
The Bounds of Faulty Components on Consensus 

with Dual Failure Modes 

 
Kuo-Qin Yan1      Shu-Ching Wang2 

 
1Department of Business Administration, 2Department of Information Management, 

Chaoyang University of Technology 
Email: scwang@mail.cyut.edu.tw 

 

Abstract 

The consensus is an important topic in the reliable distributed system because the system can cope with the influences from 

faulty components when the agreement is achieved. Siu, Chin and Yang have indicated that the bound on the number of allowable 

faulty processors in Meyer and Pradhan’s scheme is an overestimated one, and they have given a new fixed bound to the 

allowable faulty processors. However, we find out that the new bound for the allowable faulty processors by Siu et al. still seems 

to give the scheme too much credit. In this study, we shall give a more accurate estimation to the bound of the allowable faulty 

processors. 

Keywords: Consensus, Distributed System, Fault Tolerance, Dual Failure Mode, Interconnection Networks. 

 

1. INTRODUCTION 
In order to ensure the reliability of the fault-tolerant distributed system, reaching a common 

agreement at the presence of malfunctioning components is the central issue. Such an agreement problem 
was first studied by Lamport [1], who named it the Byzantine Agreement (BA). In the BA problem, there 
is a transmitter that transmits the messages at the first round. After the message exchange, each healthy 
processor should agree on the same value. The BA problem in the distributed system and the assumptions 
of the BA problem by brought up Lamport [1] are as follows: 

 

Lamport 1. There are n processors in a distributed system, where n is a constant. 
Lamport 2. The processors communicate with each other through reliable fully connected network. 
Lamport 3. One or more of the processors may be failed, so a faulty processor may transmit 

incorrect messages to other processors. 



 
 

Lamport 4. The number of the arbitrary faulty processors m is less than one-third of the total 
number of processors in the network (n > 3m). 

Lamport 5. After message exchange, all fault-free processors can reach a common agreement. 
 

The symptoms of processor failure can be classified into three categories [2]. They are crashes, 
omissions, and arbitrary faults. A crash fault happens when a processor is broken; an omission fault takes 
place when a processor fails to transmit or receive a message on time or at all; finally, the third kind of 
processor failure, the thorniest kind of all, is called the arbitrary fault. The behavior of an arbitrarily faulty 
processor is unpredictable and thus called malicious. Fault-free processors can detect both crash faults 
and omission faults, so we can call both kinds by still another name “dormant faults.” However, it is not 
so easy to locate arbitrarily faulty processors. 

Due to the facts that different symptoms of processor failure exist and that many practical, popularly 
used network systems are not of the fully connected type, Meyer et al. [2] revisited the BA problem under 
quite different assumptions from Lamport’s. Meyer et al. [2] raised the assumptions as follows. 

 

Meyer 1. There are n processors in a distributed system, where n is a constant. 
Meyer 2. All the processors communicate with each other through the network, which is not 

completely connected. 

Meyer 3. One or more of the processors may be failed, and a faulty processor may transmit incorrect 
messages to other processors, and the failure types of the faulty processors can be either 
arbitrary or dormant. Fault-free processors can detect the dormant faulty processors. 

Meyer 4. The constraint on the number of arbitrary faulty processors m and dormant faulty 
processors b is “n > 3m+b” and “c > 2m+b,” where c is the connectivity of the network. 

Meyer 5. After message exchange, all fault-free processors can reach a common agreement. 
 

Siu, Chin and Yang [4] have indicated that the bound on the number of allowable faulty processors in 
Meyer and Pradhan’s scheme [2] is an overestimated one, and they have given a new fixed bound to the 
allowable faulty processors. However, we find out that the new bound for the allowable faulty processors 
by Siu et al. [4] still seems to give the scheme too much credit. In this study, we shall give a more 
accurate estimation to the bound of the allowable faulty processors. 

However, Siu et al. [4] indicated that the bound on the number of allowable faulty processors in the 
scheme proposed by Meyer et al. [2] was overestimated (the assumption Meyer 4). They argued that the 

correct bound on the number of allowable faulty processors should be n> (n-1)/3+2m+b. 
 



 
 

Nevertheless, we find that the constraint n>(n-1)/3+2m+b brought up by Siu et al. [4] is also an 
overestimation in some special situations. Therefore, in this study, we shall give an additional constraint 
to the bound on the number of allowable faulty processors to make the estimation more credible. 

