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Abstract—The privacy-preserving management of energy con-
sumption measurements gathered by Smart Meters plays a
pivotal role in the Automatic Metering Infrastructure of Smart
Grids. Grid users and standardization committees are requiring
that utilities and third parties collecting aggregated metering data
are prevented from accessing measurements at the household
granularity, and data perturbation is a technique used to provide
a trade-off between the privacy of individual users and the
precision of the aggregated measurements.

In this paper, we discuss a decisional attack to aggregation
with data-perturbation, showing that a curious entity can exploit
the temporal correlation of Smart Grid measurements to detect
the presence or absence of individual data generated by a given
user inside an aggregate. We also propose a countermeasure to
such attack and show its effectiveness using both synthetic and
real home energy consumption measurement traces.

Index Terms—Smart Grid; Metering Data Aggregation; Dif-
ferential Privacy; Decisional Attack.

I. INTRODUCTION

In the next years, the electric grid will experience an un-
precedented innovation process: according to the “Smart Grid”
paradigm, the integration of Information and Communication
Technologies (ICT) with the infrastructure for electricity dis-
patchment will improve the effectiveness of power distribution
and optimize the grid management. The evolution of the elec-
tric grid will affect also the meters located at the customers’
premises to monitor their power consumption, which will
be replaced by “intelligent” electronic devices called “Smart
Meters”: such devices will be capable not only of generating
fine-grained measurements of the electricity usage, but also of
providing several value added services.

Since Smart Meters are connected to the Smart Grid com-
munication network through the Automatic Metering Infras-
tructure (AMI) to send their readings to the power suppliers,
privacy and confidentiality of metering data must be ensured.
It has been shown [1], [2] that external subjects might access
these data and infer private informations about the users
by exploiting the electricity usage readings to profile the
customers’ behaviour and even to determine which household
appliances are being used.

Therefore, a secure and privacy-friendly collection frame-
work for data gathered by the Smart Meters must be integrated
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in the Smart Grid ecosystem. Privacy-preserving solutions
include the usage of different types of encryption schemes and
routing protocols, as well as techniques for data aggregation,
anonymization and obfuscation through noise addition. In
particular, the latter approach has been widely investigated in
the recent literature (see [3] for a survey), since it has been
proved (e.g. in [4]) that process of aggregation/anonymization
performed over exact data is not sufficient to avoid information
leakages. A possible way to perform obfuscation of individual
energy consumption measurements is to place batteries at
the customers’ premises in order to offset electric loads
themselves, thus masking occupant and device behaviors [5].
The drawback of this approach is the cost of installation and
maintenance of the energy storage devices.

The approach we adopt in this paper is to apply data pertur-
bation techniques relying on noise addition performed by the
metering device itself, as inspired by the concept of differential
privacy [6]. In particular, we combine such techniques with the
privacy-preserving distributed data aggregation infrastructure
based on multiparty computation presented in [7], [8], in order
to allow grid managers and external parties to obtain real-
time aggregated energy consumption measurements with a
sufficiently high level of precision, while preventing them from
identifying the presence/absence of the consumption trace
generated by a given customer inside the aggregate.

Such architecture relies on communication Gateways lo-
cated at the users’ premises and equipped with an Hardware
Security Module providing cryptographic capabilities (accord-
ing to the requirements of the Protection Profile, mandated
by the German Federal Office for Information Security [9]),
which collects the measurements generated by the local Me-
ters, encrypt and aggregate them in a distributed fashion ac-
cording to the aggregation rules specified by multiple External
Entities (e.g. utilities, grid managers and third parties).

The main novel contributions of this papers are the follow-
ing:

o we formalize the notion of decisional attack for time
series, which is representative of a class of privacy attacks
aimed at breaching the property of indistinguishability of
any two users

e we propose a possible countermeasure to such attack and
show its effectiveness through numerical results, obtained



with both synthetic and real home energy consumption
measurement traces.

The remainder of the paper is structured as follows: Sec-
tion II provides a brief overview of the related work, while
Section III recalls some background notions. Our proposed
data aggregation architecture is described in Section IV. The
formalization of the attacker model and the decisional attack
are discussed in Section V, while Section VI proposes a
countermeasure to mitigate its effects. The effectiveness of
attack and countermeasure is shown in Section VII through
numerical results, in case of synthetic and real measurement
traces. Section VIII concludes the paper.

