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Abstract
We introduce a modified rack algebraZ[X] for racks X with finite rack rank

N. We use representations ofZ[X] into rings, known asrack modules, to define
enhancements of the rack counting invariant for classical and virtual knots and links.
We provide computations and examples to show that the new invariants are strictly
stronger than the unenhanced counting invariant and are notdetermined by the Jones
or Alexander polynomials.

1. Introduction

First introduced in [1], aquandle moduleis a representation of an associative al-
gebraZ[Q] known as thequandle algebra, defined from a quandleQ. In [3] quandle
modules were used to define knot and link invariants including some enhancements of
the quandle counting invariant. In [7] a generalized notionof rack modules defined in
terms of trunks was introduced.

In this paper we introduce a modified form of the rack algebra for racks with fi-
nite rack rank and use the resulting representations into modules over finite rings to
define new enhancements of the rack counting invariant8

Z

X from [9]. These new en-
hancements specialize to8Z

X but are able to distinguish many knots and links with the
same8Z

X values, and hence are strictly stronger invariants. We provide examples which
demonstrate that the new enhanced invariants can distinguish knots with the same Jones
and Alexander polynomials.

The paper is organized as follows. In Section 2 we review the basics of racks and
the rack counting invariant. In Section 3 we define the rack algebra and resulting rack
modules. In Section 4 we use finite rack modules to define new enhancements of the
rack counting invariant. In Section 5 we give examples and describe our methods of
computation of the new invariants. In Section 6 we collect a few open questions and
suggest directions for future work.

This paper is the end result of a summer 2010 project performed by The Fletcher
Jones Fellowships in Mathematics in the Claremont Center forMathematical Sciences,
a summer undergraduate research program at the Claremont Colleges. The authors are
grateful to the Fletcher Jones Foundation for funding this project.

2000 Mathematics Subject Classification. 57M25, 57M27.
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2. Rack basics

In this section, we review some rack basics needed for subsequent sections. We
begin with a definition from [4].

DEFINITION 1. A rack is a setX with an operationF W X � X ! X satisfying
the following axioms:
(i) for all x, y 2 X, there exists aunique z2 X such thatx D zF y, and
(ii) for all x, y, z 2 X, the equation

(x F y) F zD (x F z) F (y F z)

is satisfied.

Note that Axiom (i) is equivalent to the following:
(i0) there exists a second operationF�1

W X � X ! X such that for allx, y 2 X

(x F y) F�1 y D x D (x F�1 y) F y.

As shown below, the operationF denotes a crossing from right to left given the
positive direction of the over-crossing strand. Conversely, the operationF�1 denotes a
crossing from the opposite direction.

If we regardx, y 2 X as two labels on arcs in a knot diagram, as shown below,
we see that axioms (i) and (ii) correspond to Reidemeister moves II and III.

The equivalence relation on knot diagrams generated by the Reidemeister II and
III moves is known asregular isotopy, and labelings of links by racks are preserved
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by regular isotopy moves. Rack colorings are also preservedby the blackboard-framed
type I moves, which preserve the writhe orblackboard-framing:

EXAMPLE 1 (Constant action racks). Given a setX, we can define a binary op-
eration x F y D � (x), wherex, y 2 X and the bijection� W X ! X is any permutation
in the symmetric groupSX on X. Then under the operationF, X is a rack, since
F

�1
D �

�1(x) and

(x F y) F zD � (x F y) D � 2(x) D � (x F z) D (x F z) F (y F z).

EXAMPLE 2 ((t, s)-racks). A (t, s)-rack is a moduleX over R3 D Z[t�1, s]=(s2
�

(1� t)s) under the operations

x F y D t x C sy and x F�1 y D t�1x � t�1sy.

Convenient examples of (t, s)-rack structures include:
• X D Zn with a choice ofs 2 Zn and t 2 Z�n satisfyings2

D (1� t)s, e.g.Z4 with
t D 1 andsD 2,
• X D R3=I for an ideal I , e.g. R3=(t2

C 1),
• X any abelian group with an automorphismtW X! X and an endomorphismsW X!
X satisfyings2

D (I d � t)sD s(I d � t).
If sD 1� t then our (t, s)-rack is a quandle, known as anAlexander quandle.

