
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

1-2006

Topologies of agents interactions in knowledge
intensive multi-agentsystems for networked
information services
Qiuming Zhu
University of Nebraska at Omaha, qzhu@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Department
of Computer Science at DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized
administrator of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

Recommended Citation
Zhu, Qiuming, "Topologies of agents interactions in knowledge intensive multi-agentsystems for networked information services"
(2006). Computer Science Faculty Publications. 28.
https://digitalcommons.unomaha.edu/compscifacpub/28

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub/28?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

Topologies of agents interactions in knowledge intensive multi-agent

systems for networked information services

Qiuming Zhu *
Department of Computer Science, University of Nebraska at Omaha, 6001 Dodge St., Omaha, NE 68182, USA

Abstract

Agents in a multi-agent system (mAS) could interact and cooperate in many different ways. The topology of agent interaction determines how
the agents control and communicate with each other, what are the control and communication capabilities of each agent and the whole system, and
how efficient the control and communications are. In consequence, the topology affects the agents’ ability to share knowledge, integrate
knowledge, and make efficient use of knowledge in MAS. This paper presents an overview of four major MAS topologic models, assesses their
advantages and disadvantages in terms of agent autonomy, adaptation, scalability, and efficiency of cooperation. Some insights into the
applicability for each of the topologies to different environment and domain specific applications are explored. A design example of the
topological models to an information service management application is attempted to illustrate the practical merits of each topology.

1. Introduction

Software agents, one of the most exciting new develop-

ments in computer software technology, can be used to quickly

and easily build integrated enterprise systems. The software

agents, like people, can possess different levels of competence

at performing a particular task. The idea of using multiple

software agents that communicate and cooperate with each

other to solve complicated problems in various complicated

personal and enterprise computing application domains on our

behalf is intuitively appealing. One significant benefit of multi-

agent systems (MASs) is their scalability. Since they are

inherently modular, it is easier to add new agents to a multi-

agent system than it is to add new capabilities to a monolithic

system.

Agents in a MAS can have different functionalities and

behaviors. For example, agents can be categorized as self-

governing agents, brokered agents, monitored agents, mediated

agents, etc. Each individual agent can be crafted to be an expert

in solving a specific problem or performing a particular task. A

collection of software agents that communicate and cooperate

with each other is called an agency. An agency may have a

manager that closely supervise and arrange the individual

agent’s tasks, or may not contain that a closely looking

supervisor—like a real estate agency, as long as every agent

operates in compliance with the agency operating protocol (e.g.

following work ethics, paying fees on time). The underlying

agent architecture must support sophisticated reasoning,

learning, planning, and knowledge representation of the

individual agent or the agencies. A general understanding of

a MAS is that: (i) each agent has a partial capability to solve a

problem, (ii) there is not necessary a global system control, (iii)

data and knowledge for solving the problem are decentralized,

and (iv) computations carried out among the agent are

asynchronous [13].

MAS contain extremely high-level of software abstractions.

Programming an agent-based system is primarily a matter of

specifying agent behavior. In MAS, the agents need to work

collectively so that, as a group, their behavior solves the overall

problem without disruption, conflict, and glitches. When a task

is assigned, the agents are likely in needs to find the other

agents to collaborate with. Such a task is easy if they know

exactly which agents to contact and at which location.

However, a static distribution of agents is very unlikely to

exist. For dynamic multi-agent systems, agents need to know

how and where to find the other agents [16]. The dynamic

nature of agent distribution motivates this research to look at

the topological models of MAS and study how these models

facilitate or hurdle the agent collaborations.

Software developers and system designers use high-level

abstractions in building complex MAS. To manage

the complexity, MAS abstraction must focus on the important

* Tel.: C1 402 554 3685; fax: C1 402 554 3400.

E-mail address: zhuq@unomaha.edu

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

http://www.elsevier.com/locate/aei

and essential properties of a problem and hide the incidental

components of that problem. An agent interaction topology

provides a simple way of managing the complexity because a

topology is essentially a high-level abstraction about the

interactions of the functional components in a complex system

such as the MAS. The topology of agent interaction also helps

to define (or facilitates the definitions of) the communication

protocol and the interface among the agents of MAS.

It is understood that in a complex system, each agent only

needs to interact with a limited number of agents, most likely

the agents in its vicinity. Agents in MAS can be organized and

controlled in many different ways. For example, agents could

be entitled as equal right citizens. That is, every agent has the

same status and control and access right to other agents and

their shared resources. In this case, each agent would have the

same capability of solving a given problem [3]. Who does what

purely depends on who is available at the moment. The benefit

of this model is that the system is highly fault tolerant—leave

one or two agents out of the cycle, the job still gets done as

usual. Moreover, the agents in this model have the maximum

degree of autonomy. They volunteer their service by

themselves upon a request of service or inbound object/

situation/environment changes. One other choice is a hier-

archical model in which agents are grouped/labeled with

different classes/status in terms of the functionality or assigned

rights [28]. These agents are often under a centralized or an

upper level control. Some supervisory agent in the system may

be identified. This organizational model has the advantage of

operational efficiency and configuration flexibility [Sohata94].

Software agents are suitable for use in a wide variety of

applications. However, agents can have different ways of inter-

connections and interactions. Each of the interaction schemes

is appropriate for use in implementing certain kinds of

applications. Developers must carefully analyze system

requirements to determine if the selected agent interaction

scheme is an appropriate implementation mechanism. The

study of the structural and cooperative topology is necessary

for construction of complex systems involving multiple agents

and mechanisms for coordination of independent agents’

behaviors toward a common goal. MAS can be considered of

containing the following four dimensions [11]: (1) Agent

granularity (coarse vs. fine); (2) Heterogeneity of agent

knowledge (redundant vs. specialized); (3) Methods of

distributing control (benevolent vs. competitive, team vs.

hierarchical, static vs. shifting roles); and (4) Communication

possibilities (blackboard vs. messages, low-level vs. high-

level, content). The MAS designers must consider the

capabilities of each individual agent and how multiple agents

can work together—the architecture and protocol issues. There

are many ways and views in the study of multi-agent system

architecture and protocol. In this paper the architecture and

protocol issues are explored from the topological point of view.

Development of multi-agent system (MAS) applications is

often complicated by the fact that agents operate in a dynamic,

uncertain world. Uncertainty may stem from noisy external

data, inexact reasoning such as abduction, and actions by

individual agents. Uncertainty can be compounded and

amplified when propagated through the agent system. More-

over, some agents may become disconnected from the rest of

the system by temporary or permanent disability of these agents

or their communication channel, resulting in incomplete/

inconsistent system states. How should we represent individual

agents acting in such an uncertain environment, and more

importantly, how can we predict how the MAS as a whole will

evolve as the result of uncertain inter-agent interactions?

Properly structured topology plays a critical role to address

the above problems in MAS systems. The topology determines

how the agents interact with human and with each other, what

are the relations among the agents, and how data and

knowledge are shared and communicated among the agents

[18,20]. The topology would also affect the functionality,

capacity, and underlying computation mechanisms of the agent

assembly. To date, there have been relatively few implemen-

tations of complex agent-based systems. The difficulty of

determining what agent system topology to employ partly

limited the more spacious spreading of MAS in real world

applications. A proper topology leads to desirable collective

behavior in large and complex MAS. Therefore, MAS research

needs an insight on how different architectural topologies of an

agent assembly function differently to the effects toward agent

adaptation, control, collaboration, and learning [12,

Grefenstett296].