II. RELATED WORK

Our definition of decisional attack builds upon the notion
of differential privacy, which was first introduced in [6].
Differential privacy refers to a general scenario in which it
must be guaranteed that the removal or addition of a single
item in a statistical database has negligible impact on the
outcome of any query on that database. The author gives a
formal definition of differential privacy as a measure of the
trade-off between the accuracy of the aggregated data and the
probability of identifying the contributions of individual data
inside the aggregate, also describing how to achieve a certain
level of differential privacy by exploiting data perturbation
techniques performed by noise injection in the users’ data. Our
decisional attack for time series is based on the same principle:
it consists in providing the adversary with the measurements
of a given user ¢ and with two aggregates, only one of them
containing the data of user ¢. The attack succeeds if the
attacker guesses which aggregate contains the data generated
by user 7. However, while the principles of differential privacy
can be applied to the framework of a generic database, our
approach is more focused on the specific characteristics of
Smart Grid time series, resulting in simpler definitions.

Privacy-preserving data aggregation in Smart Grids can be
achieved through various techniques: for a comprehensive
overview on such approaches, the reader is referred to [10].
However, to the best of our knowledge, our proposed privacy-
preserving infrastructure is the first allowing data collection
for multiple subjects interested in accessing aggregated energy
consumption measurements, each of them specifying its own
aggregation request in terms of set of monitored users.

Some other papers combine cryptographic schemes with
differential privacy techniques in order to compute aggregate
statistics: in [11], a protocol for the distributed generation of
random noise is proposed, aimed at the distributed implemen-
tation of privacy-preserving statistical databases. To do so,
the protocol relies on a verifiable secret sharing scheme. Our
proposed data aggregation is based on Shamir Secret Sharing
scheme, which does not provide data integrity verification but
is computationally less demanding.

Paper [12] designs a protocol for differentially private
aggregation of temporally correlated time-series, which is
achieved by perturbation of the Discrete Fourier Transform
of the data and by distributed noise addition. The protocol

is demonstrated to scale efficiently with the number of users,
requiring a computational load per user of O(1). Our solution
also relies on noise addition, which is performed directly on
the individual metering data.

Papers [13], [14], [15] apply the general notions expressed
in [6] to the Smart Grid context. Paper [13] defines a scheme
in which an electricity supplier is allowed to collect aggregated
smart-metering measures without learning anything about the
energy consumption and the household activities of individual
users, and discusses how differential privacy is affected by
considering multiple time slots. However, this paper does not
deal with temporal correlation of smart-metering time-series
data. Our proposal considers this feature, that can be exploited
to reduce the level of privacy of the users’ data.

Paper [15] deals with a scenario in which an untrusted
aggregator collects privacy sensitive user data to periodically
compute aggregate statistics. The proposed solution is resilient
to user failure and compromise and supports dynamic joins and
leaves of users. We also assume untrusted aggregation nodes,
but we focus our attention on a static scenario.

Paper [14] defines a model of data aggregator capable of
obtaining statistics about aggregated data without compro-
mising the privacy of single users. The authors introduce
a formal noise injection model and a new distributed data
randomization algorithm in order to ensure users’ differential
privacy, assuming the existence of malicious users that reveal
their statistics to the data aggregator. In this paper, we will
use the same noise characterization. Moreover, the authors of
[14] define an error bound for aggregated data and evaluate
the trade-off between data utility and privacy. The same trade-
off evaluation is discussed in papers [16], [17], which propose
to filter low-power frequency components of smart-metering
time-series data, in order to perform data obfuscation without
compromising its statistical significance.

III. BACKGROUND

a) Symmetric geometric distribution: Let o be a positive
number such that o > 1. The probability mass function of the
symmetric geometric distribution Geom(«) is defined as:

a1 -
a+1
and k always assumes integer values.
The probability mass function of the unilateral geometric
distribution Geom™ («) is defined as:

(a—1a~*

and k always assumes integer positive values.
The symmetric geometric distribution has zero mean and its
variance is 2a(a —1)72,
b) Holder’s inequality: Let p, q be real positive numbers
such that p,q > 1 and % + % = 1, the Holder’s inequality
allows us to write:
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M=Meter

GW=Gateway

EE=External Entity

s;[t]=i-th measurement
l[t]=i-th noise

x,[t]=i-th noisy measurement
S;(x[t])=j-th individual share
SJ(X[t])=j-th aggregate share
X[t]=aggregate noisy
measurement
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Fig. 1. The data aggregation procedure

If we consider p = ¢ = % it reduces to:
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Note that the equality holds iff | f(z)| = ¢- |g(x)|, where ¢ is
an arbitrary constant.