The rest of this paper is organized as follows. Section 2 gives the problem with the bound on the 
number of faulty processors allowed. Finally, Section 3 shows the application domains of various bounds 
and gives the conclusion. 

 
2. THE PROBLEM WITH THE BOUND ON THE NUMBER OF FAULTY PROCESSORS 

ALLOWED 
The problem with the figure brought up by Siu et al. [4] is that the bound on the number of allowable 

faulty processors is overestimated. The constraint on the connectivity, c>2m+b, is indeed a necessary 
condition for reaching an agreement under dual failure modes. That is, the constraint on the connectivity 

is correct. However, the constraint on the number of processors required, n>(n-1)/3+2m+b, is 
overestimated. The following example will demonstrate our point:  

In Figure 1, there is a fully connected network system with six processors, and the connectivity is 
five. Suppose that processors Ps and P1 are subject to arbitrary faults. That is, we have n=6, c=5, m=2, and 

b=0 in this case. According to the constraints on the failures, namely n> (n-1)/3+2m+b, c>2m+b, the 
bound holds, because 6>1+4+0 and 5>4+0; however, the fault-free processors P2, P3, P4, and P5 cannot 
reach an agreement when the BA algorithm [5] is applied. 

 

 

Figure 1. An example network 

 
Figure 2 explains why the results are inaccurate as follows. In order to reach a common agreement, 

the first step to execute in the BA algorithm [5] is to calculate the number of rounds of message exchange. 

The number of rounds of message exchange for executing the BA algorithm [5] is  (n-1)/3 + 1. That is, 
if we want to reach a common agreement in the network shown in Figure 1, we need two rounds of 
message exchange.  



 
 

In the first round, the source processor Ps broadcasts its initial value to all the other n-1 processors. 
Since the source processor is an arbitrary faulty processor, it can broadcast different values to different 
processors. Figure 2 (a) shows that the message is sent by the source processor. Figure 2(b) shows the 
messages received by all the fault-free processors in the 1st round. In the second round, each processor 
broadcasts the message it received in the first round to all the other processors, and then each processor 
receives messages from other processors as Figure 2(c) shows. After the majority voting in Figure 2(d), 
we can find that the agreement among all the fault-free processors is not reached; in other words, each 
fault-free processor’s agreement value is not the same. The reason for that is the overestimated bound on 
the number of arbitrary faulty processors. 

Siu et al. [4] have indicated that the number “n >  (n -1)/3 + 2 m + b” is the maximum when the 
network has dormant faulty processors only or arbitrary faulty processors only, or when the network has 

both dormant faulty processors and arbitrary faulty processors. However, we find that the bound n >  (n 
-1)/3 + 2 m + b is an overestimation when (n mod 3)= 0 and b=0. Lamport et al. [1] have indicated that 
the bound n>3m is the maximum when the network only has arbitrary faulty processors, the detail proof 
is in Pease et al. [3]. That is, if the network has only arbitrary faulty processors while the total number of 
processors in the network n mode three equals zero, then the bound offered by Siu et al. [4] is 
overestimated. 

In this study, we shall also give our estimation as to the bound. At the same time, we shall bring in 
another constraint: If (n mod 3)=0 and b=0, then the bound would be n>3m; otherwise, the bound would 

be n > (n-1)/3+2m+b. Table 1 gives the examples as to the number of faulty processors allowed under 
the bound by Siu et al. [4] and the correct bound by our estimation. 

 

3. Conclusion 
Table 2 shows the application domains of various bounds by Lamport et al. [1], Siu et al. [4] and us. 

The bound (n > 3 m) by Lamport [1] is applicable when the network has only arbitrary faulty processors, 
so it is not applicable when the network has dormant faulty processors or when the network is in the dual 

failure mode (has both dormant faulty processors and arbitrary faulty processors). The bound (n >  (n 
-1)/3 + 2 m + b) by Siu et al. [4] is applicable when the network has only dormant faulty processors or 
when the network is in the dual failure mode; it is not applicable when the network has only arbitrary 
faulty processors, for the bound would be overestimated when (n mod 3)= 0 and b=0. Our improved 
bound is the optimal bound for the case where the network has arbitrary faulty processors only as well as 
the case where the network has dormant faulty processors, and the case where the network has both 
arbitrary faulty processors and dormant faulty processors. 