In this paper, we first present an overview of four major

MAS topology models. They are (1) a Web-like topology

where agents are connected (and communicated) as nodes in a

complete graph; (2) a Star-like topology where several agents

are connected with, and communicate through, a controller/-

mediator; (3) a Grid-like topology where each agent is only

connected (and communicated) with its neighboring agents,

thought the access to other agents or resource not in the

neighborhood could be done through the neighboring agents;

and (4) a hierarchical collective agent network (HCAN)

topology, that combines some of the features of previous

models. We assess the advantages and disadvantages of these

models in terms of agent autonomy, adaptation, scalability, and

efficiency of cooperation. An example of the application of the

fourth model for application in information service is

presented.

The paper is organized as the following. Section 2 discusses

the four major MAS agent cooperation topologies. Section 3

assesses these four topologies in terms of a set of criteria

selected. Section 4 presents an analysis of the fourth topologies

with respect to different MAS application domains, and points

some insights on the applicability of each topology to certain

applications. Section 5 presents an exemplar design of using

each of the topologies for an information service system

application. Section 6 contains conclusion remarks.

2. Taxonomy

Several research communities have modeled distributed

computing by studying communication and coordination

mechanisms among autonomous software entities, or agents.

Agent-based computing focuses on the interaction mechanisms

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

among agents, which permit a rich set of coordinated activities.

Effective models of interaction require the following basic

capabilities:

(1) A transport mechanism to convey messages in an

asynchronous fashion;

(2) An interaction protocol, defining the available types of

communications and their semantics;

(3) A content language providing the base for composition of

requests and their interpretation; and

(4) An agreed-upon set of shared vocabulary and meaning of

concepts (often called on ontology).

The degree to which different agents play out distinct roles

is certainly an important issue in MAS. The taxonomy

presented in this paper is organized along the most important

aspects of agents: degree of heterogeneity and degree of

communication for interaction and knowledge sharing. The

taxonomy is based on the common understanding that: (1)

agents are ubiquitous, (2) agents have designated roles, reside

at designated place, perform designated tasks for a designated

person/controller, and (3) agents can be acting by their own

(once deployed) or agents can be acting under coordination of

other agents.

The topology of multi-agent cooperation can be classified

according to multiple criteria. In this paper, we use the

following three criteria to characterize the cooperation:

(1) The ways of activation, supervision, and communication

between the agents [18], i.e. how the agents invocate each

other, requesting service from each other, and retrieve/pass

data to each other;

(2) The dependencies of the agents [19], i.e. whether they

function complementary to complete a task, i.e. each

functioning on the same course or differently aspects of a

course, and

(3) The ways of sharing data, knowledge and other resources,

including considerations of at what level they share the

data and knowledge to complete a given task [30].

In the Web-like topology, the collection of distributed

agents acts as equal members of the community. In this

topology, all of the agents have the same internal structure as

well as operation goals, domain knowledge, and possible

action choices. They also have the same procedure for selecting

among their actions. The only differences among agents may

be their sensory inputs and the actual actions they take: they

may be situated differently in the world or in different

environmental settings. Although the agents have identical

capabilities and decision procedures, they may have limited

information about each other’s internal state and sensory

inputs. Thus they may not be able to predict each other’s

actions.

The Web-like topology can also be formed in virtual when

the MAS employs an agent-activation scheme called request-

and-service protocol, a blackboard kind of communication and

task activation approach. In the request-and-service protocol,

every agent in the MAS can response to a call issued by one of

the agent and perform the task requested, and could be called

by other agents to perform specific tasks. That makes the agents

seemed all connected directly.

In the Web-like topology, the agents are empowered as

equal-right citizens in a MAS society. Every agent receives the

same command and request, share the same data and resources,

and act at the same level (though functioning differently in

terms of the problem to be solved). Each agent can call any

other agents, and be called by any other agents. The General

Magic’s MAS model is a representative example of this kind of

topology [34]. General Magic models MAS as an electronic

marketplace that lets providers and consumers of goods and

services find one another and transact business. This market-

place is modeled as a network of computers supporting a

collection of places that offer services to mobile agents. All

agents have the same capability to travel from one place to

another, to meet other agents which allows them to call one

another agent’s procedures, to create connections to allow an

agent to communicate with another agent in a different place,

and to have authority to indicate the real-world individual or

organization that the agent represents. Note that in Web-like

topologies, agents can perform their service by themselves

autonomously upon a request of service (ROS) or inbound

objects or situation/environment changes.

A number of variations to the Web-like model exist. For

example, the agents are organized in groups (subsets) and

Fig. 1. Web-like topology of agent interaction.

In this section we study four basic MAS topological
structures: (1) a Web-like topology, (2) a Star-like topology,
(3) a Grid-like topology, and (4) a Hierarchical Collective
Agent Network (HCAN) topology. Note that this study is not
about the physical links between the agents. Our concern is on
the functional links (and interactions) among the agents
enabled either by physical links or by virtual communication
channels. The four MAS topologies of our study are described
in the following.

2.1. Web-like topology

A Web-like topology is featured with a uniform inter-
connection of the agents in a cooperative environment. That is,
every agent node can have directly interaction with all other
agent nodes. Usually, these interactive agent nodes form a
complete graph, as shown in Fig. 1.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

agents in each subset are fully connected in the Cougaar MAS

architecture. The Cougaar architecture supports a distributed

plan, similar to a partitioned blackboard, which is inter-

connected but not replicated across the agent society [9]. This

means that information is shared among only the interested

parties. This simple concept, combined with some proven

concepts of locality of reference, minimizes the communi-

cation requirements and makes possible a managed agent

network required of large-scale distributed systems.

2.2. Star-like topology

Unlike in Web-like topology where agents can be

cooperative in their own all together by some implicit

agreement or activation protocol, there may be actions that

require explicit coordination for successful execution. In a star-

like topology, the activities of the agents are coordinated or

administered by some supervisory (or facilitator) agents

designated in the assembly. Only agents that have connections

built and specified to the coordinator can interact with each

other. That is, the agents are more under control and stipulation

than those in the Web-like topology. In this topology,

functional invocation and data communication is often

brokered through connections to one or more facilitating

agents. The facilitator is responsible for matching requests

from users to agents, with descriptions of the capabilities of the

agents in its possession. A structural diagram of such topology

is shown in Fig. 2, where the center nodes in dark color denote

the coordinators.

Most agent architectures contain specialized agents that are

suited for specific operations within the application domain and

environment. Often sophisticated systems of application were

decomposed into modules, each of which was then transformed

into an agent or multi-agents. These agents then are divided

into different groups. Agents in each group are capable of

performing a specific kind of tasks. In this configuration, the

agents may not communicate with each other directly. A

supervisor, controller, or mediator is then needed to distribute

and coordinate the tasks. Examples of such control agents

include (1) the SRI’s OAA facilitator [24]; (2) the CMU’s

RETSINA Matchmaker [32]; and (3) the Infosleuth’s Broker

[26].

In SRI’s Open Agent Architecture (OAA), the facilitators

are responsible for matching requests from users and agents,

with descriptions of the capabilities of other agents, and then

delegate the tasks to qualified/available agents [8]. Thus, it is

not generally required that a requester (user or agent) know the

identities, locations, or number of other agents involved in

satisfying a request. Facilitators are not viewed as centralized

controllers, however, but rather as coordinators, as they draw

upon knowledge and advice from several different, potentially

distributed, sources to guide their delegation choices. This

scheme makes it possible for software services to be provided

through the cooperative efforts of distributed collections of

autonomous agents.

In a distributed agent framework of Star-like topology, a

dynamic community of agents, where multiple agents

contribute services to the community, is often conceptualized.

