
All-Distances Sketches, Revisited:
HIP Estimators for Massive Graphs Analysis

Edith Cohen
Microsoft Research

Mountain View, CA, USA
editco@microsoft.com

ABSTRACT
1Graph datasets with billions of edges, such as social and Web graphs, are
prevalent. To be feasible, computation on such large graphs should scale
linearly with graph size. All-distances sketches (ADSs) are emerging as a
powerful tool for scalable computation of some basic properties of individ-
ual nodes or the whole graph.

ADSs were first proposed two decades ago (Cohen 1994) and more re-
cent algorithms include ANF (Palmer, Gibbons, and Faloutsos 2002) and
hyperANF (Boldi, Rosa, and Vigna 2011). A sketch of logarithmic size is
computed for each node in the graph and the computation in total requires
only a near linear number of edge relaxations. From the ADS of a node,
we can estimate its neighborhood cardinalities (the number of nodes within
some query distance) and closeness centrality. More generally we can es-
timate the distance distribution, effective diameter, similarities, and other
parameters of the full graph. We make several contributions which facili-
tate a more effective use of ADSs for scalable analysis of massive graphs.

We provide, for the first time, a unified exposition of ADS algorithms
and applications. We present the Historic Inverse Probability (HIP) estima-
tors which are applied to the ADS of a node to estimate a large natural class
of queries including neighborhood cardinalities and closeness centralities.
We show that our HIP estimators have at most half the variance of previ-
ous neighborhood cardinality estimators and that this is essentially optimal.
Moreover, HIP obtains a polynomial improvement for more general queries
and the estimators are simple, flexible, unbiased, and elegant.

For approximate distinct counting on streams, we compare HIP and the
original estimators applied to the HyperLogLog Min-Hash sketches (Fla-
jolet et al. 2007). We demonstrate significant improvement in estimation
quality over this state-of-the-art practical algorithm and also illustrate the
ease of applying HIP.

Finally, we study the quality of ADS estimation of distance ranges, gen-
eralizing the near-linear time factor-2 approximation of the diameter.

1. INTRODUCTION
Massive graph datasets are prevalent and include social and Web

graphs. Due to sheer size, computation over these graphs should
scale nearly linearly with the number of edges. One task that re-
ceived considerable attention is computing the distance distribu-
tion. The distance distribution of a node i contains, for each dis-
tance d, the number of nodes that are of distance d from i, that is,
the cardinality of the d-neighborhood of i. The distance distribu-
tion of a graph is the number of pairs of nodes for each distance
d. The distance distribution captures important properties of nodes
and of the whole network, reflecting on performance and informa-
tion propagation, and incorporates parameters such as node central-
ity, spid, and effective diameter [25, 41, 21, 8, 9, 4].

The distance distributions for all nodes can be computed through
an all-pairs shortest paths, which is computationally expensive, even
with state-of-the-art methods [36, 2], and not feasible for very large
networks. Efficient algorithms which approximate the distance dis-
tributions were proposed in the last two decades [14, 41, 18, 21, 8].

1This is a full version of a PODS 2014 paper

Implementations [4] based on ANF [41] and hyperANF [8] , and
more recently, [15], based on [14, 18], target social graphs with
billions of edges.

At the core of all these algorithms [14, 41, 18, 21, 8] is a com-
putation of a sketch for each node, which we call the All Distances
Sketch (ADS). The ADS of a node v contains a random sample
of nodes, where the inclusion probability of a node u decreases
with its distance from v (more precisely, inversely proportional to
the number of nodes closer to v than u). For each included node,
the ADS also contains its distance from v. The ADSs of differ-
ent nodes are coordinated, which means that the inclusions of each
particular node in the ADSs of other nodes are positively corre-
lated. Coordination is an artifact of the way the ADSs are com-
puted (we could not compute independent sketches as efficiently)
but also enables further applications such as estimating similarity
between neighborhoods of two nodes [14], their distance, and their
closeness similarities [15].

