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INTRODUCTION; SUMMARY OF RESULTS

RESULT a. There is exhibited a group given by a finite number of generators and a
finite number of defining relations and having an unsolvable word problem.

In the present account the finite presentation of a group used for Result a is
much simpler in form than that of UG;' moreover, the symmetry argument of
Theorem III*, Case 2, UG, Part V, is replaced by the very simple Lemma 7 of UG,
Part II. The idea behind this change is that the inverses of the group generators
relative to which a presentation is given can be taken as an anti-isomorphic copy of
the generators. Since in any group A-' equals B-' is a consequence of A equals B,
PAP-' equals QAQ-1 of AP-'Q equals P-'Q A-and vice versa-the connec-
tion between the old and the new arguments can be seen from the well-known
Tietze transformation theorems.2
To obtain Result a, we use a certain Thue system of Post,3 but Result b shows

that one may use, instead, any Thue system with an unsolvable word problem.
RESULT b. There is explicitly given a recursive mapping, (p, from the set of Thue

systems into the set offinite presentations of groups such that the equality of the arbitrary
words A and B in the Thue system £ is equivalent to the equality of certain words-
recursively specified in terms of A and B-in the finite group presentation p(Z).
Thus if Z has an unsolvable word problem, so also has p(Z).4
Magnus5 has shown that any finite presentation of a group consisting of one non-

trivial defining relation has a solvable word problem. The group presentation of
Result a has an extremely large number of defining relations. A natural question is
this: What is the smallest number of defining relations which a finite presentation
of a group with unsolvable word problem can have? How long and how "compli-
cated" must these relations be? Result c gives a program for producing, from Thue
systems, "simple-looking" finite presentations of groups having unsolvable word
problems. Using an unsolvability result of Dana Scott6 on Thue systems, a result
noted by Marshall Hall,7 and an imbedding theorem for groups of Higman, Neu-
mann, and Neumann,8 it follows from Result c that one may exhibit a group given
by two generators and thirty-two defining relations and having an unsolvable word
problem.
RESULT c. Let g9, g2,... ggN and Al = B1, A2 = B2,..., AM = BM be the genera-

tors and defining relations of an arbitrary Thue system Z. Let P by any fixed word
of Z. Then Zp is the finite presentation of a group depending on Z and P and de-
scribed as follows:

The N + 9 generators of Sp:

., 92, ... *, gN; qy to, t2j k, a, b, CY d, e.

The 6N + M + 13 non-trivial defining relations of Zp:
1061
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MATHEMA TICS: BOONE

qAj =

qgi =
agq =

cgi =
egq =

+ladM+lgi

die0a~dJqBjbJcJaeJbJ, j = 1, 2, . . . M

giq
gia

i= I, 2 . ..INgic
gie

bgi = gibM+labM+l
ak = ka
bk = kb
ck = kc
ek = ke

tiqPkP-1q-1tj-1 = t2qPkP-lq-lt2-

For any word W of S, W equals P in S if and only if

tiWkW-1t4-1 equals t2WkW-'t2-'

in Zp. Thud, if it is recursively unsolvable to determine for an arbitary word W of Z
whether or notW equals P in T, then the word problem for Zp is unsolvable.

Finally we note a very easy direct proof of the unsolvability of the word problem
for the finitely generated infinitely related case.

Demonstration of Result a. The Thue system Z, given below can be taken to be any
Thue system having the form stipulated. The Thue system Z2, which depends on

Z1, is a finite presentation of a group. We use A, ', ... r, r', . . . as a variable for
words on &1 (i.e., consisting of the symbols of 31) which are of the form AqIHI,
where A and HI are words on s1, s2; . . ., sm and qa,, is q, ql, . . or qN.

Si: S11 S22 . . *.I SM; q1 2 q2y . . . XqAr, q;
U,: 21 = rF, 22 = rF, . . ., p= Tp.