When external services or information are required from a

given agent, instead of calling a known subroutine or asking a

specific agent to perform a task, the agent submits a high-level

expression describing the needs and attributes of the request to

a specialized facilitator agent. The facilitator agent will make

decisions about which agents are available and capable of

handling sub-parts of the request, and will manage all agent

interactions required to handle the complex query. One

advantage of this quasi-distributed agent architecture is that

it allows the construction of MAS that are more flexible and

adaptable than the fully distributed object frameworks such as

those in the Web-like topology. Individual agents can be

dynamically added to the community easily, extending the

functionality that the agent community can provide as a whole.

The agent system of Star-like topology is also able to adapt to

available resources in a way that hard-coded distributed objects

systems cannot.

One of the important issues to consider when designing a

multi-agent system is whether the different agents will be

benevolent or competitive. Even if they have different goals,

the agents can be benevolent if they are willing to help each

other achieve their respective goals [15]. On the other hand, the

agents may be selfish and only consider their own goals when

acting. In the extreme, the agents may be involved in a zero-

sum situation so that they must actively oppose other agents’

goals in order to achieve their own. The Star-like topology is

more empowered to solve these kinds of goal and action

conflicts among the group of agents.

2.3. Grid-like topology

In a grid-like topology, each agent cooperates with a group

(an agency) of agents in its neighborhood (in terms of

functional connections) that is a subset of agents in the

assembly (or community). Each agent has direct connections

(in terms of cooperation behavior) to the agents in its

neighborhood group (logically, not necessary physically or

geographically). Each group may be administered by a

supervisor/facilitator designated. Interaction to agents not

residing in the neighborhood must pass through the facilitators

of the neighborhoods. Such interaction may pass multiple

agents in cascade. The designation of facilitator may be

changed dynamically in terms of the efficiency of interaction itFig. 2. Star-like topology of agent cooperation.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

UNCORRECTED P
ROOF

2.4. HCAN topology

A fourth topology, named a hierarchical collective MAS

model, is presented in this section. The hierarchical collective

agent network (HCAN) topology of agent cooperation is shown

by diagram in Fig. 4. Main properties of the HC topology are

(1) Agents are grouped in layers, (2) the layers are organized in

hierarchy, (3) agents in each layer are not connected, (4) agents

between layers are fully connected, and (5) the control and

coordinate of the agent at each layer are through the agents at

the higher level.

In the HCAN, agents at the lower level (the data managing

module) interface directly to individual sensor/information

resources. These agents act in a distributive fashion to process

conceptual queries, filter retrieved information using simple

proposition logics, and extract useful information as instructed

by upper-level (the reasoning or user interface modules)

agents. The agents at the upper levels coordinate the activities

of the agents at the lower levels using a centralized goal-driven

control strategy. They issue conceptual queries, perform data

integration and knowledge extraction, and make cross-

reference of the information retrieved. The coordinate agents

at these levels will apply certain data analysis models and

employ reasoning-integration technique to fuse information

reported by retrieval agents at the lower levels. Special human-

system interfacing agents will provide continual support for

interactions between user and the systems, and provide

intelligent and dynamic information summarization, annota-

tion, and presentation based on the user-originated inputs and

queries.

The major functionalities and design tradeoffs of the HCAN

topology are as follows. The HCAN topology is flexible in

terms of the ability in which communities of agents can be

assembled, and the flexibility with which services can be added

at runtime and brought into use without requiring changes to

the other part of the agent assembly. A unified set of concepts,

declarations and interfaces that are consistent across all

services in the framework, and the role played by the agents

at different levels are defined. The HCAN topology strikes a

balance between the centralized control and distributed

computation by allowing distributive agent operations within

layers of the hierarchy and enforcing centralized control

between the layers of the hierarchy, thus eases the coordination

and control needed to manage interactions between agents.

Fig. 4. Hierarchical collective topology of agent cooperation.

Fig. 3. Grid-like topology of agent cooperation.

enables. Fig. 3 shows a diagrammatic illustration of this
topology, where the nodes in dark color denote facilitators
under current designation.

Simply described, a grid-like topology is an environment
consisting of areas. Areas are required to have exactly one local
area coordinator, which is an agent that acts as a facilitator for
other agents within its area. Agents can be identified as being
inside an area if they have registered with the area’s local
coordinator. Agents will use the services of local area
coordinators to access other agents in the system. Agents can
advertise services and find out about other agents’ services by
means of agent registry or yellow page servers. Agents
requiring data sharing with other agents can join virtual
environments called cooperation domains, which are supported
by cooperation domain server agents.

The agents in Grid-like topology form a more federated
agents society. It has relatively low communication and
computational requirements, meaning that there are virtually
no constraints on the system size. The simplicity of agent
interactions also makes it amenable to quantitative mathemat-

ical analysis. Each group of agents has a meta-agent that serves
as the agent/task manager, which decomposes a task and
distributes it to the individual functional agents or other agent
managers. Example of MAS in the grid-like topology can be
seen at the Object Manager Group (OMG)’s Model [33]. This
model is composed of agents (i.e. components) and agencies
(i.e. places) as entities that collaborate using general patterns
and policies of interaction. Under this model, agents are
characterized by their capabilities (e.g. inference, planning,
and so on), type of interactions (e.g. synchronous, asynchro-
nous), and mobility (e.g. static, movable with or without state).
Agencies, on the other hand, support concurrent agent
execution, security and agent mobility, among others.

In many systems, hierarchically organized collections of
planning agents that are committed to one particular planning
problem are deployed. For example, in MPA- Multi-agent
Planning Architecture of SRI [35], the activities of these agents
are coordinated by meta-PAs (PAs that control other PAs) with
specialized knowledge about strategies for division of labor,
conflict resolution, and (in the future) plan merging. Each
meta-PA is responsible for coordinating activities among its
collection of PAs and other planning clusters.

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

The rationale behind the HCAN topology is again the

concept of shared and distributed intelligence. It is not a good

idea to develop agents with capability of doing everything.

Agent must be task-specific for doing something, and for doing

some small things really well. That is, agents are specialists on

special tasks. For example, it is not necessary to require an

agent to possess all the perception, action, and reasoning

components, which are necessary for being autonomous and

adaptive. Rather, it can be an agent system in which there are

agents responsible for perception, agents responsible for

action, agent responsible for reasoning, and agents responsible

for learning and augment the knowledge of the other agents or

accumulate and store the knowledge to a place that are

accessible by all the agents. Where the perception agents feed

the reasoning agents, the reasoning agents feed the action

agents, and the learning agents feed both the reasoning and

action agents, etc. Thus, the functionality of an agent must

always be limited to a specific domain, on a specific task. That

is, based on this observation and understanding the MAS

comes into play.

2.5. Summary

Table 1 Summarizes the structure characteristics of the

above four MAS topology.

3. Analyses

In this section we explore the advantages and disadvantages

of the topologic models of the above in terms of their effects to

agent autonomy, adaptation, communication, learning, and

efficiency of cooperation. The topology should facilitate the

intensive knowledge embedding, accumulation, and incorpor-

ation for MAS. A multi-agent system is dynamic in nature,

meaning that agents can be added to it or removed from it from

time to time. Thus, an agent system topology must also

facilitate the dynamic property of agents. The study here

focuses on how the specific topology boosts or attenuates the

major agent features and functionalities required by MAS,

based on a set of agent properties defined as the following:

(1) Autonomous. It is known that agents, whether in a MAS or

stand-alone, should be proactive, goal directed and act on

their own (self-starting behavior) or perform tasks on some

user’s behalf. Effectiveness of goal achieving is one

important property of agents.