An ADS is an extension of the simpler and better-known Min-
Hash sketch [29, 14] (term min-wise/min-hash was coined later
by Broder [13]): The ADS of a node v is essentially the union
of coordinated Min-Hash sketches of all the sets of the i closest
nodes to v (for all possible values of i.) Min-Hash sketches are
extensively used for approximate distinct counting [29, 14, 24, 5]
and similarity estimation [14, 13, 12] and come in three flavors,
which correspond to sampling schemes: A k-min sketch [29, 14]
is a k sample obtained with replacement, a bottom-k sketch [14]
is a k sample without replacement, and a k-partition sketch [29]
samples one from each of the k buckets in a random partition. All
three flavors were studied because they provide different tradeoffs
between update costs, information, and maintenance costs. In all
three, the integer parameter k ≥ 1 controls a tradeoff between the
information content (and accuracy of attainable estimates) of the
sketch and resource usage (for storing, updating, or querying the
sketch). Coordination of the sketches corresponds to coordination
of the underlying samples, a concept that can be traced back four
decades [11]. Accordingly, ADSs come in the same three flavors:
k-mins [14, 41], bottom-k [14, 18], and k-partition [8], and have
expected size ≤ k lnn. A detailed and unified presentation of all
flavors is provided in Section 2.

Algorithms (see Appendix E) which compute the set of ADSs are
based on classic shortest-paths algorithms: PRUNED DIJKSTRA’S
[14], which performs pruned applications of Dijkstra’s algorithm
(or Breadth First Searches for unweighted graphs). [14], DP [41,
8], which uses dynamic programming and applies when edges are
unweighted (ADS computation is implicit in [41, 21, 8], as entries
are computed but not retained.), and LOCAL UPDATES, which ap-
plies dynamic programming to weighted graphs. With unweighted
graphs, these algorithms perform O(km logn) edge relaxations

1

(where m is the number of edges and n the number of nodes), and
this is also their main-memory single-processor running times. LO-
CAL UPDATES is node-centric and appropriate for MapReduce and
similar platforms [36, 38].

Our main technical contributions are in the estimation compo-
nent, where we use the ADSs to estimate the distance distribution,
closeness centralities, and more general queries that are useful for
analysis of social and other massive graphs. Our estimators, while
clean and elegant, are geared for practice: getting the most from
the information present in the sketch (in an exact, rather than an
asymptotic sense), in terms of minimizing variance. Specifically,
we use the Coefficient of Variation (CV), which is the ratio of the
standard deviation to the mean,

Prior to our work, ADS-based neighborhood cardinality estima-
tors [14, 18, 41, 28, 8] were applied by obtaining from the ADS a
corresponding Min-Hash sketch of the neighborhood and applying
a cardinality estimator [14, 29, 24, 28] to that Min-Hash sketch.
We refer to these estimators as basic.
Cardinality estimators through the lens of estimation theory:
In Section 3 we review Min-Hash cardinality estimators. Our ex-
position provides new insights from estimation theory on the op-
timality of these seemingly ad-hoc estimators. Our analysis also
facilitates the comparison of basic estimators with the new estima-
tors we propose here. The first-order term (and an upper bound) on
the CV of the basic estimators is 1/

√
k − 2. We show, using the

Lehmann-Scheffé theorem, that these estimators are the (unique)
optimal unbiased estimators, in terms of minimizing variance.
Historic Inverse Probability (HIP) estimators: In Section 4 we
present the novel HIP estimators, which improve over the basic
estimators. The improvement is possible by utilizing all infor-
mation present in the ADS (or accumulated during its computa-
tion), rather than only looking at the Min-Hash sketch of the es-
timated neighborhood. We show that for neighborhood cardinal-
ities, the HIP estimators obtain a factor-2 reduction in variance
over basic estimators, with CV upper bounded by the first-order
term 1/

√
2(k − 1)). We further show that our HIP estimators are

essentially optimal for ADS-based neighborhood cardinality esti-
mates, and nearly match an asymptotic (for large enough cardinal-
ity) lower bound of 1/

√
2k on the CV. Moreover, the HIP estimates

can be integrated in existing implementations (ANF [41] and hy-
perANF [8]) and replace the basic estimators essentially without
changing the computation. We perform simulations that demon-
strate a factor

√
2 gain in both mean square error and mean relative

error of HIP over basic estimators.
Moreover, our HIP estimates have a linear form which makes

them useful for an expressive general class of queries. Each node j
has a nonnegative estimate aij ≥ 0, which we refer to as adjusted
weight on its presence with respect to i. The adjusted weight is
unbiased (has expectation 1 for any j reachable from i). It is strictly
positive aij > 0 if and only if j ∈ ADS(i), in which case it can be
computed from ADS(i).

