

[37] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND
SU, B.-Y. Scaling Distributed Machine Learning with the Param-
eter Server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (Berkeley, CA,
USA, 2014), OSDI’14, USENIX Association, pp. 583–598.

[38] MA, L., ARULRAJ, J., ZHAO, S., PAVLO, A., DULLOOR, S. R.,
GIARDINO, M. J., PARKHURST, J., GARDNER, J. L., DOSHI,
K., AND ZDONIK, S. Larger-than-Memory Data Management
on Modern Storage Hardware for In-Memory OLTP Database
Systems. In Proceedings of the 12th International Workshop on
Data Management on New Hardware (2016), DaMoN ’16, ACM,
pp. 9:1–9:7.

[39] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
But at what COST? In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems (Berkeley, CA, USA,
2015), HOTOS’15, USENIX Association, pp. 14–14.

[40] MENG, X., BRADLEY, J., YAVUZ, B., SPARKS, E.,
VENKATARAMAN, S., LIU, D., FREEMAN, J., TSAI, D.,
AMDE, M., OWEN, S., XIN, D., XIN, R., FRANKLIN, M. J.,
ZADEH, R., ZAHARIA, M., AND TALWALKAR, A. MLlib: Ma-
chine Learning in Apache Spark. J. Mach. Learn. Res. 17, 1 (Jan.
2016), 1235–1241.

[41] MICRONSSD. UNVMe - A User Space NVMe Driver, 2016.
https://github.com/MicronSSD/unvme.

[42] MICROSOFT. ISLE: Importance sampling-based algorithms
for large scale topic modeling. https://github.com/
Microsoft/ISLE, 2018.

[43] NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K.
Scalable Parallel Programming with CUDA. Queue 6, 2 (Mar.
2008), 40–53.

[44] NVIDIA. cuSPARSE library. http://docs.nvidia.com/
cuda/cusparse/index.html, 2017.

[45] PCI-SIG. PCI Express Base Specification Revision 4.0, Version
1.0. https://members.pcisig.com/wg/PCI-SIG/
document/10912?downloadRevision=active, Octo-
ber 2017.

[46] PRABHU, Y., KAG, A., HARSOLA, S., AGRAWAL, R., AND
VARMA, M. Parabel: Partitioned Label Trees for Extreme Classi-
fication with Application to Dynamic Search Advertising. In Pro-
ceedings of the International World Wide Web Conference (April
2018).

[47] PRABHU, Y., AND VARMA, M. FastXML: A Fast, Accurate and
Stable Tree-classifier for eXtreme Multi-label Learning. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014), KDD ’14, ACM,
pp. 263–272.

[48] QIU, Y. Spectra - Sparse Eigenvalue Computation Toolkit as a
Redesigned ARPACK, 2015. https://spectralib.org.

[49] ROCKLIN, M. Dask: Parallel computation with blocked algo-
rithms and task scheduling. In Proceedings of the 14th Python in
Science Conference (2015), pp. 130–136.

[50] SCALEMPTM . vSMP Foundation Flash Expansion. http://
www.scalemp.com/products/flx/, 2018.

[51] SHAFIEE, A., NAG, A., MURALIMANOHAR, N., BALASUBRA-
MONIAN, R., STRACHAN, J. P., HU, M., WILLIAMS, R. S.,
AND SRIKUMAR, V. ISAAC: A Convolutional Neural Network
Accelerator with In-situ Analog Arithmetic in Crossbars. In Pro-
ceedings of the 43rd International Symposium on Computer Ar-
chitecture (Piscataway, NJ, USA, 2016), ISCA ’16, IEEE Press,
pp. 14–26.

[52] SHUN, J., AND BLELLOCH, G. E. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings of
the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2013), PPoPP ’13, ACM, pp. 135–146.

[53] SHUN, J., ROOSTA-KHORASANI, F., FOUNTOULAKIS, K.,
AND MAHONEY, M. W. Parallel Local Graph Clustering. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 1041–1052.

[54] SORENSEN, D. C. Implicit Application of Polynomial Filters in
a k-Step Arnoldi Method. SIAM Journal on Matrix Analysis and
Applications 13, 1 (1992), 357–385.

[55] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th annual Sym-
posium on Cloud Computing (2013), ACM, p. 5.

[56] VITTER, J. S. External Memory Algorithms and Data Structures:
Dealing with MASSIVE Data. ACM Comput. Surv. 33, 2 (June
2001), 209–271.

[57] WANG, K., ANGSTADT, K., BO, C., BRUNELLE, N., SADRE-
DINI, E., TRACY, II, T., WADDEN, J., STAN, M., AND
SKADRON, K. An Overview of Micron’s Automata Processor. In
Proceedings of the Eleventh IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis
(2016), CODES ’16, ACM, pp. 14:1–14:3.

[58] WEIMER, M., CHEN, Y., CHUN, B.-G., CONDIE, T., CURINO,
C., DOUGLAS, C., LEE, Y., MAJESTRO, T., MALKHI, D.,
MATUSEVYCH, S., ET AL. REEF: Retainable Evaluator Exe-
cution Framework. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015), ACM,
pp. 1343–1355.

[59] XIANYI, Z. OpenBLAS. http://www.openblas.net/,
2017.

[60] XING, E. P., HO, Q., DAI, W., KIM, J.-K., WEI, J., LEE, S.,
ZHENG, X., XIE, P., KUMAR, A., AND YU, Y. Petuum: A New
Platform for Distributed Machine Learning on Big Data. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2015), KDD ’15, ACM,
pp. 1335–1344.

[61] YUAN, J., GAO, F., HO, Q., DAI, W., WEI, J., ZHENG, X.,
XING, E. P., LIU, T.-Y., AND MA, W.-Y. LightLDA: Big Topic
Models on Modest Computer Clusters. In Proceedings of the
24th International Conference on World Wide Web (Republic and
Canton of Geneva, Switzerland, 2015), WWW ’15, International
World Wide Web Conferences Steering Committee, pp. 1351–
1361.

[62] YUT, L., ZHANG, C., SHAO, Y., AND CUI, B. LDA*: A robust
and large-scale topic modeling system. Proc. VLDB Endow. 10,
11 (Aug. 2017), 1406–1417.

[63] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULY, M., FRANKLIN, M. J., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12) (San Jose, CA, 2012), USENIX, pp. 15–28.

[64] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARM-
BRUST, M., DAVE, A., MENG, X., ROSEN, J., VENKATARA-
MAN, S., FRANKLIN, M. J., GHODSI, A., GONZALEZ, J.,
SHENKER, S., AND STOICA, I. Apache spark: A unified en-
gine for big data processing. Commun. ACM 59, 11 (Oct. 2016),
56–65.

[65] ZHENG, D., BURNS, R., VOGELSTEIN, J., PRIEBE, C. E., AND
SZALAY, A. S. An SSD-based eigensolver for spectral analysis
on billion-node graphs. arXiv preprint arXiv:1602.01421 (2016).

[66] ZHENG, Y., KAMIL, A., DRISCOLL, M. B., SHAN, H., AND
YELICK, K. UPC++: A PGAS extension for C++. In Proceed-
ings of the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium (Washington, DC, USA, 2014), IPDPS
’14, IEEE Computer Society, pp. 1105–1114.

[67] ZHOU, Y., AND SAAD, Y. Block Krylov–Schur method for large
symmetric eigenvalue problems. Numerical Algorithms 47, 4
(Apr 2008), 341–359.