IV. THE AGGREGATION ARCHITECTURE

In our data aggregation architecture we suppose N users
(i.e. Meters) that are involved in the aggregation of their energy
consumption measurements. At every time interval ¢ € N, the
measurements s;[t] generated by each Meter i (1 < i < N) are
gathered by the the Gateway locally connected to the Meter
itself. Note that a Gateway could be responsible for gathering
the measurements of multiple Meters, e.g. all the Meters in
a block of flats. After collecting the metering data s;[t], the
Gateway performs noise injection by adding to s;[t] a zero-
mean white noise I;[t] with power 012, as defined in [13], [6],
[14], obtaining the noisy time-series metering data z;[t] =
si[t] + L[t].

Our architecture (first introduced in [18] to perform exact
data aggregation and briefly reviewed here) relies on Shamir
Secret Sharing (SSS) scheme with threshold w which requires
the Gateway to split x;[t] into w shares and allows the correct
reconstruction of the measurement if at least ¢ < w shares
are available, where ¢ is a design parameter (for the sake of
easiness, in this paper we assume ¢ = w). The shares S} (x;[t])
(1 < j < w) of the noisy samples z1[t],...,xn[t] are then
forwarded to the neighboring Gateways, which aggregate them
with their local measurements according to the aggregation
rules specified by the External Entities (EEs) by means of
a set II, of Meters they want to monitor. Thanks to the
homomorphic properties of SSS with respect to addition, the
aggregated data obtained by summing the shares is the same
that would be obtained by first summing the individual data
and then encrypting the aggregate. Therefore, at each time
interval ¢ the EE expects to obtain the quantity:

Xl = 3wl = Y siltl+ bl

icll, i€lle

Note that lso[t] = > _;cqp, li[t] is characterized by the power
aztot and that a well designed system should provide the
minimum a,%mt while providing a required level of privacy.

Note also that the architecture includes an additional node
called Configurator, which is responsible for checking the
compliance of the aggregation rules to the security policies
of the grid and to instruct the Gateways accordingly. The
routing of the communication flows among the network nodes
can be performed either by the Configurator itself, with
a centralized approach, or in a distributed fashion relying
on the Chord peer-to-peer routing protocol. For a thorough
discussion of the aggregation procedure and the associated
communication protocol, the reader is referred to [18], [7].
Once the measurement aggregation is completed, the e-th
EE (with ¢ € E, where E is the set of EEs) receives w
aggregated shares S;[t] = >, S;(«;i[t]), and recovers the
noisy aggregated measurement X[t] = >, w;[t] through
the Lagrange Interpolation algorithm.

An example of our proposed architectural model is depicted
in Figure 1, which shows a scenario with N = 2 Meters
monitored by a single EE and assumes w = 2. For the sake
of easiness, we assume that each Gateway is associated to
only one Meter. Therefore, after splitting the measurement of
Meter 1 in two shares Sy(z1[t]) and Sa(z1[t]), Gateway 1
sends Sa(z1[t]) to Gateway 2 and sums the share S (x1[t]) to
S (x2[t]), which it has beforehand received from Gateway 2.
Gateway 2 behaves analogously. The EE collects the aggre-
gated shares S1(X[t]) and So(X[t]) and recombines them to
obtain the aggregated measurement X [t] = 1 [t] + z2[t].

V. ADVERSARY MODEL AND DECISIONAL ATTACK

We assume that Gateways and EEs behave according to the
honest-but-curious attacker model, i.e. they honestly execute
the protocol, but they store all their inputs and process them
in order to obtain additional information about the individ-
ual data. The nodes are supposed to have infinite memory.
However, they cannot alter the routing nor the content of the
exchanged messages (see [8] for a preliminary discussion of
the impact of dishonest intrusive attackers).

In this paper, we consider an attack scenario in which
a malicious EE has auxiliary information on the individual
time series. Therefore, we assume that some of the Gate-
ways can create collusions with the EEs, providing them
with the individual measurements s;[t] of the local Meters,
before performing noise addition. The EEs’ knowledge of the
individual measurements allows them to efficiently perform
the decisional attack described hereafter.