DEFINITION 2. Analogous to a Cayley table for a group, arack matrixdescribes
an operationF on a finite rackX D {x1, x2, : : : , xn}. The entryk of the rack matrix in
the i -th row and j -th column is defined to be the subscript ofxk, wherexk D xi F x j .

EXAMPLE 3. The following are the rack matrices of the constant actionrack X D
{x1, x2, x3, x4} with � D (1234) and the (t, s)-rack Y D Z4 with t D 1 andsD 2:

MX D

2

6

6

4

2 2 2 2
3 3 3 3
4 4 4 4
1 1 1 1

3

7

7

5

, MY D

2

6

6

4

3 1 3 1
4 2 4 2
1 3 1 3
2 4 2 4

3

7

7

5

.
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Every tame blackboard-framed oriented knot or linkL has a fundamental rack
F R(L) consisting of equivalence classes of rack words in a set of generators corres-
ponding one-to-one with the set of arcs in a diagram ofL modulo the equivalence
relation generated by the rack axiom relations and the crossing relations inL. If we
wish to specify explicitly the writhe vector or blackboard-framing vector ofL, we will
write F R(L , w) wherew D (w1, : : : , wn) andwk is the writhe of thek-th component
of L.

For a given framed linkL and rackX, the number of rack labelings of the arcs
in L by rack elements is an invariant of framed isotopy known as the basic count-
ing invariant, denotedjHom(F R(L), X)j since each labeling determines a unique rack
homomorphism fromF R(L) to X.

DEFINITION 3. Let X be a rack. For every elementx 2 X, the rack rank of x,
N(x), is the minimal integerN such that�N(x) D x where thekink map� W X ! X
is defined by�(x) D x F x. The rack rank of X, N(X), is the least common multiple
(lcm) of the rank ranks ofx 2 X:

N(X) D lcm{N(x) j x 2 X}.

If X is finite, then the rack rank is the exponent of the kink map� considered as an
element of the symmetric groupSX .

Rack labelings of knot and link diagrams by a rackX are also preserved by the
N-phone cord movewhere N is the rack rank ofX:

In [9] it is noted that if a rackX has rack rankN, then the basic counting in-
variants are periodic inN on each component, and thus the sum of these basic count-
ing invariants over a complete set of writhe vectors modN is an invariant ofL up to
ambient isotopy.

DEFINITION 4. The integral rack counting invariantof L with respect toX is
defined as:

8

Z

X(L) D
X

w2W

jHom(F R(L , w), X)j
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where X is a finite rack,L is a link with c components,N D N(X) and W D (ZN)c.

EXAMPLE 4. Let us find the set of rack labelings of the Hopf linkH by the
constant action rackX(12) D {1, 2} with � D (12). The labeling rule here says that
when crossing under a strand with any label, a 1 switches to a 2and vice-versa. In
particular, in this rack we always havex ¤ x F y for all x, y. The rack rank is 2, so
we need to find rack labelings over diagrams ofL with all writhe vectors in (Z2)2

D

{(0,0),(0,1),(1,0),(1,1)}. The diagrams of the Hopf link with writhe vectors (0,0), (0,1)
and (1, 0) have no valid rack labelings byX, since each of these diagrams requires a
relation of the formx D x F y:

while the (1, 1) diagram has four validX-labelings:

Hence, the integral rack counting invariant of the Hopf linkwith respect toX is8Z

X(H )D
0C 0C 0C 4D 4.

3. The rack algebra and rack modules

In this section we recall and slightly reformulate the notions of the rack algebra
and rack modules from [1, 3, 7].

Let X be a finite rack with rack rankN. We would like to define an associative
algebraZ[X] determined byX. One way to do this is to modify the (t,s)-rack structure
described in Section 2, giving each pair (x, y) 2 X � X its own invertible tx,y and
generic sx,y. Let �[X] be the freeZ-algebra generated by thesesx,y and t�1

x,y. The
rack algebraof X, Z[X], will be a quotient of�[X] by a certain idealI .

To see the multiplicative structure ofZ[X] D �[X]=I , it is helpful to see a geo-
metric interpretation. LetL be a fixed knot or link diagram with a fixed rack labeling
by X. We would like to consider secondary labelings ofL by elements of the rack
algebraZ[X]. In [3] these secondary labels are pictured as “beads” on the strands of
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the knot or link. The basic bead-labeling rule is the usual (t, s)-rack rule, with the ex-
ception that the beads at a crossing use the specifictx,y and sx,y associated to the rack
labels on the right-hand underarc and overarc as illustrated.