(2) Cooperative. Agents in a MAS should be specially

equipped with the ability to work with other agents to

achieve a common goal. They must behave effectively at

both self-organizing and delegating states, effective under

coordination and negotiation, and conscious of conflict

resolution.

(3) Trustful. The agents must be reliable when exerting their

autonomy in performing the tasks designated by human.

They must perform the tasks and complete the tasks in the

quality and time as the human instructed.

(4) Flexible. Agents in MAS should be flexible in terms of

system reconfiguration and task delegation. Agents should

be able to join and participate the cooperation community

at any time, i.e. dynamic inhabitation. Configuration

flexibility leads to scalability that is also critical to MAS

operating in dynamic environment.

(5) Adaptive. Agents should have a certain level of ability to

selectively sense and act/re-act to the environmental

situation changes, and should be readily/easily transplan-

table to different environmental applications.

(6) Interactive. Most agents are required to communicate and

interoperate efficiently with humans, other systems, and

information sources. Agents in MAS must be especially

capable of dealing with the complexity issues of resource

sharing, distribution, and deadlock breaking.

(7) Reactive. The ability to learn and improve the functionality

with experience is a very desirable feature of agents.

Agents able to dynamically adapt to and learn from the

environment will have better capability to adapt to

situation/environment changes.

3.1. Web-like topology

Both advantages and disadvantages of the Web-like

topology are associated with its indiscriminative behavior of

agent activation. The Web-like MAS topology facilitates

parallelism and entitles redundancy. While parallelism is

achieved by assigning different tasks or abilities to different

agents, robustness is a benefit of multi-agent systems that have

redundant agents. If control and responsibilities are sufficiently

shared among different agents, the system can tolerate failures

by one or more of the agents. Domains that must degrade

gracefully are in particular need of this feature of MAS: if a

single entity -processor or agent- controls everything, then the

entire system could crash if there is a single failure.

One question often asked of this kind of MAS is that in such

a closely coupled relation among agents—agent network, can

agents be really equal members of a society? Or, is this

especially good for the joint functionality of a MAS? The

answer may depend on what application domain the agent

system works in. Although multi-agent systems are often

described as being intrinsically more robust than a single agent

by virtue of redundancy, fault tolerance is not a natural

byproduct of duplication but only emerges through careful

design. A complex MAS cannot always be created through

cloning a group of single agents designed for the same task.

Web Star Grid HCAN

Center controller /mediator? No Yes Partly Partial

Agents all at equal level? Yes No No No

One to all interaction? Yes No No No

Complete communication link? Yes No Partly Partial

Local/global distinction? No No Yes Yes

Automatic service response? Yes No Partly Partial

Table 1
Features of four major MAS topology

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

3.3. Grid-like topology

The grid-like topology makes a tradeoff between increasing

the number of agents that can interact directly with each other

and retain control of monitoring of agent activities in a

reasonable range. The approach is suitable for MAS designed

to operate in a well-defined global environment and objectives.

The topology entitles the relative merits of model-free and

model-based methods. Consider the facilitating of local or

networked configuration of the MAS as another criterion, the

grid topology is advantages than the other topologies of MAS.

The locally interacted agents in Grid-like topology may

demonstrate complex group behavior advantages over the fully

connected agent assembly. When agents have similar goals,

they can be organized into a team. Each agent then plays a

separate role within the team. With such a benevolent team of

agents, one must provide some method for assigning different

agents to different roles. This assignment might be obvious if

the agents are very specific and can each only do one thing.

However in some domains, the agents are flexible enough to

interchange roles.

3.4. HCAN topology

The HCAN topology makes a tradeoff between distributive

and centralized control of multiple gent systems. The collective

nature of the agents in the HCAN paradigm overcomes some of

these difficulties, for example, relieving the burden of data-

exchanges between fellow agents by limiting agent communi-

cation to vertical layers of the assembly only. The collective

nature of agent relation in the hierarchical architecture

simplifies the functional design of the agent interactions and

enhances the security and efficiency of the information

processing.

Basically, the HCAN is desirable when the MAS is required

to have the following functionalities.

(1) A flexible software architecture for accommodating

system augmentation and evolutions;

(2) A powerful representation schema for accommodating

heterogeneous forms of information;

(3) A diverse interface for various input resources, output

formats, and human interactions;

(4) An ability of reasoning on incomplete and inconsistent

information, and extracting useful knowledge from the

data of heterogeneous resources;

(5) An ability of incorporating real-time dynamics of the

information resources into the system anytime during the

operation, and promptly adjusting the reasoning mechan-

isms;

(6) An ability of summarizing and refining knowledge

extracted, and distinguishing mission and time critical

knowledge from insignificant and redundant ones;

(7) A capability of supplying meaningful and accurate

explanations, both qualitatively and quantitatively, of the

automated system actions; and

There has to be some awareness, either on the part of the agents
or the system designer, of the role that other members will play
in completing the task. Unless the global task is somehow
partitioned among the agents, they will either interfere with
each other or converge on a sub-optimal division of labor.
Thus, the reason why a complete-graph kind of topology is not
necessary, and probably undesirable, is that the global
interaction with all agents in a domain or application
environment is likely not necessary. Moreover, the design of
that kind of global interaction system is too complex to deal
with. The functional structure of individual agent in Web-like
topology is also most complex among the topologies because
the agent there needs to know how to communicate with the
others, while in other topologies the communication can be
handled by the facilitator or broker agent.

3.2. Star-like topology

An advantage of star-like topology is its loosely enforced
control and coordination. Though control and coordination
limits the boundary of cooperation the agents can reach, it is
desirable when efficiency of cooperation is a main issue that
needs to be ensured. The star-like topology is suitable for the
environment and applications where the MAS is to act as a
central planner, that involves team negotiation and needs
awareness of what each agent knows and does. It also possesses
functional suitability and self-consciousness—each agent is
dissimilar in functionality, the dissimilarity determines and
distributes tasks. The use of facilitators in OAA offers both
advantages and weaknesses with respect to scalability and fault
tolerance [6]. For example, on the plus side, the grouping of a
facilitator with a collection of client agents provides a natural
building block from which to construct larger systems. On the
minus side, there is the potential for a facilitator to become a
communication bottleneck, or a critical point of failure.

In Star-like topology, the control agent focuses on the
interaction mechanisms among agents, which permits a rich set
of coordinated activities. Effective models of interaction
require some basic capabilities: (1) a transport mechanism to
convey messages in an asynchronous fashion, (2) an interaction
protocol, defining the available types of communications and
their semantics, (3) a content language providing the base for
composition of requests and their interpretation, and (4) an
agreed-upon set of shared vocabulary and meaning of concepts
(often called on ontology). Some MAS use game theoretic
model for multi-agents cooperation and rely on the assumption
that all agents are fully rational. In general, for a set of agents to
cooperate, there is a need for a shared ontology among them. It
is more critical to have a shared ontology for agents to inter-
operate without passing through a facilitator.

Another advantage of mediated topology is that it is easy to
define a system in terms of agent-mediated processes. The
moderated multi-agent systems are particularly well suited to
process and workflow automation, electronic commerce,
distributed problem solving, Internet applications.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

(8) A capability of providing adequate control and scrutinizing

of the system operations under the environmental

constrains of the given situation.

There is a need for mechanisms for advertising, finding,

fusing, using, presenting, managing, and updating agent

services and information in most MAS applications. To

address these issues, the notion of middle agents was proposed

[11,22,23]. Middle agents are entities to which other agents

advertise their capabilities, and which are neither requesters

nor providers from the standpoint of the transaction under

consideration. The advantage of middle agents is that they

allow MAS to operate robustly when confronted with agent

appearance, disappearance, and mobility. There are several

types of agents that fall under the definition of middle agents.