The cardinality of the d-neighborhood of i can be estimated by
the sum of the adjusted weights of nodes in ADS(i) that are of
distance at most d from i. More generally, we can obtain unbiased
and nonnegative estimates for arbitrary queries of form

Qg(i) =
∑

j|dij<∞

g(dij , j) , (1)

where g(j, dij) ≥ 0 is a function over both node IDs and dis-
tances. The respective estimate Q̂g(i) =

∑
j∈ADS(i) aijg(j, dij)

is a sum over (the logarithmically many) nodes in ADS(i). Choos-
ing g(dij) = dij , Qg(i) is the sum of distances from i, which

is (the inverse of) the classic Bavelas closeness centrality measure
[6]. Decay of relevance with distances [20, 44] and meta-data based
node filters are captured by queries of the form:

Cα,β(i) =
∑

j|dij<∞

α(dij)β(j) , (2)

where α ≥ 0 is monotone non-increasing and β ≥ 0 is a nonneg-
ative function over node IDs. The function β facilitates measuring
centrality with respect to a filter applied to the meta-data of each
node. For example, β can be a predicate that depends on gender,
locality, or age in a social network or the topic in a Web graph.
When using β ≡ 1, neighborhood cardinality is expressed using
α(x) = 1 if x ≤ d and α(x) = 0 otherwise. Choosing α(x) ≡ 1
gives the number of reachable nodes from i, α(x) = 2−x gives
exponential attenuation with distance [22], and α(x) = 1/x gives
the (inverse) harmonic mean of distances from i [40, 10]).

In [20, 17] we estimated (2) from the ADS of i for any (non-
increasing) α. The handling of a general β, however, required an
ADS computation specific to β (see Appendix B). We obtained un-
biased nonnegative estimators through a reduction to basic neigh-
borhood cardinality estimators, with the same CV of 1/

√
k − 2.

On the same problem, our ADS HIP estimators:

Ĉα,β(i) =
∑

j∈ADS(i)

aijα(dij)β(j) , (3)

have CV upper bounded by 1/
√

2(k − 1). Moreover, we are also
able to obtain unbiased estimates for general queries when the fil-
ter β in (2) (or the function g in (1)) are specified after the sketches
are computed. This flexibility of using the same set of sketches for
many queries is important in many conceivable applications of so-
cial networks or Web graphs analysis. For such queries, our HIP es-
timators obtain up to an (n/k)-fold improvement in variance over
state of the art, which we believe is a subset-weight estimator ap-
plied to the Min-Hash sketch of all reachable nodes (by taking the
average of g(dij , j) over the k samples, multiplied by a cardinality
estimate of the number of reachable nodes n).

HIP estimators for approximate distinct counting: Almost all
streaming distinct counters [29, 14, 24, 5, 32, 30] maintain a Min-
Hash sketch of the distinct elements. To answer a query (number of
distinct elements seen so far), a “basic” estimator is applied to the
sketch. In Section 5 we instead apply our HIP estimators. To do
that, we consider the sequence of elements which invoked an up-
date of the Min-Hash sketch over time (this corresponds to entries
in the ADS computed with respect to distance rather than time).
Even though the entry is not retained, (the streaming algorithm
only retains the Min-Hash sketch), we can compute the adjusted
weight of the new distinct element that invoked the update. These
adjusted weights are added up to obtain a running estimate. To ap-
ply HIP, we therefore need to maintain the Min-Hash sketch and an
additional approximate (non-distinct) counter, which maintains an
approximate count of distinct elements. The approximate counter
is updated (by a positive amount which corresponds to the adjusted
weight of the element) each time the sketch is updated.

We experimentally compare our HIP estimator to the Hyper-
LogLog approximate distinct counter [28], which is considered to
be the state of the art practical solution. To facilitate compari-
son, we apply HIP to the same Min-Hash sketch with the same
parametrization that the HyperLogLog estimator was designed for.
Nonetheless, we demonstrate significantly more accurate estimates
using HIP. Moreover, our HIP estimators are unbiased, principled,
and do not require ad-hoc corrections. They are flexible in that they
apply to all Min-Hash sketch flavors and can be further parametrized

2

according to application needs or to obtain even better accuracy for
the same memory.

Permutation estimators: The basic and HIP estimators have CV
that is essentially independent of cardinality (the neighborhood size).
When we have an upper bound on the domain size (total number
of nodes), we can improve our cardinality estimates for sets that
comprise a good fraction of the domain. The permutation estima-
tor (presented in Section 4.4) is a variation on our HIP estimators.
We experimentally show that permutation improves over plain HIP
when the cardinality is a good fraction (at least 20%) of the total
number of nodes.

Estimation quality for distance ranges: The cummulative dis-
tance distribution, that is, the number of pairs within distance at
most d, can be estimated with small relative error. For the number
of pairs of distance equal to d, we do not have the same guaran-
tees. The estimators are nonnegative and unbiased, and in practice
have small relative error [21, 8], but since the problem generalizes
estimating the graph diameter [1, 42] we can not expect theoretical
guarantees using our near-linear time sketch computation.