REMARK 5. Note that this rule does not make use of the orientation of the un-
derstrand. With rack labelx on the underarc on the right-hand side when the overarc is
oriented upward and rack labely on the overstrand, the rack algebra labels area on the
right-hand underarc,b on the overarc andcD tx,yaC sx,yb on the left-hand overarc.

We can also (as in [3]) formulate the rack algebra labeling rule in terms of the
inbound arcs at a negative crossing; first we define elementsNtx,y D t�1

xF�1y,y and Nsx,y D

�t�1
xF�1y,ysxF�1y,y. Then we can express the label on the outbound underarc at a negative

crossing with inbound rack colorsx, y as

cD Ntx,yaC Nsx,ybD t�1
xF�1y,ya� t�1

xF�1y,ysxF�1y,yb.

We would like to find the conditions required to make labelings of a rack-labeled dia-
gram by rack algebra elements invariant under rack-labeledblackboard-framed isotopy.
We will then define the rack algebraZ[X] by taking a quotient by the idealI generated
by the elements we must kill to obtain invariance underX-colored blackboard-framed
Reidemeister moves. In [1, 3] the special case whereX is a quandle, i.e. a rack of rack
rank N(X) D 1, is considered. To extend this definition to the case of racks with finite
rank N � 1, the Reidemeister moves we need are the standard type II andIII moves
together with the blackboard-framed type I moves and theN-phone cord move.
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The Reidemeister II and blackboard-framed type I moves do not impose any con-
ditions due to our choice of crossing rule:

The Reidemeister III move gives us three conditions which werecognize as in-
dexed versions of the (t, s)-rack conditions:

Comparing coefficients one, we must have

txFy,ztx,y D txFz,yFztx,z, txFy,zsx,y D sxFz,yFzty,z

and

sxFy,z D sxFz,yFzsy,zC txFz,yFzsx,z.
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Finally, for defining counting invariants we will needN-phone cord move compatibility.

Going though thekth kink multiplies our rack algebra element by a factor oft
�

k(x),�k(x)C

s
�

k(x),�k(x), so N-phone cord invariance requires that the product of these factors must
equal 1:

N�1
Y

kD0

(t
�

k(x),�k(x) C s
�

k(x),�k(x)) D 1.

Thus, we have:

DEFINITION 5. Let X be a rack with rack rankN and let�[X] be the freeZ-
algebra generated by elementst�1

x,y and sx,y where x, y 2 X. Then therack algebraof
X, denotedZ[X], is Z[X] D �[X]=I where I is the ideal generated by elements of
the form
• txFy,ztx,y � txFz,yFztx,z,
• txFy,zsx,y � sxFz,yFzty,z,
• sxFy,z � sxFz,yFzsy,z � txFz,yFzsx,z and

• 1�
QN�1

kD0 (t
�

k(x),�k(x) C s
�

k(x),�k(x))
A rack module over Xor a Z[X]-module is a representation ofZ[X], i.e., an abelian
group G with isomorphismstx,y W G! G and endomorphismssx,y W G! G such that
each of the above maps is zero.

EXAMPLE 6. Let X be a rack and letY be a (t, s)-rack. ThenY is a Z[X]-
module viatx,y D t and sx,y D s for all x, y if and only if N(X) D N(Y).

REMARK 7. Let X be a rack of rack rankN and let G be an abelian group
with isomorphismstx,y W G ! G and endomorphismssx,y W G ! G. The rack module
condition is equivalent to the condition that the cartesianproduct X � G is a rack of
rack rankN under the operation

(x, g) F (y, h) D (x F y, tx,y(g)C sx,y(h)).

Such a rack is usually known as anextension rackof X.

For the purpose of enhancing the rack counting invariant, wewant to find ex-
amples of finite rack modules. Probably the simplest way to achieve this is the follow-
ing: let X be a finite rack and letR be a finite ring with identity, e.g.Zn or, for a
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non-commutative example, the ringMm(Zn) of m�m matrices overZn. We can give
any R-module V the structure of aZ[X]-module by choosing elementstx,y 2 R� and
sx,y 2 R satisfying the rack module relations for allx, y 2 X.