Z2

32: All symbols of 31; ti, t2, k, x, y; 1,, r., = 1, 2, . . ., P; Each of the above
symbols with superscript - 1 added.
112: Where = 1,2,.. ., P, a = 1, 2, and = 1, 2,. ..,M, the following:

2.1 I, = lLrr,

2.2 sl, =ylyso, 2.6 risk= s, xr~x
2.3 sOy Yyso 2.7 xs# = sitxx
2.4 tjt, l'tsg 2.8 r k = kr,
2.5 ty= yt, 2.9 xk = kx

2.10 kq-ltl-lt2q = q-ltl-lt2qk.
Where a and a-' are symbols of 32 the following:

2.11 a-la = 1 (where 1 is the empty word)
2.12 aa- = 1. A

A proof of A/B in Zj, i = 1, 2, is a finite sequence of words on Si called steps, say

C1, C2 ...., C., such that C, is A and C. is B; each C, and C,,, v = 1,2,..., n- 1,
are PDQ and PEQ where D = E is a rule of Ui for some P and Q, possibly void.9
We abbreviate "there is a proof of A/B in FE" to A F jB.
MAIN THEOREM. For any choice of T1 and I, F- 1 q if and only if

tYk2-1tj- F- 2t22ik2-t2-1.

gid = dm
tua = at.
tuC = ctu
tud = dtu
tue = etu

1062 PROC. N. A. S.
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From Post' we have that for a certain choice of t, it is unsolvable to determine
for arbitrary 2 on 3, whether or not ; I- ,q. Thus the Main Theorem implies
Result a. The "only if" part of the Main Theorem is easy. Let 2 (Let Q) be a vari-
able for words on y, y-1, and the symbols 1,, 1,1 of 32 (on x, x-l, and the symbols
r., rj' of 32). Suppose Z I- 1q. Then for some E and Q.1 F2 2I Consequently-
noting tlqkq-lt-' I- 2t2qkq-1t2-1 we have t2:k2-'tj-I F- 2t22k2;-'t2.r.
To show the Main Theorem in the non-trivial direction, we first stipulate three

additional group presentations, Sd, Z4, and Zs. We define 33 to be 3,; U13 to be U2
with each ak = ka of U2.5 or U2.9 replaced by ak = k and U2.10 replaced by tlqk =
t2qk. We define 34 to be 33; U4 to be U3 with each at, = ta of U2.4 or U2.5 replaced
by ta = t4 and tlqk = t2qk excluded. We define 3S to 34 with k, k-1, t,, t,-' ex-
cluded; Us to be U4 with the rules containing k, k-1, tv, t.-1 excluded. Let A F- F9B,
i = 1, 2,..., 5, mean A F- jB with no occurrences of q-', qo-.. ., qv-1 in any step.
Then the plan of the argument is given below in the first column; the first statement
in each brace implies the second.
- vL 1 -1 -s l -1

"I10 Cf. UG, Part II, Sec. 5-7, especially Lemma 7.
tj2Ik;-t-1}kl Roughly speaking, erase all symbols right of

t,2k F- 3kt22k each step of the Z2 proof.
} Cf. UG, Part II, Sec. 5-7, especially Lemma 7.

t,2;k F- 3ktt22zk
See i below.

tZk F- 4kttlqk
} See ii below.

z I- 5EqQ for some E and Ql

2;F- rC5qQ }

k in

See iii below.

Cf. UG, Part VI, Sec. 20.

Erase the symbols 1,, or r,, 1,-1, r,-', everywhere ill
F- q the Z5 proof.
(i) Omit from the Zs proof all steps following the first application of tlqk = t2qk;

then erase from each step remaining all symbols left of ti, all right of k. (ii) It is
sufficient to show M1 F- 5'MM+,&Q' for some :' and W', where tMsk is the ith step of
the Z4 proof. (iii) Cf. UG, Part II, Sec. 5-7, and Part III. But the argument of Part
III can be replaced by an almost trivial one using the techniques of UG, Part VI,
Sec. 20 and 21 and the fact that the set of words 1,, 1,1j (or words r,, r,-') is inde-
pendent."