Note that these types of agents, which are described below, are

defined so vaguely that sometimes it is difficult to make a clear

differentiation between them.

, Facilitators. Agents to which other agents surrender

their autonomy in exchange for the facilitator’s services.

Facilitators can coordinate agents’ activities and can

satisfy requests on behalf of their subordinated agents.

, Mediators. Agents that exploit encoded knowledge to

create services for a higher level of applications.

, Brokers. Agents that receive requests and perform

actions using services from other agents in conjunction

with their own resources.

, Matchmakers and yellow pages. Agents that assist

service requesters to find service provider agents based

on advertised capabilities.

, Blackboards: Repository agents that receive and hold

requests for other agents to process.

The HCAN provides a proper balance on the need of

centralized and distributed middle agents for the control and

coordination of the multi-agents in the complex system.

The assessments of the four major topologies are

summarized in Table 2. We give a rating of 1–5 to each of

the performance measurements for each topology, where a

rating of 1 is the lowest and 5 is the highest. The assignments

are somehow subjective.

4. Applications

After comparing the four basic topological structures and

their pros and cons, we can now relate the major topologies to

the diverse sets of MAS applications. It is noted that most of the

agent research and development up to date are in the area of

agent modeling and agent building tools. Wide spreading true

applications are still lacking. Over hundred agent construction

toolkits, development environment, or component libraries can

be returned from a simple search on Internet. Chauhan and

Baker, 1998’s JAFMAS supports directed (point to point)

communication as well as subject based broadcast communi-

cations [5]. Ciancarini et al [7] introduced PageSpace as a

referential architecture for designing interactive multi-agent

applications, using variants of the coordination language Linda

to guide their interactions. Several kinds of agents live in the

PageSpace: user interface agents, personal home agents, agents

that implement applications, and agents that interoperate with

legacy systems. Suzuki et al. [31] proposed ‘self-migrating

threads’ as a new cluster-computing paradigm for multi-agent

applications, which can be viewed as the interactions among

autonomous computing entities, each having its own objec-

tives, behavior, and local information in a synthetic world.

Self-migrating threads have both navigational autonomy of

mobile agents and fine computation granularity of threads. In

ZEUS [25], coordination is supported through use of

conversation classes that agents utilize to manage their

interactions with other agents during problem solving. The

conversation classes implement rule based automata models,

similar in spirit to the way co ordination behavior is managed

in ZEUS.

Multi-agent systems (MASs) provide for the modeling of

practical systems in the fields of communications, flexible

manufacturing, and air-traffic management [4,27]. Some of the

previous work in multi-agent system development concen-

trated on domain-independent frameworks, standard protocol

definitions, some handling of uncertainty and utility, and

extensive models of collaboration [16]. However, there lacks

methods for solid decision-theoretic model of agents learning,

adaptation, control and collaboration. Arai et al presented a

reinforcement learning approach known as Profit-sharing that

allows agents to learn effective behaviors with in dynamic and

multi-agent environments [1]. The increased prevalence of

agents raises numerous practical considerations. Three of these

are (1) adaptability to unforeseen conditions, (2) behavioral

assurance, and (3) timeliness of agent responses [2,14]. Two

questions are always asked about any type of technology. (1)

What advantages does it offer over the alternatives? And (2) In

what circumstances is it useful? The same questions apply to

the study of topologies of MAS. The evolution of Multi-Agent

Systems and the growing interest in multi-agent development

platforms have leaded to some interesting tools for agent

software developers. Although, some platforms are grounded

on well-known models, platforms for development of agents

are widely heterogeneous globally. Questions remaining: What

topology of agent interaction is good for what kind of

applications?

We first take a look at some examples to see the diversity of

MAS applications and what kind of cooperation topology is

needed for each of the applications.

Web Star Grid HCAN

Autonomy 5 1 3 4

Cooperative 2 5 3 4

Trustful 1 5 5 5

Flexible 5 5 5 4

Adaptive 2 5 5 5

Interactive 3 1 3 5

Reactive 2 5 3 5

Table 2
Assessment of the topologic models

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

1. An electronic commerce application might have buyer

agents, seller agents, stocking agents, database manage-

ment agents, email agents, etc. A loan approval application

ties together branch banks, the main bank, loan under-

writing companies, and credit reporting companies, and

automates much of the loan approval process. All of these

agents involve distributed computation or communication

between components, need to communicate with each

other, and must have the capability of working together to

achieve a common set of goals. Multi-facets of consider-

ations must be made with respect to the differences in

performance efficiency and competency when choose

proper topology for the agent system in these applications.

2. Data fusion and mining applications that reason about the

messages or objects received over a network require multi-

agents organized in sequences of work-flow and coordi-

nation, e.g. network interfacing agent, information search-

ing agent, recording agents, inference agents, reporting

generation agents, etc. The same situation applied to

e-collaboration and e-learning applications. Agent system

in these applications must balance the distributiveness and

centralized control.

3. Automation applications for example in plant and process

automation, workflow management, robotics including

Unmanned Autonomous vehicles (UAV), etc. requires the

agent to be capable of operating without much user input or

intervention. An embedded factory controller might consist

of a user interface agent, a database interface agent, a

machine tool interface agent, and a process monitoring and

control agent. All of these agents could run concurrently on

the same processor or could be easily distributed across

multiple processors.

4. There are applications that require significant communi-

cations between components for sensing or monitoring of

the environment, making decisions and performing auton-

omous operations. Since the agents in these applications

need to have the ability to reason (i.e. draw inferences),

they can easily perform sequences of complex operations

based on messages they receive, their own internal beliefs,

and their overall goals and objectives. For example, email

and instant messaging system that uses software agents to

implement the mail client. The system is designed to ensure

that messages remain private. Privacy is assured

because messages never reside on any server device.

While a peer-to-peer processing application has significant

advantages over the client-server approach in these

applications, agents in these systems must be highly

autonomous meanwhile trustful.

Table 3 categorizes the major applications of MAS, with

respect to the features of the application domain, specific

problems deal with, and features of each type of the

applications related to agent characteristics.

It would be desirable to have a statistics on the variations of

MAS applications and the major system topology employed in

each of the applications. There are two main factors that make

it difficult to enumerate the application systems with respect to

the topologic types of the agent interactions. One is the limited

resource available for the real world MAS applications,

especially lacking the application systems with significant

influence to the field. The second is that in many real

applications, there is no clear cut on which topology the

agents in the system apply. More often the applications have a

mixture of the interaction topologies among the interactions of

the agents in the applications. Instead, we thus turned to a look

at the MAS development/construction tools (toolkits,

languages, libraries) to find the correspondences of the

topology enabled/allowed by these systems/tools. We have

evaluated 26 commercial and 39 academic MAS products

and/or development packages/toolkits. Tables 4 and 5

summarize the systems. It is found that no any of the above

topology is in a dominating position in either domain.

However, two observations are worth to mention. One is that

while the Star-like topology was seen in 28% of academic

systems, there is no (0%) any commercial system adopting this

scheme. The other is that the grid-like topology is the most

popular one in both the commercial (23%) and academic (36%)

systems. Note that quite an amount of systems also possesses

the property as a mixture of both grid-like and star-like

topology. If we consider this mixture topology together with

the grid-like ones, then a majority in both academic and

commercial systems is present.

It is not our intention to collect and summarize all published

MAS application systems that have been built or reported.