We can express aZ[X]-module structure onR conveniently by giving a block
matrix MR D [Mt jMs] with block matricesMt and Ms indexed by elements ofX D
{x1, : : : , xn}, i.e. the elements in rowi column j of Mt and Ms respectively aretxi ,y j

and sxi ,y j .

EXAMPLE 8. Let X be the constant action rack on the set{1,2} with permutation
� D (12), let RD Z3 and sets11D s22D 1, s12D s21D 2 andt11D t12D t21D t22D 1.
It is straightforward to verify that the rack algebra relations are satisfied, and thus we
have a finiteZ[X]-module structure onZ3 with rack module matrix given by

MR D

�

1 1 1 2
1 1 2 1

�

.

EXAMPLE 9. Let L be a fixed oriented link diagram with arcsa1, : : : , an and let
f be a rack labeling ofL by X. We can regardf 2 Hom(F R(L), X) as a rack homo-
morphism from the fundamental rack ofL into X or as a link diagram with a fixed
rack labeling. Such a labeling determines a rack moduleZ[ f ] D Z[X][a1, : : : , an]=C
whereC is the submodule determined by the crossing relations at thecrossings ofL.
For instance, the trefoil knot diagram below with the pictured rack coloring defines a
rack module with the listed presentation matrixM

Z[ f ] .

M
Z[ f ] D

2

4

t13 �1 s13

�1 s32 t32

s21 t21 �1

3

5.

REMARK 10. We note that in the case whereX is the trivial quandle with one
element, we havet1,1D t , s1,1D s and (t C s) D 1 implies sD 1� t , and M

Z[ f ] is a
presentation matrix for the Alexander quandle ofL.

4. Rack module enhancements of the counting invariant

In this section we use finite rack modules to enhance the rack counting invariant.
Let X be a finite rack with rack rankN, L an oriented link ofc ordered compo-

nents, andW D (ZN)c the set of writhe vectors ofL mod N. Recall from Section 2
that theintegral rack counting invariantof L with respect toX is the sum

8

Z

X(L) D
X

w2W

jHom(F R(L , w), X)j
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counting the total number of rack labelings ofL by X over a complete period of
writhes modN.

Now let R be aZ[X]-module. For each rack labelingf 2 Hom(F R(L , w), X) of
L by X, we can ask how many associatedR-labelings of the diagram there are. Such
a labeling is a homomorphism ofZ[X]-modules� W Z[ f ] ! R. We can find the set of
all such labelings from the presentation matrix ofZ[ f ] by substituting in the values of
tx,y and sx,y in R and finding the solution space of the resulting homogeneous system
of linear equations inR. Denote this set by Hom(Z[ f ], R).

By construction, the set Hom(Z[ f ], R) of R-labelings of f is invariant underX-
colored blackboard-framed Reidemeister moves andN-phone cord moves, and thus gives
us an invariant signature of theX-labeling. The multiset of such signatures over the set
of all X-labelings{Hom(F R(L , w), X) W w 2 W} gives us a natural enhancement of the
rack counting invariant.

DEFINITION 6. Let X be a finite rack with rack rankN, L an oriented link of
c ordered components,W D (ZN)c and R a finite Z[X]-module. Therack module en-
hanced multisetof L with respect toX and R is the multiset

8

M
X,R(L) D {Hom(Z[ f ], R) W f 2 Hom(F R(L , w), X), w 2 W}.

For ease of comparison, we can take the cardinality of each ofthe sets of rack mod-
ule homomorphisms to get a multiset of integers, therack module enhanced count-
ing multiset

8

M,Z
X,R (L) D {jHom(Z[ f ], R)j W f 2 Hom(F R(L , w), X), w 2 W}.

The generating function of8M,Z
X,R (L) is a polynomial link invariant, therack module

enhanced counting invariant

8X,R(L) D
X

w2W

 

X

f 2Hom(F R(L ,w),X)

ujHom(Z[ f ], R)j

!

.

Theorem 1. For any finite rack X and rack module R, 8M
X,R(L), 8X,R(L) and

8X,R(L) are invariants of classical and virtual knots and links.