First, we introduce the property of indistinguishability
of any two users, which must be satisfied by the privacy-
preserving infrastructure and is defined as follows:

Definition We say that the aggregation architecture provides
indistinguishability of any two users if a decisional attack
succeeds with probability 0.5+ ¢, where € is an arbitrarily low
system design parameter.
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To evaluate users’ distinguishability, we define the following
decisional problem:

Definition Decisional Attack: The adversary, i.e. the e-th
malicious EE, is given the following noisy aggregate mea-

surements:
Zmz + z4[t] sz (salt] + 1alt])
ZGH \{a,b} i€llc\{a,b}
sz + xp[t] sz [t] + 1u[t])
zGH \{a,b} i€lle\{a,b}

These measurements are calculated over |II.| participants
and differ only by a single participant: a in the first aggregate
and b in the latter. The attacker is also provided with the time-
series smart metering data s, [t] of user a, which represents the
auxiliary information. The adversary has to decide whether the
user @ participates in the noisy aggregate measurement X [t]
or X, [t]. The attacker can perform any desired elaboration on
the data: in particular, she can filter the aggregated data X|[t]
with any Linear Time-Invariant (LTT) filter.

We suppose that the attacker knows s,[t] for 0 < ¢ < T. We
consider a simple decision algorithm that calculates the cor-
relation between the time-series s,[t] and X,[t] and between
Sq[t] and X3[t] as follows:

R =3 Xl
R, = ZXb[t]Sa[t]

The adversary chooses the noisy aggregate measurement
that results in the highest correlation with s, [t] and the attack
succeeds if R,— Ry > 0. Clearly, the higher is the noise power
0%, the less pronounced is the difference between R, and
R(;, thus making the probability of correct guess approach a
coin toss.

Although the decisional attack is of limited interest for a real
attacker, we believe that it has a significant theoretical value. In
fact, any unspecified efficient algorithm capable of extracting
personal information from the perturbed data can be used to
successfully perform a decisional attack. Therefore, if for a
given setup the decisional attack succeeds with low probability,
then we expect that the amount of personal information that
can possibly be extracted is negligible. Thus, preventing the
attacker from detecting the presence of a known individual
contribution inside an aggregated measurement through a
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Fig. 3. The countermeasure definition

decisional attack provides a valid countermeasure to a wide
class of attacks affecting user’s privacy.

VI. COUNTERMEASURE DESCRIPTION
A. Countermeasure Description

As described in Section IV, the noise process [;[¢t] summed
by the Gateways to the smart-metering data s;[t] is a zero-
mean white noise. In Section V, we have defined a possible
attack to reduce users’ privacy exploiting the properties of
correlation among signals.

Our proposed countermeasure to defy this kind of attack
is shown in Figure 3. It consists in summing to the smart-
metering data process s;[t] a zero-mean colored (i.e. corre-
lated) noise [;[t], obtained by filtering the zero-mean white
noise [;'[t] with a LTI digital filter H. This filter must be
designed in order to minimize Pr{R, — R, > 0}, i.e. the
probability that the attack is successful. The expected value
and the variance of R, — Rb can be calculated as:

T
Z salt]” = salt]ss[t]
t=0

var[Ra — Ry) = 207 / HOP - 1S (@)Pdd (1)

E[R, — Rp] =

where o7 is the variance of the processes I,/[t] and [,/ [t], ¢ is
the normalized frequency and S, (¢) and H(¢) are the Discrete
Fourier Transform of s,[t] and of the impulse response hl[t]
of the filter H, respectively.

In order to minimize Pr{R, — R > 0}, we design the filter
H that maximizes the right-hand side of (1), which leads to
the following maximization problem:

1
max/o H()]? - [Sa(¢)?do

Considering the Holder’s inequality reported in Section III, we
can easily write that maximum is obtained when:

H(0))* = ¢ |Sa(0)? 2

with ¢ an arbitrary constant.

In general, we can conclude that the filter H must shape the
noise random process [;[t] such that its frequency characteriza-
tion is as similar as possible to the frequency characterization
of the data sequence s;|t].

In the remainder of this Section, we consider a synthetic
and a data-driven model for smart-metering data. Synthetic
data and real measurement traces allow us to design the
filter H in these two specific scenarios, exploiting the signal
characterization in terms of correlation between samples.
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B. Synthetic data

We first assume that the time-series smart metering data of
each user 7 is modelled as a colored Gaussian random process
s;[t], obtained by filtering a white Gaussian process with an
LTI filter K. The input of K is a white Gaussian random
process n;[t] with mean p, and variance o2. We assume
that all the N Meters generate independent data streams with
the same statistical properties. The Gateways perform noise
injection by adding to s;[t] a zero-mean white noise ;[t].

In this scenario, the countermeasure consists in filtering at
the Gateways the zero-mean white noise /;'[t] with the filter
H = K, which satisfies (2) obtaining the colored noise process
l;[t], before adding it to the smart metering data s;|t].