In Section 6 we explore the estimation quality for exact dis-
tances. For directed and undirected graphs, we explain the good
performance in practice by the expansion of “real” graphs. For
undirected graphs, we provide a guarantee that holds regardless of
expansion: We show that for any two nodes (i, j), our estimate
on the number of pairs with an endpoint in {i, j} with distance in
[dij/2, 3dij/2] has CV that is O(1/

√
k). This result extends the

best-known near-linear time diameter approximation factor of 2.

2. ALL-DISTANCES SKETCHES
We start with a brief review of Min-Hash sketches. The Min-

Hash sketch summarizes a subset N of items (from some domain
U) and comes in three flavors, k-mins, k-partition, and bottom-k,
where the parameter k determines the sketch size.

The sketch is randomized and defined with respect to (one or
more, depending on flavor) random permutations of the domain U .
It is convenient to specify a permutation by assigning random rank
values, r(j) ∼ U [0, 1], to items. The permutation is the list of
items sorted by increasing rank order. To specify multiple permu-
tations, we use multiple rank assignments. A k-mins sketch [29,
14] includes the item of smallest rank in each of k independent
permutations and corresponds to sampling k times with replace-
ment. A k-partition sketch [29, 28, 35] first maps items uniformly
at random to k buckets and then includes the item with smallest
rank in each bucket. A bottom-k sketch [14, 12] (also known as
KMV sketch [5], coordinated order samples [11, 43, 39], or CRC
[34]) includes the k items with smallest rank in a single permuta-
tion and corresponds to sampling k times without replacement. For
k = 1, all three flavors are the same.

Min-Hash sketches of different subsetsN are coordinated if they
are generated using the same random permutations (or mappings)
of the domain U . The notion of coordination can be traced to [11]
and in the CS literature to [14, 12].

Before continuing to graphs, we introduce some terminology.
For a set N and a numeric function r : N , the function kth

r (N)
returns the kth smallest value in the range of r on N . If |N | < k
then we define kth

r (N) to be the supremum of the range of r (we
mostly use r ∈ [0, 1] and the supremum is 1.) We consider di-
rected or undirected, weighted or unweighted graphs. For nodes
i, j, let dij be the distance from i to j. For an interval J and node
i, NJ(i) = {j|dij ∈ J} is the set of nodes with distance in J from
i, and nJ(i) = |NJ(i)| is the cardinality of NJ(i). For a distance
d, we use the shorthand N[0,d] ≡ Nd and n[0,d] ≡ nd. We use

the notation Φ<j(i) for the set of nodes that are closer to node i
than node j and πij = 1 + |Φ<j(i)| for the Dijkstra rank of j with
respect to i (j’s position in the nearest neighbors list of i).

12

a

b

c

d

e

f

g

h

0.5

0.7

0.2

0.3

0.1

0.4

0.8

0.6

8

9

10

10

13

12

11

10

11

9

8

10

15

Figure 1: A directed graph with random rank values associated
with its nodes.

The ADS of a node i, ADS(i), is a set of node ID and distance
pairs. The included nodes are a sample of the nodes reachable from
i and with each included node j ∈ ADS(i) we store the distance
dij . ADS(i) is the union of coordinated Min-Hash sketches of the
neighborhoods Nd(i) (for all possible values of d). The ADSs are
defined with respect to random mappings/permutations of the set of
all nodes and come in the same three flavors, according to the un-
derlying Min-Hash sketches: Bottom-k, k-mins, and k-partition.
For k = 1, all flavors are equivalent. 2 For simplicity, our defini-
tions of ADS(i) assume that distances dij are unique for different
j (Which can be achieved using tie breaking). A definition which
does not use tie breaking is given in Appendix D.

A bottom-k ADS [18] is defined with respect to a single random
permutation. ADS(i) includes a node j if and only if the rank of
j is one of the k smallest ranks amongst nodes that are at least as
close to i:

j ∈ ADS(i) ⇐⇒ r(j) < kth
r (Φ<j(i)) . (4)

A k-partition ADS (implicit in [8]) is defined with respect to a
random partition BUCKET : V → [k] of the nodes to k subsets
Vh = {i|BUCKET(i) = h} and a random permutation. The ADS
of i contains j if and only if j has the smallest rank among nodes
in its bucket that are at least as close to i.

j ∈ ADS(i) ⇐⇒
r(j) < min{r(h) | BUCKET(h) = BUCKET(j) ∧ h ∈ Φ<j(i)} .

A k-mins ADS [14, 41] is simply k independent bottom-1 ADSs,
defined with respect to k independent permutations.

