
PLUS: A Message-Efficient Prototype for
Location-Based Applications

Yu-Ling Hsueh†, Roger Zimmermann‡, Wei-Shinn Ku§, Haojun Wang†, and Chung-Dau Wang†

†Computer Science Department, University of Southern California, Los Angeles, CA 90089
‡Computer Science Department, National University of Singapore, Singapore 117543

§Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849
{hsueh@usc.edu, rogerz@comp.nus.edu.sg, weishinn@auburn.edu, haojunwa@usc.edu, chungdaw@usc.edu}

Abstract— The PLUS system is designed to efficiently track
moving object locations on a road network and execute con-
tinuous spatial queries in support of location-based services.
PLUS implements a novel lazy position update mechanism that
significantly reduces the communication overhead and server
indexing load related to frequent location updates in moving
object and moving query scenarios. The contribution of this
demo is to present how the lazy position update scheme can
achieve message-efficiency under various conditions which can
be interactively set via user-selectable parameters in a graphical
user interface.

I. INTRODUCTION

As a result of recent technological advances, GPS-equipped
mobile devices with significant computational abilities, gi-
gabytes of storage, and wireless communication capabilities
provide a compelling environment to support location-based
services to mobile users. The efficient evaluation of continuous
spatial queries is a fundamental feature needed in many practi-
cal applications. An example query launched from a fire engine
while battling flames might be to “continuously locate other
fire engines within two miles of my current location.” Since
all units (i.e., users) are constantly moving, frequent location
updates often result in high server re-indexing costs and
immense communication overhead. We have recently designed
the Partition-Based Lazy Update algorithm [1] to evaluate
continuous queries by maintaining a Location Information
Table (LIT) on each mobile device. A LIT is a grid data
structure where each cell stores a value that represents its
distance to the closest query boundary. Figure 1 shows an
example of a mobile-side LIT cached in the local memory
of a mobile client, where the cell elements with zero value
represent the area overlapping with the three example query
boundaries. If the value of a cell element is greater than zero,
the cell is completely outside of any query area. On the other
hand, if the value of a cell element is less than zero, the cell is
inside of a query boundary. Hence all the data points in such
a cell are answer points. PLUS avoids transmitting location
updates that do not affect any query results through the use of
LITs which (a) allow each moving object to estimate possible
query movements and issue a location update only when it may
affect any query results and (b) enable smart server probing
that results in fewer message exchanges. When an event (a
voluntary mobile-side location update or a server-side location

Mobile Client

1
q

2
q

3
q

4
q5

q

6
q

7
q

8
q

9
q

10
q

2
p

LIT view

Traditional safe region 11
q

13
q

14
q

1
p

Mobile-side LIT

11111

1

1 1 1

1

1 1 1 1 1 1 1 1

1 1112222

2

2

2333

3

3

44

45

000

000 0 0 0 0

0 0 0 0

0

0

0

1

1

1

-1

-1 -2

-1

00

Fig. 1. Traditional Safe regions and LITs.

probe) occurs, then a mobile unit receives an up-to-date LIT
from the server. In between events, the LIT is locally main-
tained by the moving object based on the worst-case estimated
movements of nearby query boundaries for handling dynamic
queries. A number of previously proposed techniques have
provided significant insight into this issue. The mobile client
may be equipped with computation capabilities to maintain a
safe region [3] with the purpose that movements within the
safe region will not affect any query results. Safe regions are
bounded by the nearest query rectangles around a mobile client
and must be recomputed when certain events take place such
as a new query is inserted or a moving object moves beyond its
safe region boundary. However, because of the usually simple
shape of safe regions (e.g., rectangles or spheres) they can
only help to avoid a fraction of unnecessary location updates.
In the example shown in Figure 1, rectangles are a set of
moving queries and the gray area represents the traditional
safe region of moving object p1. As p1 moves out of its safe
region (in the direction of the arrow) to a new location that is
irrelevant to the query results, it issues an unnecessary update
because of the limited safe region information. Furthermore,
the safe region of a moving object is determined based on
its current location. In some cases the server must probe a
client object about its current location. In response to such a
probe (which consists of one downstream message) the client
replies with its current position (one upstream message) and
the server determines a new safe region which it sends back
to the client (one downstream message). Hence a total of three
network messages are sent back and forth between the server
and each mobile client.