EXAMPLE 11. Let X and R be the rack and rack module in Example 8. Every
knot has exactly two labelings byX in even writhe and zero labelings in odd writhe, so
the integral rack counting invariant for any knot is8Z

X(K ) D 2. However, this smallest
possible non-quandle rack with a choice ofZ[X]-module structure onZ3 nevertheless
detects the difference between the two smallest non-trivial knots, the trefoil 31 and the
figure-eight knot 41.
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The X-colored trefoil knot below has the listedZ[ f ] presentation matrix.

M
Z[ f ] D

2

6

6

4

�1 0 0 t2,2C s2,2

t1,1 �1 s1,1 0
0 s1,2 t1,2 �1
0 t2,2 �1 s2,2

3

7

7

5

.

Substituting in the values oftx,y and sx,y in R and thinking of the matrix as a co-
efficient matrix for a homogeneous system, we find there are 9 total rack algebra la-
belings; note that the symmetry in the indices inMR implies that the otherX-labeling
yields the same number ofR-labelings, for an invariant value of�X,R(31) D 2u9

2

6

6

4

2 0 0 2
1 2 1 0
0 2 1 2
0 1 2 1

3

7

7

5

!

2

6

6

4

1 0 0 1
0 1 2 1
0 0 0 0
0 0 0 0

3

7

7

5

.

Comparing this with theX-colored figure eight knot 41, we find that the space of
Z[X]-colorings has only three elements:

M
Z[ f ] D

2

6

6

4

t2,2 0 s2,2 �1
t2,1 �1 0 s2,1

0 s2,1 t2,1 �1
s2,2 �1 t2,2 0

3

7

7

5

,

2

6

6

4

1 0 1 2
1 2 0 2
0 2 1 2
1 2 1 0

3

7

7

5

!

2

6

6

4

1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 0

3

7

7

5

.

Thus, we have8X,R(41) D 2u3
¤ 2u9

D 8X,R(31), and the rack module enhanced in-
variant is strictly stronger than the rack counting invariant.

REMARK 12. In the special case whenR is a commutative ring andtx,y and
sx,y are elements ofR, we do not needR to be finite in order to have a well-defined
computable enhanced invariant. Replacing the the number ofR-labelings with the di-
mension of the space ofR-labelings yields a computable invariant we might call the
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dimension-enhanced rack module counting invariant:

8

dim
X,R(L) D

X

w2W

 

X

f 2Hom(F R(L ,w),X)

udim(Hom(Z[ f ], R))

!

.

Indeed, if R is a PID,8dim
X,R carries the same information as8X,R, though if R has

torsion then8X,R will generally contain more information.

REMARK 13. Let X be a rack andR a finite Z[X]-module. As noted in Re-
mark 7, the cartesian productX � R is a rack under

(x, a) F (y, b) D (x F y, tx,yaC sx,yb).

The rack module enhanced counting invariant8X,R is then related to the integral rack
counting invariant with respect to the extension rackX � R by

8

Z

X�R(L) D
X

H28M
X,R(L)

jH j,

i.e., 8Z

X�R(L) is the sum of the exponents in the terms of8X,R. In particular, we
can understand8X,R as an enhancement of8Z

X�R defined by collecting together the
labelings ofL by the extension rackX � R which project to the same rack labeling of
L by X.

REMARK 14. Note that all of the preceding extends to virtual knots and links in
the usual way, i.e., by ignoring any virtual crossings. See [6] for more.

5. Computations and Examples

In this section we collect a few examples of the rack module enhanced invariant.

EXAMPLE 15. Let X and R be the rack and rack module used in Examples 8
and 11. The virtual knots labeled 31 and 37 in the knot atlas [2] both have a Jones
polynomial of 1. Since the rackX has a rack rank of 2 and each knot has writhe 1,
we must also account for colorings of each knot with the addition of a positive kink.
In fact, the only valid colorings of both virtual knots 31 and 37 by the rack are the
colorings of the knots with even writhe. One possibleX-coloring of the virtual knot
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31 with its presentation matrix is:

M
Z[ f ] D

2

6

6

6

6

4

t�1
2,2 �1 0 �t�1

2,2s2,2

0 s1,2 t1,2 �1

�t�1
1,1s1,1 t�1

1,1 �1 0

s2,1� 1 0 0 t2,1

3

7

7

7

7

5

.

Substituting the values from the rack moduleR yields a matrix that may be reduced
as follows:

2

6

6

4

1 2 0 2
0 2 1 2
2 1 2 0
1 0 0 1

3

7

7

5

!