Therefore our discussion will be focused on the categories of

applications, without referring to specific products or product

systems. We thus present an extensive, but not exhaustive, list

of work in the field. Despite the youth of the field, space does

Table 3

MAS systems with respect to application domains

Domain of application Features of the application Type of agents in need Suitable topology Complexity of interaction

Information service Mixture of distributive and centralized Diverse Grid or HCAN Low

Web search Distributive uniform Web-like Low

Planning and Scheduling Centralized, semi-distributive Heterogeneous Star-or Net-like Mild

Process control (manufacture

assembly, air traffic)

Semi-distributive, mixture of distribu-

tive and centralized

Diverse Grid or HCAN High

Reasoning and decision making Mixture of distributive and centralized Mixtures HCAN high

Data fusion and mining Centralized Mixtures Star or grid or

HCAN

mild

Simulation Mixture of distributive and centralized Diverse kinds Star or grid High

E-commerce Peer-to-peer uniform Web-like low

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

not permit exhaustive coverage. Instead, the work mentioned is

intended to illustrate the techniques that exist to deal with the

issues that arise in the various multi-agent scenarios.

5. Example

In the following we present an example design of

application of MAS with the four topologies studied in this

paper. We know that software agents provide a powerful new

method for implementing the next-generation information

systems. In the example multi-agent system described below,

agents are designed to perform information gathering,

categorization, and distribution according to specific needs of

users. Special human-system interfaces built in these agents

will provide continual support of interactions between IMS and

the agents. The hypothetic information service management

system must accommodate the following agent assemblies.

The information service broker agent. The information

service broker assembly contains three agents: Publish Service

Agent (PSA), Subscribe Service Agent (SSA), and Query

Service Agent (QSA). These agents interface directly to the

information clients to manage the Pub/Sub/Query Services.

The agent functions can be defined as the following.

(1) The PSA possesses the functions of (a) Processing the

requests of permission for publish from the publisher (a

client), through interactions to I&A (Identification and

Authentication) agent. (b) Creating a publisher sequence

with the client once permission is granted. (c) Receiving

and transmitting the metadata and payload provided by the

publisher under a publication request, thereby creating an

IO (Information Object) in the IOR (IO Repository). (d)

Providing a universally unique identifier (UUID), created

by the IOR agent, back to the publisher for future

reference.

(2) The Subscribe Service Agent (SSA) will possesses the

functions of: (a) Processing the subscriber’s requests for

permission to subscribe, through interaction to I&A. (b)

Processing the subscription predicate (subscriber metadata

constraint) that the platform applies over the MDR

(Metadata Repository) of newly published IOs to

determine delivery. (c) Notifying the subscriber of

available IOs, generally done thru a client-defined call-

back.

(3) The Query Service Agent (QSA) possesses the functions of

(a) Processing Query client’s requests of permission to

query, through interaction to I&A. (b) Informing the Query

client to submit a query request containing a query

metadata constraint to the platform, once permission is

granted. (c) Returning a set of partial result IOs based on

the access control policy established for the particular

client.

The information management expedition agents. The

information management expedition assembly contains the

agents for IOR, MDR and I&A management. These agents

function as the following.

(1) The IOR agent manages and performs the archiving and

organization of published IOs for later retrieval by

subscribe and query. The IOR agent is capable of handling

a throughput of millions of IOs and hundreds of IO types at

a time.

(2) The MDR agent manages and supplies clients with

information about available IO types to which the client

has access. The MDR contains all schemas and other data

for approved IO types and versions within the platform.

(3) The I&A agent associates and ensures a unique identifier

with each client/administrator, issues and verifies the

authenticator and credentials based on open standards to

Table 4

Commercial MAS development/construction products: total 26

Topology type Number of systems Percentage

W 5 19

S 0 0

G 6 23

G/S 6 23

H 0 0

Other 9 35

Star topology: there seemed to be no instances of a star topology in the

commercial realm. Because of the size of deployment (load/volume) in a

commercial realm vs. academia, that would explain why a star would be

deployable in academia, but not in a commercial arena. G/S: the combination of

G/S meant that there were options within the framework to allow for either a

single entity to perform the controlling function of agents or to distribute that

control in a more grid-like pattern. H topology: actually found an instance of

the Hierarchical in the academic arena. It was described in the product info

almost exactly what your paper describes. Other: many commercial products

that would probably be classified in the academia world as grid-like, are

actually classified as other in commercial because that called themselves a tool

to build tools for marketing purposes. In that sense it could be called a

particular ‘type of topology’ but the product information was somewhat

confusing.

Table 5

Academic MAS development/construction products: total 39

Topology type Number of systems Percentage

W 2 5

S 11 28

G 14 36

G/S 8 21

H 1 3

Other 3 8

Star topology: there seemed to be no instances of a star topology in the

commercial realm. Because of the size of deployment (load/volume) in a

commercial realm vs. academia, that would explain why a star would be

deployable in academia, but not in a commercial arena. G/S: the combination of

G/S meant that there were options within the framework to allow for either a

single entity to perform the controlling function of agents or to distribute that

control in a more grid-like pattern. H topology: actually found an instance of

the Hierarchical in the academic arena. It was described in the product info

almost exactly what your paper describes. Other: many commercial products

that would probably be classified in the academia world as grid-like, are

actually classified as other in commercial because that called themselves a tool

to build tools for marketing purposes. In that sense it could be called a

particular ‘type of topology’ but the product information was somewhat

confusing.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

UNCORRECTED P
ROOF

the maximum extent with little or no modification of client

code.

The information system control agents. The information

system control assembly contains the account manage agent

(AMA), access control agent (ACA), and persistence

adaptation agent (PAA). These agents function as the

following.

(1) The Account manage agent (AMA) is responsible for

creation of accounts that include issuance of authenti-

cators and credentials; modification of accounts to

include disabling accounts, and changing privilege levels

via re-issuance of credentials; deletion of accounts.

(2) The Access control agent (ACA) is responsible for

granting access to IOs and system resources to

authorized clients and administrators. An access control

mechanism is enforced by the agent that only allows for

the dissemination and receipt of IOs in compliance

with the platform access control policy.

(3) The Persistence adaptation agent (PAA) has the

capability to manage the lifecycle of information within

the platform, ensures interoperability and the system’s

survival of several generations of clients without

degraded service over time. While the IMS (Information

manage Staff) is solely responsible for removing

information objects from the information space, the

PAA provides the means to accomplish this in

accordance to policy established.

Thus, the entire exemplar information service manage-

ment system consists of nine agent modules. In the

following, we illustrate the simulative implementation of

the information service management agent system in the

four topologies, respectively.

5.1. Web-like topological implementation

Note that in this example, agents are classified with different

functionalities. However, the interactions among the agents are

nevertheless organized in aWeb-like topology. This means that

every agent in the system is capable of communicating and

interacting with each other. The interaction diagram is shown

in Fig. 5.

The major advantage of the Web-like topological

implementation of the system is that versatile agent functions

can be built and incorporated into the system and interaction

broadly overall the system. The major problems with this

implementation are that (1) it is somehow hard to solve the data

inconsistency problem once it happens among the agents, for

example, for subscribe service, publishing service, and the IOR

maintenance; (2) it is incapable of generating and disseminat-

ing user-tailored information under dynamical changes of the

situation because adaptation to such a change requires complex

coordination of goal and functional specification changes

among a number of agents, and (3) the control structure of each

agent is rather complicated because of the heterogeneity of the

agent modules in the system. Since there is no central

controller or mediator, all the control functions among the

diverse of agents must be built into each individual agent. We

do not recommend such implementation for the supposed

information service management system.