In contrast, we define a grid-like LIT which provides a
moving object with a fine-grained view of the surrounding
query locations across the terrain to reduce unnecessary

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.48

1515

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.48

1515

location updates. As an additional advantage, an LIT is
determined without referring to the locations of moving
objects. Therefore, if a query is inserted, the server can send
the new LIT with the added query information to the affected
moving objects directly, and only a fraction of the mobile
clients that receive the updated LIT must issue location
updates back to the server (– namely if they are part of a new
query result). Therefore, the number of network messages
is reduced to at most two per server location probe. In this
demonstration we present a PLUS prototype which includes
the tasks that execute on both the server and the mobile
units in a road network environment. In particular, the PLUS
system possesses the following distinguishing characteristics:

• Partition-based lazy update continuous query pro-
cessing. PLUS performs and visualizes a novel partition-
based lazy update continuous query algorithm with a
large number of mobile users.

• Scalability. PLUS mobile users utilize Location Infor-
mation Tables to index queries to reduce update mes-
sages and hence improve system scalability. The PLUS
demonstration system computes and displays comparative
results of the LIT-based approach and traditional safe re-
gion techniques [2], [3] to illustrate performance benefits.

• Realistic movement on road networks. The movement
of mobile users in PLUS is based on underlying real-
world road networks from the TIGER/Line data set. Mo-
bile users in PLUS automatically travel on road segments
and the velocity of the movement is determined by the
speed limit of each road segment.

II. SYSTEM ARCHITECTURE

 Mobile unit

Server & Spatial Database

Cached LIT

Location

update
to Server

 Mobile unit

Cached LIT

Query Result

& LIT update
to Mobile unit

Fig. 2. System infrastructure.

Figure 2 illustrates the infrastructure of the PLUS system.
We assume that the communication between the centralized
server and the mobile units are through cellular or WiMAX
networks. The mobile units such as vehicles or hand-held
devices (e.g., cell phones and PDAs) are able to provide the
server with their positions from a built-in GPS locator. PLUS
consists of two major components: the Server Task Module and
the Mobile Task Module. The server module supports an event-
driven mechanism to handle all the object requests such as

object location updates or new query insertions. Furthermore,
the module reduces the data size of a LIT before transmitting it
to a moving object in order to fit the information into a single
network packet. For the mobile units, we assume that each
device has enough computational capabilities and memory
space to carry out the required tasks. On top of an underlying
road network, a mobile unit can move arbitrarily without
exceeding a predetermined maximum speed limit. For the
demonstration purpose, a mobile-side application is provided
to emulate a real mobile client. To observe the scalability of the
system, a set of virtual mobile units is generated. Therefore,
the query evaluation is performed on both the virtual and
real mobile clients. Figure 3 illustrates the detailed PLUS
flow chart. Any updates from query or data objects (A) are
handled differently by the ObjUpdate Operation based on
the event types. If the request is a query update (B) or a
new query registration (C), an ObjProbe Operation or a
QurInsert Operation is performed, respectively, to determine
a set of candidate data objects that may become new query
answer points. After the data objects are re-indexed (D), the
system proceeds to (E) which triggers the LIT Generation
and Update operation. A new mobile-side LIT with an update
flag is extracted, compressed and sent to each candidate object
(F). The system then performs a Query Evaluation (G) to
compute new query results after receiving the location updates
from the probing objects. In case that the request is a data
object update, a new, compressed LIT is sent directly to the
object after (object) indexing. On the mobile side, first, a
mobile unit retrieves its current location from its GPS tracker
(H). Together with the Query Object Movement Prediction
module to estimate possible surrounding query movements
(I), the mobile unit determines whether a location update is
necessary through the Location Update Check procedure. In
the following sections, we describe the details of LITs and the
aspects of the server and mobile task modules in PLUS.

Compressed mobile-side LIT with an update flag

Query Results

Mobile Task Module

GPS Location

Tracker

Location

Update Check

Query Object

Movement

Prediction

ObjProbe

Operation

Mobile-side

LIT Extraction

& Data

Compression

LIT

Generation &

Updates

Query

Evaluation

ObjUpdate

Operation

a query update

Server Task Module

a query insertion

QurInsert

Operation

Object

Storage
object indexing

update

or

registry

A

B

C

F

E

G

H

I

D

Fig. 3. PLUS system flow chart.