In this way, it is difficult to discriminate the noise I;[t] from
the smart-metering measurement s;|[t], since they have similar
spectral behavior.

C. Real measurements

We now define a data model that better matches real home
energy consumption measurements. To do so, we consider six
different categories of appliances (i.e. light bulbs, oven and
microwave oven, television and personal computer, refriger-
ator, boiler, washing machine and dishwasher). The energy
consumption pattern of the j-th appliance (provided by [19])
is sampled every fifteen minutes within a day, from 00:00 to
23:59, in order to obtain 7' = 96 samples, and modelled as a
discrete impulse response h;t].

These impulse responses are combined to generate the in-
dependent time-series s;[t] for each user i. Every process s;][t]
is generated by summation of the appliances’ consumption
curves, each of them shifted in a circular way by an integer
random delay z; with uniform distribution in the interval
[0,48] (maximum shift of 12 hours), as shown in Figure 4.

Also in this scenario, our countermeasure follows the ap-
proach defined in Section VI-A, i.e. the addition of colored
distributed noise. Since K (see Section VI-B) is not uniquely
defined, in this case we design H by using a single-pole
autoregressive (AR) spectral estimation of the noiseless ag-
gregate measurement ), s;[t]. In this way, we give to the
noise a PSD characterization as similar as possible to the PSD
characterization of the noiseless measurement, as defined in
(2), through an LTI filter which is simple to be designed.
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Fig. 5. Percentage of attack success as a function of the aggregate noise

standard deviation o; ;o¢, using synthetic measurement traces and assuming
[TIc| = 50 and T' = 100 samples.
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standard deviation oy ;¢ , using real measurement traces and assuming Tle| =
50 and T" = 96 samples.

VII. PERFORMANCE EVALUATION

In order to evaluate the effectiveness of our proposed coun-
termeasure to the decisional attack, we apply the decisional
problem to different scenarios, with both synthetic and real
home energy consumption traces. More in detail, we consider
the following two scenarios:

S1. X,[t] and X,[t] are obtained by adding white noise with
symmetric geometric distribution (see Section III for its
definition), generated according to the algorithm defined
in [14] (I;[t] ~ Geom(a));

S2. X,[t] and X,[t] are obtained by adding colored noise
with I;'[t] ~ Geom(a/) (I;[t] = l;'[t] * h[t]), in order to
increase user indistinguishability;

Results are averaged over 4000 instances for each scenario, in
order to have confidence intervals below 10%.

A. Numerical results with synthetic data

We first evaluate the performance of our proposed coun-
termeasure using synthetically generated data traces. The
values chosen for the simulation parameters are p, = 700,
on = 350, while k[t] is defined as a 9-samples triangular
filter with unitary energy. Figure 5 plots the percentage of



the attacker’s success in the identification of the aggregate
containing the individual data s,[t], for different values of
the aggregate noise standard deviation oj ;.. Results show
that the injection of colored noise considerably decreases the
probability of correct guess (scenario S2) with respect to the
usage of white noise (scenario S1). Moreover, for high values
of 07 101, the probability of success approaches 50% in both the
scenarios, which means that the attacker obtains no additional
information from the aggregated measurements and that the
decision criterion can be assimilated to a coin tossing.

B. Numerical results with real data

We then consider real data traces, generated as described
in Section VI-C, where h[t] = u[t]n® (with n = 0.95).
Analogously to Figure 5, Figure 6 plots the percentage of the
attacker’s success as a function of the aggregate noise standard
deviation 07 4., for the two scenarios. The trend is similar with
respect to Figure 5.

VIII. CONCLUSIONS

This paper discusses definition of privacy called indististin-
guishability of any two users and a corresponding decisional
attack to the privacy of the users involved in the aggregation
of individual energy consumption data gathered by the Smart
Meters in the Automatic Metering Infrastructure of Smart
Grids. Our approach captures the intuition that the privacy
of a user is preserved if an observer cannot tell whether the
user’s data is present or missing in a given aggregate.

We consider a setup with a distributed data aggregation
infrastructure relying on communication Gateways located at
the customers’ premises, which collect the measurements from
the Meters, perform noise injection, encrypt the noisy data
using Shamir Secret Sharing scheme and then aggregate the
encrypted data. We show how an attacker can exploit the tem-
poral correlation of the metering data in order to identify the
presence of the measurements generated by a given user inside
the aggregate, and propose a countermeasure to such attack.
Numerical results obtained with both synthetically generated
and real energy consumption traces show the effectiveness of
our proposed technique.
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