As mentioned, the term All-Distances Sketch reflects the prop-
erty that the sketch “contains” a Min-Hash sketch with respect to
any distance d. We briefly explain how a Min-Hash sketch of a
neighborhood Nd(v) can be obtained from the ADS of a node v.
This can be done for any d ≥ 0 and in the context of Min-Hash
sketches, Nd(v) is treated as a subset of nodes.

For a k-mins ADS, we are interested in the k-mins Min-Hash
sketch of Nd(v) which is, for each of the k permutations r, x ←

2The term least element lists was used for ADS in [14].

3

minu∈Nd(v) r(u). The value for a given permutation is the mini-
mum rank of a node of distance at most d in the respective bottom-1
ADS. The k minimum rank values x(t) t ∈ [k] we obtain from the
different permutations are the k-mins Min-Hash sketch of Nd(v).
Similarly, the bottom-k Min-Hash sketch of Nd(v) includes the k
nodes of minimum rank in Nd(v), which are also the k nodes of
minimum rank in ADS(v) with distance at most d. A k-partition
Min-Hash sketch of Nd(v) is similarly obtained from a k-partition
ADS by taking, for each bucket i ∈ [k], the smallest rank value
in Nd(v) of a node in bucket i. This is also the smallest value in
ADS(v) over nodes in bucket i that have distance at most d from
v.

Some of our analysis assumes that the rank r(j) and (for k-
partition ADSs) the bucket BUCKET(j) are readily available for
each node j. This can be achieved using random hash functions.

For directed graphs, we consider both the forward and the back-
ward ADS, which are specified with respect to forward or reverse
paths from i. When needed for clarity, we augment the notation
with
−→
X (forward) and

←−
X (backward) whenX is the ADS,N , or n.

EXAMPLE 2.1. Consider the graph of Figure 1. To determine
the forward ADS of node a, we sort nodes in order of increas-
ing distance from a. The order is a, b, c, d, e, f, g, h with respec-
tive distances (0, 8, 9, 18, 19, 20, 21, 26). For k = 1, the (for-
ward) ADS of a is:

−−→
ADS(a) = {(0, a), (9, c), (18, d), (26, h)}.

The first value in each pair is the distance from a and the sec-
ond is the node ID. To compute the reverse ADS of b, we look at
nodes in sorted reverse distance from b: b, a, g, c, h, d, e, f with re-
spective reverse distances (0, 8, 18, 30, 31, 39, 40, 41). We obtain
←−−
ADS(b) = {(0, b), (8, a), (30, c), (31, h)}. The bottom-2 forward
ADS of a contains all nodes that have one of the 2 smallest ranks in
the prefix of the sorted order: so it also includes {(8, b), (20, f)}.

The expected number of nodes in ADS(i) is ≤ k ln(n), where
n is the number of reachable nodes from i: This was established in
[14] for k-mins ADS and in [19] for bottom-k ADS.

LEMMA 2.2. [14, 19] The expected size of a bottom-k ADS is

k + k(Hn −Hk) ≈ k(1 + lnn− ln k) ,

where Hi =
∑i
j=1 1/j is the ith Harmonic number and n is

the number of nodes reachable from v. The expected size of a k-
partition ADS is accordingly kHn/k ≈ k(lnn− ln k).

PROOF. For bottom-k ADS, we consider the nodes sorted by
increasing distance from v, assuming unique distances. The ith
node is included in the bottom-k ADS of v with probability pi =
min{1, k/i}. Node inclusions are independent (when distances are
unique, but otherwise are negatively correlated). The expected size
of the ADS of v is the sum of node inclusions which is

n∑
i=1

pi = k + k(Hn −Hk) .

Similarly, for k-partition, (assuming a random partition and permu-
tation), the expected number of included nodes from each bucket is
ln(n/k) (since each bucket includes in expectation n/k nodes) and
therefore the total expected size is k ln(n/k).

Base-b ranks: The ADS definition as provided includes node IDs,
that is, unique identifiers for nodes. Unique IDs are of size dlog2 ne
and allow us to obtain unique ranks and also support queries in-
volving meta-data based node selections. For many queries, in-
cluding neighborhood cardinality estimation, we can use ranks that

have a smaller representation: For some base b > 1, we use the
rounded rank values r′(j) = b−hj , where hj = d− logb r(j)e.
The rounded rank can be represented by the integer hj . The value
of the base b trades-off the sketch size and the information it carries,
where both increase when b is closer to 1.