 



 
 

 

 

 
 level1 

root 
fault-free processor P2 1 
fault-free processor P3 1 
fault-free processor P4 0 
fault-free processor P5 0 

(mg-tree)  

(a) The message is sent by the source 
processor 

(b) The messages received by each 
fault-free processor in the 1st round 

 
 

 

s  0 s1 0  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

 
 

 

s  0 s1 1  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

 The messages received by fault-free 
processor P2 in the 2nd round 

The messages received by fault-free 
processor P3 in the 2nd round 

 
  

s  0 s1 1  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

  

s  0 s1 0  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

The messages received by fault-free 
processor P4 in the 2nd round 

The messages received by fault-free 
processor P5 in the 2nd round 

(c) The messages received by each fault-free processor in the 2nd round 

Figure 2. The step-by-step execution of the Byzantine Agreement algorithm 

 with n >  (n -1)/3 + 2 m + b, where n=6, m=2,b=0 

level 1 
root 

level 2 level 1 
root 

level 2 

level 1 
root 

level 2 level 1 
root 

level 2 



 
 

 
 

 

majority voting 

  

s  0 s1 0  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

majority voting 

  

s  1 s1 1  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

The agreement value of processor P2 is 0 The agreement value of processorP3 is 1 
  
  

majority voting 

  

s  1 s1 1  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

majority voting 

  

s  0 s1 0  from P1 
 s2 0  from P2 
 s3 0  from P3 
 s4 1  from P4 
 s5 1  from P5 

The agreement value of processorP4 is 1 The agreement value of processorP5 is 0 
  

(d) After majority voting 

Figure 2. The step-by-step execution of the Byzantine Agreement algorithm 

 with n >  (n -1)/3 + 2 m + b, where n=6, m=2,b=0 
 
 

 
 



 
 

 

Table 1. Examples of the number of faulty processors allowed under the bound by Siu et al. 
and the correct bound by our estimation 

 

 The original bund by Siu et al. Corrected bound by our estimation 

 n >  (n -1)/3 + 2 m + b 
if (n mod 3)= 0 and b=0 then n > 3 m else 

n >  (n -1)/3 + 2 m + b 

n m b m b 

6 2* 
1 

0 
2 

1 
1 

0 
2 

7 2 
1 

0 
2 

2 
1 

0 
2 

8 2 
1 

1 
3 

2 
1 

1 
3 

9 3* 
2 
1 

0 
2 
4 

2 
2 
1 

0 
2 
4 

10 3 
2 
1 

0 
2 
4 

3 
2 
1 

0 
2 
4 

11 3 
2 
1 

1 
3 
5 

3 
2 
1 

1 
3 
5 

12 4* 
3 
2 
1 

0 
2 
4 
6 

3 
3 
2 
1 

0 
2 
4 
6 

*Exceeds the tolerable bound 



 
 

 
 

Table 2. The application domains of various bounds 
 

Bounds 
Arbitrary fault 

only 
Dormant fault 

only 
Dual failure 

mode 

Lamport et al. [1] 
(n > 3 m) 

V   

Siu et al. [4] 

(n > (n -1)/3 + 2 m + b) 
 V V 

Our improvement 
if (n mod 3)= 0 and b=0 then n>3m

else n> (n-1)/3+2m+b) 

V V V 

 
 

REFERENCES 
[1]  L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Transactions on 

Programming Languages and Systems, 4(3), 1982, pp. 382-401. 
[2]  F.J. Meyer and D.K. Pradhan, “Consensus with Dual Failure Modes,” IEEE Transactions on 

Parallel and Distributed Systems, 2(2), 1991, pp. 214-222. 
[3]  M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,” Journal of 

ACM, 27(2), 1980, pp. 228-234. 
[4]  H.S. Siu, Y.H. Chin, and W.P. Yang, “A Note on Consensus on Dual Failure Modes,” IEEE 

Transactions on Parallel and Distributed System, 7(3), 1996, pp. 225-230. 
[5]  H.S. Siu, Y.H. Chin, W.P. Yang, “Byzantine Agreement in the Presence of Mixed Faults on 

Processors and Links,” IEEE Transactions on Parallel and Distributed Systems, 9(4), 1998, pp. 
980-986. 

 