A. Location Information Tables

In PLUS, we use a server-side LIT (LITserv) that covers
the entire service space and a mobile-side LIT (LITmov) for
each moving object. The LITserv can be built on top of any
existing data indexing structures (e.g., grids or R-trees) and
it is maintained at the server and updated when one of the
following two events happen: (1) an existing query changes
its location or (2) a new query is registered with the system.

15161516

A mobile-side LIT is a subset table extracted from the latest
LITserv . Furthermore, each moving object maintains (i.e.,
updates) the mobile-side LIT locally after receiving it from
the server. The LITmov is synchronized with the LITserv

again when a specific event occurs. To generate a LIT, we first
partition the space and mark the cells zeros that are covered
by query boundaries as shown in the example of Figure 1. We
call these areas border zones. Each of the rest of the cells is
assigned an integer number (a LIT value), which represents the
minimal linear distance in cells from itself to its nearest query
boundary. For handling dynamic queries, each mobile unit
periodically performs a mobile-side LIT revision to capture
possible query movements. The queries that define the border
zones might move to their surrounding cells in any direction
as time proceeds. Therefore, for simplicity, a mobile unit can
predict the possible query movements by expanding the border
zone outwards by the length of the maximum moving distance
for every time instance. The area covered by the expanding
border zone is called a prediction zone, serving the same role
as a border zone that triggers a location update when a moving
object enters it. Any object moving into a prediction zone
might become part of the query results.

B. Server Task Module

The Server Task Module supports an event-driven
mechanism to handle a request from a mobile unit which
it dispatches to perform a specific operation based on the
event type. There are four operations implemented in the
system: Object Update (object location update event), Object
Position Probing (query update event), Query Insertion (query
insertion event), and Data Compression.

• An Object Update (ObjUpdate) Operation re-indexes the
location of a data or query object on the server based on its
transmitted coordinates.
• An Object Position Probing (ObjProbe) Operation
triggers smart on-demand location probes to reduce the
number of location update messages when the request is
a query update. The operation determines a set of objects
and sends them the latest LIT encoded with an update flag
to notify the mobile objects to respond with their current
locations.
• A Query Insertion (QurInsert) Operation determines a
set of affected objects without causing any missed location
updates when a new query is inserted. A new LIT with
a “delay” update flag is then sent to each affected object,
which replies to the server with its current position only
when objects fall into the query boundary. As a result, only
a fraction of the affected objects must issue location updates.
• A Data Compression Operation compresses a mobile-side
LIT to reduce the data stream size. While a mobile-side LIT
provides more detailed query boundary information than a
safe region, the data transmission of a potentially large LIT
needs to be broken into more packets which may adversely
affect performance. In the PLUS demonstration system, we
use the Internet standard for the largest data packet payload

size (MTU) equal to 1500 bytes. We apply three consecutive
lossless data compression methods: delta encoding, run-length
encoding (RLE) and Huffman encoding. First, we de-correlate
the LIT values by subtracting pairs of adjacent LIT numbers.
Second, RLE is utilized to take advantage of the large amount
of spatial redundancy in a LIT and we use a Hilbert curve
as the data scanning path along which we count repeated
numbers. Finally, we performed Huffman encoding which is
based on the frequency of occurrence of a data item and uses
a lower number of bits to encode the data that occur more
frequently.

To complete, the process invokes the mobile-side LIT ex-
traction. The compressed LIT, combined with an update flag
is sent to the set of moving objects determined by the previous
operation. Finally, the query evaluation procedure is executed
to retrieve the query answers, and the result is sent back to
the query objects.

C. Mobile Task Module

The Mobile Task Module includes two major functions:
(1) query object movement prediction, and (2) location update
check to determine whether a location update is necessary.
The first function predicts the possible movements of queries
by updating the LIT cells to prediction zones which might
be covered by nearby moving queries as time proceeds. Next,
each mobile unit determines a location update by referring to
its current location detected by the GPS location tracker and
the revised mobile-side LIT. If an object steps into a query
boundary zone or a prediction zone indexed in its LIT, it issues
a location update.