With base-b ranks, the expected value of the largest hj , which
corresponds to the smallest r(j), is logb n. Thus, the representa-
tion size of the rounded smallest rank is log2 logb n. The expected
deviation from the expectation is ≤ logb 2, which means that a set
of k smallest ranks in a neighborhood or the k smallest ranks in
different permutations can be compactly represented using an ex-
pected number of log2 log2 n+ k logb 2 bits.

In the sequel, we consider full ranks and then point out the im-
plication of using base-b ranks.

3. MIN-HASH CARDINALITY ESTIMATE
In this section we review estimators for the cardinality |N | = n

of a subset N that are applied to a Min-Hash sketch of N .
The cardinality of Nd(v) can be estimated by obtaining its Min-

Hash sketch from ADS(v) and applying a cardinality estimator to
this Min-Hash sketch. This also applies to directed graphs, in which
case we can estimate the size of the outbound d-neighborhood−→n d(v)

from
−−→
ADS(v) and similarly estimate the size of the inbound d-

neighborhood←−n d(v) from
←−−
ADS(v).

As mentioned in the introduction, we use the CV to measure
the quality of the estimates. The CV of an estimator n̂ of n is√

E[(n− n̂)2]/n. For the same value of the parameter k, the
bottom-k sketch contains the most information, but all flavors are
similar when n� k. We first consider full precision ranks and then
explain the implication of working with base-b ranks. For illustra-
tive purposes, we start with the k-mins sketch. We then consider
the more informative bottom-k sketch. The lower bound for the
k-partition sketch is implied by the bound for the other flavors.

3.1 k-mins estimator
The k-mins sketch has the vector form xi i ∈ [k]. The cardinal-

ity estimator k−1∑k
i=1 − ln(1−xi)

was presented and analysed in [14].
It is unbiased for k > 1. Its variance is bounded only for k > 2 and
the CV is equal to 1/

√
k − 2. The Mean Relative Error (MRE) is

2(k − 1)k−2

(k − 2)! exp(k − 1)
≈

√
2

π(k − 2)
.

This estimator can be better understood when we view the ranks
as exponentially distributed with parameter 1 (rather than uniform
from U [0, 1]). This is equivalent, as we can use a simple 1-1
monotone transformation y = − ln(1 − x) which also preserves
the Min-Hash definition. In this light, the minimum rank is ex-
ponentially distributed with parameter n. Our estimation problem
is to estimate the parameter of an exponential distribution from
k independent samples and we use the estimator k−1∑k

i=1 yi
, where

yi = − ln(1− xi).
We now apply classic estimation theory to better understand how

well this estimator uses the information available in the Min-Hash
sketch.

LEMMA 3.1. Any unbiased estimator applied to the k-mins Min-
Hash sketch must have CV that is at least 1/

√
k.

PROOF. For cardinality n, each of the k entries (minimum ranks)
is an exponentially distributed random variable and therefore has
density function ne−nx.

4

Since entries in the k-mins sketch are independent, the density
function (likelihood function) of the sketch is the product of the k
density functions f(y;n) = nke−n

∑k
i=1 yi . Its logarithm, the log

likelihood function, is `(y;n) = k lnn − n
∑k
i=1 yi. The Fisher

information, I(n), is the negated expectation of the second partial
derivative of `(y;n) (with respect to the estimated parameter n).
We have

∂2`(y;n)

∂2n
= − k

n2
.

This is constant, and equal to its expectation. Therefore I(n) =
k/n2.

We now apply the Cramér-Rao lower bound which states that
the variance of any unbiased estimator is at least the inverse of the
Fisher information: 1

I(n)
= n2

k
. A corresponding lower bound of

1√
k

on the CV is obtained by taking the square root and dividing
by n.

We next show that the sum
∑k
i=1 yi captures all necessary infor-

mation to obtain a minimum variance estimator for n.

LEMMA 3.2. The sum of the minimum ranks
∑k
i=1 yi is a suf-

ficient statistics for estimating n from a k-mins sketch.

PROOF. The likelihood function f(y;n) = nke−n
∑k

i=1 yi de-
pends on the sketch only through the sum

∑k
i=1 yi.

Therefore, from the Rao-Blackwell Theorem [7], a minimum vari-
ance estimator applied to the sketch may only depend on

∑k
i=1 yi.

We can further show that
∑k
i=1 yi is in fact a complete sufficient

statistics. A sufficient statistics T is complete if any function g
for which E[g(T)] = 0 for all n must be 0 almost everywhere
(with probability 1). The Lehmann-Scheffé Theorem [33] states
that any unbiased estimator which is a function of a complete suf-
ficient statistics must be the unique Uniform Minimum Variance
Unbiased Estimator (UMVUE). Since our estimator is unbiased, it
follows that it is the unique UMVUE. That is, there is no other es-
timator which is unbiased and has a lower variance! (for any value
of the parameter n).