2

6

6

4

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 0

3

7

7

5

.

This row reduced matrix shows that there are three possible rack module colorings. In
addition, the other possible coloring of this knot is symmetric to this coloring so the
31 virtual knot has a rack module enhanced counting invariant of 2u3.

In contrast, the 37 virtual knot has presentation matrix

M
Z[ f ] D

2

6

6

6

4

t�1
2,1 �1 �t�1

2,1s2,1 0

�1 �t�1
1,2s1,2 0 t�1

1,2

s2,1 t2,1 �1 0
0 0 t1,2 s1,2� 1

3

7

7

7

5

derived from the coloring:

The module values yield a presentation matrix that may be reduced as follows:

2

6

6

4

1 2 1 0
2 1 0 1
2 1 2 0
0 0 1 1

3

7

7

5

!

2

6

6

4

1 2 1 0
0 0 1 1
0 0 0 0
0 0 0 0

3

7

7

5

.
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This matrix indicates that the 37 virtual knot with this coloring has 9 rack module col-
orings. The 37 knot also has one additional rack coloring, which is symmetric to the
given coloring, so the rack module enhanced invariant for the 37 virtual knot is 2u9.
Both 31 and 37 have a Jones polynomial of 1, yet their rack module enhanced count-
ing invariants are different, 2u3

¤ 2u9, which shows that the the rack module enhanced
invariant is not determined by the Jones polynomial.

EXAMPLE 16. The rack module enhanced counting invariant is also not deter-
mined by the Alexander polynomial. Knots 818 and 924 both have the same Alexander
polynomial,�t3

C 5t2
� 10t C 13� 10t�1

C 5t�2
� t�3. Using the two element constant

action rack and module used in Examples 8, 11, and 15, the knot818 has two rack
colorings, one of which is illustrated below.

The presentation matrix of 818 is:

M
Z[ f ] D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

s2,1 0 0 0 0 t2,1 �1 0

t�1
2,2 �1 0 �t�1

2,2s2,2 0 0 0 0

0 �t�1
2,2s2,2 0 0 0 0 t�1

2,2 �1

0 t2,1 �1 0 s2,1 0 0 0
�1 0 s2,1 0 0 0 0 t2,1

0 0 t�1
2,2 �1 0 �t�1

2,2s2,2 0 0

0 0 0 t2,1 �1 0 s2,1 0

0 0 0 0 t�1
2,2 �1 0 �t�1

2,2s2,2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

which can be reduced as shown after substituting in values from the module:

2

6

6

6

6

6

6

6

6

6

6

6

4

2 0 0 0 0 1 2 0
1 2 0 2 0 0 0 0
0 2 0 0 0 0 1 2
0 1 2 0 2 0 0 0
2 0 2 0 0 0 0 1
0 0 1 2 0 2 0 0
0 0 0 1 2 0 2 0
0 0 0 0 1 2 0 2

3

7

7

7

7

7

7

7

7

7

7

7

5

!

2

6

6

6

6

6

6

6

6

6

6

6

4

1 2 0 2 0 0 0 0
0 1 2 0 2 0 0 0
0 0 1 2 2 0 0 0
0 0 0 1 1 1 2 1
0 0 0 0 1 2 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

.
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This matrix indicates that there are twenty-seven rack module colorings of the knot 818,
yielding an invariant value of 2u27 since there is one additional rack coloring due to
the symmetry of the rack and rack module used.

The knot 924 requires a writhe adjustment by adding one positive kink in order
to have a valid coloring by the rack, which yields the knot with presentation matrix
shown below.

M
Z[ f ] D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

t�1
2,2 �1 0 0 0 0 0 �t�1

2,2s2,2 0 0

0 �t�1
2,2s2,2 0 0 0 0 t�1

2,2 �1 0 0

0 t2,2 �1 0 0 0 0 0 0 s2,2

�1 0 s2,1 0 0 0 0 0 0 s2,1

s1,1 0 t1,1 �1 0 0 0 0 0 0
0 0 0 t�1

1,1 �t�1
1,1s1,1� 1 0 0 0 0 0

0 0 0 0 �t�1
1,1s1,1 t�1

1,1 �1 0 0 0

0 0 0 0 t�1
2,1 �1 0 0 �t�1

2,1s2,1 0

0 0 0 0 0 �t�1
2,2s2,2 0 0 t�1

2,2 �1

0 0 0 0 0 0 s2,1 t2,1 �1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

After substituting in the values from the rack module, the matrix can be reduced to
the form:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 0 0 0 0 0 2 0 0
0 2 0 0 0 0 1 2 0 0
0 1 2 0 0 0 0 0 0 1
2 0 2 0 0 0 0 0 0 1
1 0 1 2 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 2 1 2 0 0 0
0 0 0 0 1 2 0 0 1 0
0 0 0 0 0 2 0 0 1 2
0 0 0 0 0 0 2 1 2 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

!