Demonstration of Result b. Throughout this section, Zo, :*, Z(W), are Thue
systems depending on the arbitrary Thue system £ (with symbols 3 and rules U)-
Z(w) depending on the word W on 3 as well. Let 3o contain p, v and a, a for each
a of 3 and let Uo contain the rules of U and ab = ba, paa = ap, apv = pv for each
a of 3. LetW and V be words on 3, V0 the word obtained from V by replacing a by a.
Then pVoWv F- xpv if and only if W F- ZV. Let 3* consist of 3 and q,; U con-
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1064 MATHEMATICS: BOONE PROC. N. A. S.

tains qIA = qB, qla = aq, for each A = B of U and a of 3. Then for any W and V
on 3, qjW H ZqV if and only if W F 1V. Let 3(w) consist of 3 and q; U(w), of U
and W = q. Then, for any V on 3, V F Z(W)q if and only if V F ZW. Thus for any
X and words A and B on 3 the following statements are equivalent: A H ZB;
pBoAv HZpv; qjpBoAv H-xqipv; qjpBoAv H[- 1pq. This shows Result b since
t"(qlpv) has the form of X, used in the demonstration of Result a.

Demonstration of Result c. The argument is a revision of that for Result a. The
main points are: (1) the proof of Result a is valid if the q of 112.10 is interpreted as
some fixed special word of X, and U2.10 rewritten in the symmetric form of the last
relation listed in Result c; (2) if Z is any Thue system then the I* used for Result b
has the form of Z, used for Result a; (3) the set of words cjej, j = + 1, +2, ..
4M is independent," as is the set con, e0', dl', bM+labm+l bic'aejbj j = 0, -1,
4± M.
Result c and Zo. Starting with an arbitrary system 'S, the Thue system 'Zo (see

Result b) can be identified with the Z of Result c. Thus if 'Z has an unsolvable
word problem, so has 'To,. Using this construction in connection with Scott's re-
sult yields a forty defining relation group with unsolvable word problem that can
actually be written down in a few minutes' time.'2

The Word Problem for the Finitely Generated Infinitely Related Case. 13 Where S is
any set of ordered pairs of positive integers, let Z, be the following group presenta-
tion.

3 : Z) Xi, x2, q
Us: zmxjnqxrI = x2nqx2- for each (m, n) of S.

z= 1

THEOREM. XnqXv"t FH Z X2nqX2 if and only if there is an m such that (m, n) is
a member of S.
The theorem implies the desired unsolvability result, for we may take any well-

known S such that (1) there is a recursive procedure to determine for an arbitrary
pair of positive integers, (m, n), whether or not (m, n) is a member of S; (2) there is
no recursive procedure to determine for arbitrary n whether or not there is an m
such that (m, n) is a member of S.14

* The author is a John Simon Guggenheim Memorial Fellow. This research was supported
earlier by the Institute for Advanced Study, National Science Foundation contract G-1974, and
the U.S. Educational Foundation in Norway.

1 W. W. Boone, "Certain Simple Unsolvable Problems of Group Theory," Koninkl. Ned. Akad.
Wetenschap., Ser. A, Part I, 57, 231-237, 1954; Part II, pp. 492-497; Part III, 58, 252-256, 1955;
Part IV, pp. 571-577; Part V, 60, 22-27, 1957; Part VI, pp. 227-232. In Part V, last line of p.
24, read "and 7" after "6" and "their" for "its." We have attempted to make the present note
as self-contained as possible.
2The relation of our work to P. S. Novikov, On the Algorithmic Unsolvability of the Word