This optimality results provides an interesting insight to the thread
of research on approximate distinct counting (and to practice). One
can easily come up with several ways of using the sketch informa-
tion to obtain an estimator: taking the median, averaging quantiles,
removing the two extreme values, and so on. The median specif-
ically had been considered [14, 3, 5] because it is more amenable
to obtaining concentration bounds. We now understand that while
these estimators can have variance that is within a constant factor
of optimal, estimation theory shows that (in terms of variance) the
average, and the average alone, carries all the information we need
and anything else is strictly inferior.

3.2 Bottom-k estimator
The bottom-k estimator includes the k smallest rank values inN ,

and we use the estimator k−1
τk

, where τk = kth
r (N) is the kth small-

est rank in N . This estimator is a conditional inverse-probability
estimator [31]: For each element in N we consider its probabil-
ity of being included in the Min-Hash sketch, conditioned on fixed
ranks of all other elements. This estimator is therefore unbiased.
The conditioning was applied with priority sampling [23] (bottom-
k [19]) subset sum estimation.

The information content of the bottom-k sketch is strictly higher
than the k-mins sketch [18]. We show that the CV of this estimator
is upper bounded by the CV of the k-mins estimator:

LEMMA 3.3. The bottom-k estimator has CV ≤ 1/
√
k − 2.

PROOF. We interpret the bottom-k cardinality estimator as a
sum of n negatively correlated inverse-probability [31] estimates
for each element, which estimate the presence of the element in
N . (That is, for each v ∈ N , estimating its contribution of “1” to
the cardinality and for each v 6∈ N , estimating 0). The inclusion
probability of an element is with respect to fixed ranks of all other
elements. In this case, an element is one of the k−1 smallest ranks
only if its rank value is strictly smaller than the k− 1 smallest rank
amongst the n−1. For elements currently in the sketch, this thresh-
old value is τk. These estimates (adjusted weights) are equal and
positive only for the k− 1 elements of smallest rank. The variance
of the adjusted weight a of an element conditioned on fixing the
rank values of other elements is 1/p − 1, where p is the probabil-
ity that the rank of our element is smaller than the threshold. The
(unconditional) variance of a is the expectation of 1/p− 1 over the
respective distribution over p.

When ranks are exponentially distributed (which is convenient
choice for analysis), the distribution of the k − 1 smallest amongst
n − 1 is the sum of k − 1 exponential random variables with pa-
rameters n− 1, n− 2, . . . , n− k + 1. We denote the density and
CDF functions of this distribution by bn−1,k−1 and Bn−1,k−1, re-
spectively. We have p = 1 − exp(−x) and the adjusted weight of
each element has variance of 1/p − 1 = exp(−x)

1−exp(−x)
(conditioned

on x). We now compute the expectation of the variance according
to the distribution of x.

We denote by sn,k and Sn,k the respective distribution function
of the sum of k exponentially distributed random variables with
parameter n.

Var[â] =

∫ ∞
0

bn−1,k−1(x)
e−x

1− e−x dx ≤
∫ ∞

0

sn−1,k−1(x)
1

x
dx

=

∫ ∞
0

(n− 1)k−1xk−2

(k − 2)!
e−(n−1)x 1

x
dx

=
(n− 1)k−1

(k − 2)!

(k − 3)!

(n− 1)k−2
=
n− 1

k − 2
.

The first inequality follows from e−x

1−e−x ≤ 1/x and ∀x,Bn,k(x) ≤
Sn,k(x), that is, Bn,k is dominated by the sum of k exponential
random variables with parameter n. We then substitute the prob-
ability density function [26] (also used for analyzing the k-mins
estimator in [14])

sn,k =
nkxk−1

(k − 1)!
e−nx .

The second to last equality uses
∫∞

0
xae−bxdx = a!/ba+1 for nat-

ural a, b,
Estimates for different elements are negatively correlated (an el-

ement being sampled makes is slightly less likely for another to
be sampled) and thus, the variance on the cardinality estimate is at
most the sum of variances of the n elements. The CV is therefore
at most √

n(n− 1)

k − 2
/n ≤

√
1

k − 2
.

The improvement of bottom-k over the k-mins estimator is more
pronounced when the cardinality n is smaller and closer to k. The
first order term, however, is the same and when n � k, the CV of
the bottom-k estimator approaches

√
1

k−2
.