III. SIMULATION DATA SETS

To produce realistic mobile movements, PLUS imports the
road network from the TIGER/Line [4] street vector data set
available from the U.S. Census Bureau and then integrates the
road segments (e.g., freeways, primary highways, secondary
and connecting roads, and rural roads) into a complete road
network. Mobile users in PLUS automatically travel on road
segments and the velocity of the movement is determined by
the speed limit of each road segment. The movements of the
mobile objects are generated continuously on top of the road
network within a given time period and the speed limit for
any moving object is in the range of 35 to 90 miles per hour
(MPH). The mobility rate (the percentage of objects that move
within a time step) is selectable in the range from 0% to 100%.
The query objects are randomly chosen from the set of moving
objects and the number of queries can be specified as being
launched from 0% to 100% of the moving objects.

IV. SYSTEM DEMONSTRATION

A. PLUS Server-side System Interface

Figure 4 shows the PLUS server-side interface. We also
implemented a well-known safe region update scheme [3]
using a sphere shape (SR*-SP for short) and a periodic scheme
(PERIODIC). The top panel on the interface visualizes the
server view of the object movements on the real-world road

15171517

Fig. 4. PLUS main interface.

segments in the Los Angeles area. In the first tabbed panel
(the lower part of the frame), the user can compare the
location update frequency of PLUS, SR*-SP, and PERIODIC
by observing a dynamic line chart which shows the number of
location updates for the three approaches over time. The CPU
performance corresponding to the three approaches is shown
in the second tabbed panel. Mobile units are distinguished
based on their types (a query or moving object) and status
(e.g., issuing location updates) by marking them in different
colors. In addition, a query is shown with a rectangle as
the query boundary. For example, query no. 37 contains one
answer point (no. 30). PLUS is controlled via user-selectable
parameters (e.g., maximum speed, number of query and data
objects). In particular, a user can specify the number of mobile-
side and server-side LITs to explore the impact of the LIT size.
Figure 5 illustrates the interface of the spatial data compression
module (using a Hilbert curve as the data scanning path) for a
LIT. The user can upload an existing LIT and execute the data
compression methods selected from the provided options. The
resulting compression reduction is shown in the status area.

Fig. 5. The data compression module.

B. PLUS-client: Client-side System Interface
We also provide a mobile-side interface (PLUS-client)

shown in Figure 6 for a mobile user to interact with PLUS. The
PLUS-client is a web-based application where the geographic
region generated from the TIGER/Line is the same as the road
network imported to the server-side PLUS. The mobile client
can specify the starting and ending points of a path and then
we adopt the A∗ search algorithm to find the travel routes for
the client. The average moving speed, query range and the
trajectory information are sent to PLUS. The rectangle in the
figure represents the query boundary and the points of interests
shown in the rectangle are the query answer points sent back
from PLUS.

Fig. 6. PLUS-client interface.

V. CONCLUSIONS

The PLUS demonstration system implements both server-
side and mobile-side aspects of a location-based service that
illustrates the partition-based lazy updates approach for con-
tinuous queries. PLUS shows the server view with the latest
updated mobile-unit locations integrated on a road network
with realistic speed limits. The PLUS system continuously
compares the performance with the traditional periodic ap-
proach and the safe region update approach in terms of the
number of network messages which are simultaneously shown
in a curve chart on the system’s main interface. The visual-
ization of the data compression methods adopted by PLUS is
implemented with an interface to test the data size reduction
by specifying three optional data compression methods. A
mobile-side application is also implemented to interactively
observe the system processes.

VI. ACKNOWLEDGMENTS

This research has been funded in part by NSF grants CNS-0831502
(CT), IIS-0534761, NUS AcRF grant WBS R-252-050-280-101/133.

REFERENCES

[1] Y.-L. Hsueh, R. Zimmermann, H. Wang, and W.-S. Ku. Partition-based lazy updates
for continuous queries over moving objects. In GIS ’07. ACM, 2007.

[2] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous spatial
queries over moving objects. In SIGMOD Conference, pages 479–490, 2005.

[3] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query
Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. IEEE Trans. Computers, pages 1124–1140, 2002.

[4] TIGER/Line. http://www.census.gov/geo/www/tiger/.

15181518