5.2. Star-like topological implementation

A Star-like topological implementation of the hypothetic

information service management system has the agent

interaction diagram as shown in Fig. 6.

In this topological implementation, one extra agent in

addition to the nine required agent modules is employed in the

system architecture. The additional agent, named Agent

Publish
Service
Agent

Subscribe
Service
Agent

Query
Service
Agent

I&A
maintenance

Agent

Account
maintenance

Agent

MDR
maintenance

Agent

IOR
maintenance

Agent

Access
control
Agent

Persistence
adaptation

Agent

MDR

IOR

Fig. 5. Web-like topology of MAS for information service management.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Controller and Coordinator, is located in the centralized

position among the agents. It has two-way direction connection

to all the agent modules, while the information service agents

do not directly interact with each other. The advantages of this

scheme are that (1) it is easy to solve the data inconsistency

problem, and guarantee the right information retrieval and

delivery, and (2) it is possible to have additional agents with

versatile functions, such as data fusion and mining, added to

the service, assuming the agent controller and coordinator

maintains properly an agent registry that allows for dynamical

addition or deletion of agents in the assembly. Disadvantages

of the implementation are (1) it would be less efficient to

execute the information retrieval and delivery functions

because each of these function requires activation of at least

two agents, the coordinate agent and the subscribe or publish

agents, and (2) while the control structure of the information

service agents will be less complex because each of them only

need to interact with the controller, the control structure of the

coordinator agent will be relatively complicated. This

topological implementation would be a choice if the security

and reliability is the main concern and the efficiency (rapid

performance of the information service functions) is not a

major issue.

5.3. Grid-like topological implementation

In a Grid-like topological implementation, we place the

Persistence Adaptation Agent (PAA) at the center of the

assembly and the other agent modules surrounding it.

However, it differs from the Star-like topology in the way

that the other agents all have interactions with their

neighboring agents, in addition to the interactions with the

PAA. The PAA is chosen sit in the center because its

functionality may be need to all the other agents, for example,

adjusting the agent functional parameters according to

the dynamics of the environment and requirement changes of

the system. Here the role of PAA is also different from the

Controller and Coordinator agent in the Star-like topology in

the way that the PAA does not take the charge of coordinate the

execution of the interacting agents. The agents in the system all

have certain level of autonomy in terms of performing their

designated tasks. The agent interaction diagram is shown in

Fig. 7.

Major advantage of this Grid-like topological implemen-

tation is that the functionality of the individual agent can be

optimally conducted because the agents are connected in the

way that only those necessary interactions are permitted.

However, this implementation makes it hard to adjust and

modify the agent configuration, thus limits the versatility of

functions can be incorporated in to the system. The control

structure of overall system is also relatively complicated. This

implementation thus is also not in our recommendation.

5.4. HCAN implementation for information service

management

The design of HCAN architecture and algorithms expedite

the integration of publishing, subscribing, and query services in

a heterogeneous information space. The system is organized in

three agent layers, as shown in Fig. 8: (1) a information service

broker layer at the lower level of the hierarchy; (2) a

information expedition layer at the middle level of the

hierarchy; and (3) a system control layer at the top level of

the hierarchy [21]. The functionalities of these layers are

described in the following.

The information service broker layer contains subscribe,

publish, and query agents to interact with the information

service clients and networked information sources, respect-

ively. These agents detect and collect data, perform key word,

string, or context extractions from the data feeds, and submit

Agents
controller

and
coordinator

Publish
Service
Agent

Subscribe
Service
Agent

Query
Service
Agent

I&A
maintenance

Agent

Account
maintenance

Agent

MDR
maintenance

Agent

IOR
maintenance

Agent

Access
control
Agent

Persistence
adaptation

Agent

MDR

IOR IOR

Fig. 6. Star-like topology of MAS for information service management.

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

filtered reports to the upper level agents for information

package and delivery.

The information expedition layer accommodates three

information contents level management agents to perform

coordination tasks for information object repository mainten-

ance, metadata repository maintenance, and information source

identification and authentication.

The system control layer contains agents to support the

information service level management tasks, such as the client

account maintenance and access control, and persistence

adaptation that performs tasks to adapt the system to

environmental variation or requirement changes. The user

interface and system management functions are also performed

by the management agents at this layer that in charge of

interacting with human operators of this information service

system.

The advantages of HCAN topological implementation are

(1) the agents are better under control of appropriate agents that

enables efficiency of each agent’s performance meanwhile

ensures the reliability of the operations, and (2) the MAS

structure is flexible to add additional agents with versatile

functions, such as data fusion and mining. Since only agents

between layers are connected via heterogeneous links and are

interactive, each agent is relatively independent. This makes

the additions of agents and modifications of the agent

functionalities simple. Major disadvantage of the implemen-

tation is that it requires a little more deliberated planning,

design, and understanding of the interaction logics of

Publish
Service
Agent

Subscribe
Service
Agent

Query
Service
Agent

MDR
Manage
Agent

IOR
Manage
Agent

I&A
Manage
Agent

Info.
Client 1

Info.
Client 2

Info.
Client N

Account
Manage
Agent

Account
Manage
Agent

Persistence
adaptation

Agent

IOR IOR

MDR MDR

Fig. 8. HCAN topology for information service management.

MDR

IOR IOR

MDR

Publish
Service
Agent

Subscribe
Service
Agent

Query
Service
Agent

I&A
maintenance

Agent

Account
maintenance

Agent

MDR
maintenance

Agent

IOR
maintenance

Agent

Access
control
Agent

Persistence
adaptation

Agent

Fig. 7. Grid-like topology of MAS for information service management.

Q. Zhu / Advanced Engineering Informatics xx (xxxx) 1–15

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

the agents distributed on different layers. Overall, the HCAN

topological implementation is our recommendation for the

intended information service management system.

6. Conclusions

The agent-based system developments have emerged from

their primarily functional diversities to the stages that raise the

necessity of managing the system complexity. Building

reliable, maintainable, extensible, and re-usable MASs that

conform to their specifications requires modeling techniques

that support abstraction, structuring, and modularity. The most

widespread methodologies developed for the conventional

software systems are various object-oriented approaches. They

have achieved a considerable degree of maturity and are

supported by a large community of software developers. The

system architecture of object-oriented systems is based on the

notion of objects, which encapsulate state information as data

values and have associated behaviors defined by interfaces

describing how to use the state information. Object oriented

formal approach address almost all the steps in the process of

designing and implementing a software system, providing a

uniform paradigm across different system scales and

implementation languages. However, there are additional

issues related to the development and implementation of

multi-agent systems that need to take serious care of.

The implementation of multi-agent systems involves a great

number of problems with respect to the components, protocols,

interactions, and schemes. In particular it is often hard to

guarantee that the specification of a system that has been

designed actually fulfils the design requirements. Especially

for critical applications, for example in real-time domains,

there is a need to prove that the system being designed will

have certain properties under certain conditions (assumptions).

Many popular multi-agent systems of today deploy agents in a

uniform space of operating. The agents are supposed to respond

to the same calls and cooperate at the same time toward the

goals of operation. That kind of architecture is useful for some

applications. However, it endues some difficulties in agent

communications and task control. When applied in complex

real-time situations with intensive human and system inter-

actions, the cooperative nature makes the system less robust

because the disability of one agent would affect the successive

operations of the entire agent assembly. In this paper, we

studied four major architectural topologies of MAS. The

advantages and disadvantages of the topologies are assessed

and compared by using a set of criteria based on the

functionalities and properties of agents in MAS. The study

and understand the MAS topology would help the effort of

standardizing agent technology, and hopefully, promote more

adoption of MAS in solving real world complex problems.