Problem in Group Theory (Trudy Mat. Inst. Steklov, No. 44 [1955]) (in Russian), is still essentially
unknown to us (see A. A. Markov, Math. Rev., 17, 706; an A.M.S. translation of Novikov by K. A.
Hirsch is in preparation). Through J. L. Britton we do know that Novikov uses the symmetry
argument of UG, Part V. At the British Mathematical Colloquium, Nottingham, September,
1957, Britton announced a new proof of the unsolvability of the word problem based to some extent
on Novikov's proof. Our Results b and c were presented at this colloquium. Result a-using
the T2 given below but with the old symmetry argument-on a Fulbright Inter-Foundation
Lectureship tour in the United Kingdom in May, 1957.
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3E. L. Post, J. Symb. Logic, 12, 1-11, 1947.
4In the sense of Post, the word problem for Z is reducible to that for sp (2:).
5 W. Magnus, Math. Annalen, 106, 295-307, 1932.
6 Dana- Scott, abstract, J. Symb. Logic, 21, 111-112, 1956.
7Marshall Hall, J. Symb. Logic, 14, 115-118, 1949.
8 G. Higman, B. H. Neumann, and H. Neumann, J. London Math. Soc., 24, 247-254, 1949.
9 As defined, UG, Part I, p. 234.

10 Also provable by Theorem I of Higman, Neumann, and Neumann, op. cit., as pointed out to
us by Higman.

11 The set of words Al, A2, . . ., AK on 3 is not independent if there is a product of the A's, with
no adjacent A's inverses of each other, which equals 1 in the free group on 3.

12 The 32 defining relation group mentioned above has one relation which is astronomical in
length.

13 Included in a report filed with the National Science Foundation on contract G-1974, May 28,
1956-but in a form more akin to UG, Parts V-VI, than Result a as presently shown (cf. W. Craig,
J. Symb. Logic, 18, 30-32, 1953, and B. H. Neumann, J. London Math. Soc., 12, 125, Theorem (13),
1937).

14For related material see W. W. Boone, abstract, Bull. A.M.S., 62, 148, 1956.

NON-ADDITIVE FUNCTORS, THEIR DERIVED FUNCTORS,
AND THE SUSPENSION HOMOMORPHISM

BY ALBRECHT DOLD AND DIETER PUPPE

MATHEMATISCHES INSTITUT DER UNIVERSITAT HEIDELBERG

Communicated by Saunders Mac Lane, July 3, 1958

1. Derived Functors of Non-additive Functors.-Let T be a (covariant) functor of
modules over a ring A to modules over a ring A'. If T is additive i ,s derived func-
tors have been defined by Cartan-Eilenberg.' Additivity is used to show that T
applied to a chain homotopy again gives a chain homotopy (cf.2 IV, 5, and V, 3).
Using FD-complexes4 instead of chain complexes, we define left derived functors for
arbitrary functors T.

1.1. Definition.-A projective FD-resolution of type n of the module M is an
FD-module P such that (i) P, = 0 forj < n, (ii) PI is projective for allj, (iii) H,(P)
- M,H(P) = Oforj 5 n.
Passing from an FD-module to its normal(ized) chain module establishes a 1 to I

correspondence (up to natural equivalences) between FD-modules, FD-maps, FD-
homotopies and chain modules, chain maps, chain homotopies.' In particular, it
establishes such a correspondence between projective FD-resolutions P of type n of
Mll and chain modules C for which Cj = 0 forj < n and

+-- M = Hn(C) _Cn,,---C.+ Cn+2**<- (1.2)
is an ordinary projective resolution2 of M. From the corresponding properties of
ordinary resolutions it follows: Every module has a projective FD-resolution of any
given type n. If if: M -- M' is a homomorphism and P,P' are projective FD-
resolutions of type n of M,M' resp., then there exists an FD-map F: P -I P' such
that F*: Hn(P) -0 Hn(P') equals f. Moreover, if F' is another such map, then
F,F' are FD-homotopic (cf. Cartan-Eilenberg,2 V, 1).

VOL. 44, 1958 1065

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ar

ch
 1

9,
 2

02
0 