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 0 0 0 0 0 2 0 0
0 1 2 0 0 0 0 0 0 1
0 0 1 0 0 0 2 1 0 2
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 2 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

The reduced matrix shows that there are nine colorings of this knot by the rack module.
The other coloring of the knot by the rack yields an additional nine colorings so the
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rack module enhanced invariant for the knot 924 is 2u9. Since 2u27
¤ 2u9, the rack

module enhanced counting invariant is not determined by theAlexander polynomial.

Our next examples give a sense of the effectiveness of some examples of8X,R

using racksX and rack modulesR D Zn chosen at random from the results of our
computer searches.

EXAMPLE 17. Let X be the quandle with quandle matrix given by

MX D

2

4

1 3 2
3 2 1
2 1 3

3

5.

Via computations in python, we selected aZ[X]-module structure onRD Z5 given by
the rack module matrix

MR D

2

4

4 2 3 2 1 1
1 4 2 2 2 3
1 3 4 3 2 2

3

5

and computed the knot invariant for all prime knots with up to8 crossings, all prime
links with up to 7 crossings as listed in the knot atlas [2], the unknotU , the square
knot SK and granny knotGK, and unlinks of two and three componentsU2 and U3.
The results are collected in the table below.

8X,M L
3u5 U,52,62,63,71,72,73,75,76,81,82,83,84,86,87,812,813,814,817

L2a1,L4a1,L5a1,L6a4,L6n1,L7a3,L7a4,L7a6,L7n1,L7n2
3u5
C 6u25 31,61,77,85,810,811,815,819,820, L6a1,L6a3,L6a5,L7a1,L7a5

3u5
C 12u25

C 12u125 SK,GK
3u25 41,51,88,89,816, L6a2,L7a2,L7a7
9u25 74,U2

27u25 818,821,92,924,U3

EXAMPLE 18. Let X be the rack with rack matrix given by

MX D

2

4

2 2 2
1 1 1
3 3 3

3

5.

Via computations in python, we selected aZ[X]-module structure onRD Z5 given by

MR D

2

4

1 1 1 0 0 4
1 1 1 0 0 4
1 1 1 0 0 0

3

5
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and computed the knot invariant for the same set of knots and link as in Example 17.
For all of the knots in our list, the invariant value is8X,M D 4u5. Our results for links
are collected in the table below.

8X,M L
8u5
C 8u25 L2a1, L4a1, L6a1, L6a2, L6a3, L7a2, L7a5, L7a6, L7n1

16u25 U2, L5a1, L7a1, L7a3, L7a4, L7n2
48u25

C 16u125 L6a4, L6a5, L6n1, L7a7
64u125 U3

Our python andC code for computing rack modules and their invariants is avail-
able for download atwww.esotericka.org.

6. Open questions

In this section we collect a few questions for future investigation.
• If X is a (t, s)-rack with rack rankN D 1, i.e. an Alexander quandle, thenX is
a rack module over the trivial quandle with one elementX0 with t1,1 D t and s1,1 D

1� t . In this scenario, the integral rack counting invariant8

Z

X(L) is related to the rack
module enhanced counting invariant8X0,X by

8X0,X(L) D u8
Z

X (L).

How does this relationship generalize whenX0 is a larger (t, s)-rack?
• Other enhancements of the rack counting invariant using rack modules are pos-
sible; we have only scratched the surface with the most basicenhancement. What other
enhancements of8Z

X using rack modules are possible?
• What enhancements of8X,M are possible?
• What approach might we use to categorify these invariants?
• How is 8X,M related to other knot and link invariants?
• How do rack modules extend to the case of virtual racks, i.e. racks with a non-
trivial action at virtual crossings?
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