7. Uncited references

[10], [12], [17], [29].

References

[1] Arai T, Sycara K, Payne T. Experience-based reinforcement learning to

acquire effective behavior in a multi-agent domain Proceedings of the 6th

pacific rim international conference on artificial intelligence 2000 pp.

125–35.

[2] Barbuceanu M, Fox MS. Cool: a language for describing coordination in

multi agent systems Proceedings of the first international conference on

multi-agent systems (ICMAS-95).: AAAI press; 1995 pp.17–24.

[3] Bradshaw JM. An introduction to software agents. In: Bradshaw JM,

editor. Software agents. Menlo Park, California: AAAI Press; 1997.

p. 3–46.

[4] Bradshaw JM, Dutfield S, Benoit P, Woolley JD. Toward an industrial-

strength open agent architecture. In: Bradshaw JM, editor. Software

agents. Menlo Park, California: AAAI Press; 1997. p. 375–418.

[5] Chauhan D, Baker A. JAFMAS: a multiagent application development

system Proceedings of autonomous agents 98. New York: ACM Press;

1998 pp. 100ndash;7.

[6] Cheyer A, Martin D. The open agent architecture. J Auton Agents Multi-

Agent Syst 2001;4(1):143–8.

[7] Ciancarini P, Tolksdorf R, Vitali F, Rossi D, Knoche A. Coordinating

multiagent applications on the WWW: a reference architecture. IEEE

Trans Softw Eng 1998.

[8] Cohen PR, Cheyer AJ, WangM, Baeg SC. An open agent architecture. In:

Oren Etzioni, editor. Proceedings of the AAAI spring symposium series

on software agents; 1994, 1994. p. 1–8.

[9] http://www.cougaar.org.

[10] Decker K. Distributed problem solving: a survey. IEEE Trans Syst Man

Cybern 1987;17(5):729–40.

[11] Decker K, Sycara K, Williamson M. Middle-agents for the internet

Proceedings of the international joint conferences on artificial intelligence

(IJCAI-97) 1997.

[12] Ferguson IA, Karakoulas GJ. Multiagent learning and adaptation in an

information filtering market Adaptation, coevolution and learning in

multiagent systems: papers from the 1996 AAAI spring symposium 1996

pp.28–32.

[13] Flores-Mendez R. Towards a standardization of multi-agent system

frameworks, http://www.acm.org/crossroads/crew/roberto_flores-men-

dez.html.

[14] Geri S, Zhu Q. dbAgent: an intelligent web agent for database mining

International conference on computer and informatics (CS I’98) 1998

pp.460–70.

[15] Goldman C, Rosenschein J. Emergent coordination through the use of

cooperative state-changing rules Proceedings of the twelfth national

conference on artificial intelligence 1994 pp. 408–13.

[16] Giampapa J, Paoluc M, Sycara K. Agent interoperation across multi agent

system boundaries Proceedings of agents 2000, Barcelona, Spain, June

3–7 2000.

[17] Grefenstette J, Daley R. Methods for competitive and cooperative co-

evolution Adaptation, coevolution and learning in multiagent systems:

papers from the 1996 AAAI spring symposium 1996 pp. 45–50.

[18] Haddadi A. Towards a pragmatic theory of interactions Proceedings of the

first international conference on multi-agent systems (ICMAS-95) 1995

pp. 133–9.

[19] Hayes-Roth B, Brownston L, van Gent R. Multiagent collaboration in

directed improvisation Proceedings of the first international conference on

multi-agent systems (ICMAS-95) 1995 pp. 148–54.

[20] Heinze C, Goss S, Josefsson T, Bennett K, Waugh S, Lloyd I, et al.

Interchanging agents and humans in military simulation. AI Mag 2002;

23(2):37–47.

[21] Hicks J, Stoyen A, Zhu Q. Intelligent agent-based software architecture

for combat performance under overwhelming information inflow and

uncertainty Seventh IEEE international conference on engineering of

complex computer systems 2001 pp. 200–10.

[22] Lu H, Sterling L. SportsAgents: a mediator-based multi-agent system for

cooperative information gathering from the world wide web Proceedings

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

http://www.cougaar.org
http://www.acm.org/crossroads/crew/roberto_flores-mendez.html
http://www.acm.org/crossroads/crew/roberto_flores-mendez.html

of the fifth international conference on practical applications of intelligent

agents and agent methodology 2000 pp. 331–4.

[23] Lu H, Sterling L. Intelligent matchmaking for information agents

cooperation on the world wide web Proceedings of the agent-based

simulation workshop 2000 pp. 161–8.

[24] Martin DL, Cheyer AJ, Moran DB. The open agent architecture: a

framework for building distributed software systems. Appl Artif Intell

1999;13(1–2):21–128.

[25] Nwana HS, Ndumu DT, Lee LC, Collis JC. ZEUS: a toolkit for

building distributed multi-agent systems Proceedings of the third

international conference on autonomous agents (Agents’99) 1999

pp. 360–1.

[26] Perry B, Taylor M, Unruh A. Information aggregation and agent

interaction patterns in infosleuth Proceedings of CIA 99. New York:

ACM press; 1999.

[27] Petrov PV, Zhu Q, Hicks JD, Stoyen, , AD. A hierarchical collective

agents network for real-time sensor fusion and decision support The

AAAI/KDD/UAI-2002 joint workshop on real-time decision support and

diagnosis systems 2002 pp. 73–4.

[28] Rickel J, Johnson WL. Task-oriented collaboration with embodied

agents in virtual world. In: Cassell J, Sullivan J, Prevost S, editors.

Embodied conversational agents. Cambridge, MA: MIT Press; 2000.

p. 95–122.

[29] Sahota MK. Reactive deliberation: An architecture for real-time

intelligent control in dynamic environments Proceedings of the twelfth

national conference on artificial intelligence 1994 pp. 1303–8.

[30] Shehory O, Kraus S. Task allocation via coalition formation among

autonomous agents Proceedings of the fourteenth international joint

conference on artificial intelligence 1995 pp. 655–61.

[31] Suzuki N, Fukuda M, Bic LF. Self-migrating threads for multi-agent

applications International workshop on cluster computing (IWCC’99)

1999.

[32] Sycara K, Klusch M,Widoff S, Jianguo L. Dynamic service matchmaking

among agents in open information environment. ACM GISMOD Rec

1999;28(1):47–53.

[33] Virdhagriswaran S, Osisek D, O’Connor P. Standardizing agent

technology. ACM Stand View 1995;3(3):96–101.

[34] White JE. Mobile agents. In: Bradshaw JM, editor. Software agents.

Menlo Park, California: AAAI Press; 1997. p. 437–72.

[35] Wilkins DE, Myers KL. A multiagent planning architecture Proceedings

of the 1998 international conference on AI planning systems, Pittsburgh

1998 pp. 154–62.

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

	University of Nebraska at Omaha
	DigitalCommons@UNO
	1-2006

	Topologies of agents interactions in knowledge intensive multi-agentsystems for networked information services
	Qiuming Zhu
	Recommended Citation

	Topologies of agents interactions in knowledge intensive multi-agent systems for networked information services
	Introduction
	Taxonomy
	Web-like topology
	Star-like topology
	Grid-like topology
	HCAN topology
	Summary

	Analyses
	Web-like topology
	Star-like topology
	Grid-like topology
	HCAN topology

	Applications
	Example
	Web-like topological implementation
	Star-like topological implementation
	Grid-like topological implementation
	HCAN implementation for information service management

	Conclusions
	Uncited references
	References