5

We now consider this estimator from the estimation theoretic
lens. When n ≤ k, the variance is clearly 0. Therefore, any mean-
ingful lower bound must depend on both n, k.

LEMMA 3.4. Any unbiased estimator applied to the bottom-k
Min-Hash sketch must satisfy

lim
n→∞

CV(n, k) ≥ 1/
√
k .

PROOF. Let x1, x2, . . . , xk be the k smallest ranks in increas-
ing order. From basic properties of the exponential distribution, the
minimum rank y0 ≡ x1 is exponentially distributed with parameter
n. For i > 0, the difference between the ith smallest and the i−1th
smallest ranks, yi ≡ xi+1−xi, is exponentially distributed with pa-
rameter n− i. Moreover, these differences yi are independent. We
can therefore equivalently represent the information in the bottom-
k sketch by (y0, . . . , yk−1), where yi is independently drawn from
an exponential distribution with parameter n− i. The joint density
function is the product f(y;n) =

∏k−1
i=0 (n − i)e−(n−i)yi . The

Fisher information is I(n) =
∑k
i=0

1
(n−i)2 . We obtain a lower

bound on the CV of at least 1√∑k−1
i=0

n2

(n−i)2

. When n � k, the

expression approaches 1√
k

.

LEMMA 3.5. xk (the kth smallest rank) is a sufficient statistics
for estimating n from a bottom-k sketch.

PROOF. We can express the joint density function f(y;n) as
a product of an expression that does not depend on the estimated
parameter n and e−n

∑k−1
i=0 yi

∏k−1
i=0 (n − i). Therefore, xk =∑k−1

i=0 yi is a sufficient statistics.

From Rao-Blackwell Theorem, the kth minimum rank captures all
the useful information contained in the bottom-k sketch for obtain-
ing a minimum variance estimator for n. Since it is a complete
sufficient statistics, and our estimator is unbiased, it follows from
the Lehmann-Scheffé theorem [33] that it is the unique UMVUE.

3.3 k-partition estimator
The estimator examines the 1 < k′ ≤ k nonempty buckets,

and is conditioned on k′. The size of each bucket has distribu-
tion 1 + B(n − k′, 1/k′), where B is the Binomial distribution.
We can approximate bucket sizes by n/k′ and apply the k′-mins
estimator (analysis holds for k′ equal buckets). The estimate is

k′(k′−1)

−
∑k

t=1 ln(1−x(t)) , where x(t) is the minimum rank in partition t.
When n � k, the k-partition estimator performs similarly to

the bottom-k and k-mins estimators. When n < k, there are ef-
fectively only k′ < k nonempty buckets. Even when n = O(k),
the expected size of k′ is significantly smaller than k, and the CV
is more similar to that of a k′-mins estimate, and therefore, can be
expected to be

√
k/k′ larger. Moreover, the k-partition estimator

is biased down: In particular, when k′ = 1, an event with positive
probability, the estimate is 0. The probability of k′ = 1 for cardi-
nality n is p = (1/k)n−1. Since we do not generally know n, we
can not completely correct for this bias.

3.4 Min-Hash sketches with base-b ranks
We considered cardinality estimators for sketches with “full”

ranks taken from the domain [0, 1]. If we work with truncated ranks
but ensure that there are no rank collisions, the full-rank estimators
can be applied by uniformly at random “filling in” missing bits to
the desired precision or better yet, computing the expectation of
the estimator over these random completions. A hash range of size
nc and representation c logn implies that with probability 1/nc−1

there are no rank collisions between any two nodes in a set of size
n.

A uniform random completion of the truncated ranks is an equiv-
alent replacement to the full rank when all elements with the same
base-b rank that “contend” for a sketch entry are actually repre-
sented in the sketch. If this condition does not hold, the expected
full-rank completions are more likely to be smaller than uniform
completions and estimates obtained with uniform completion will
be biased.

To satisfy this condition we need to ensure that there are no
rank collisions along the “inclusion” threshold. With bottom-k this
means that the base-b kth smallest rank is strictly smaller than the
base-b (k + 1)th smallest rank. With k-mins (k-partition) it means
that the base-b minimum is unique in each permutation (bucket).

If we choose b = 1 + 1/kc, probability of collision is at most
1/kc−1. In this case, the expected size of the (integer exponent
of the) minimum rank is log2 logb n ≈ log2 log2 n + log2 k

c ≈
log2 log2 n+ c log k. Moreover, we recall that the expected size of
the offset from this expectation is constant times logb 2. Substitut-
ing b ≈ 1/kc we obtain an expected offset of the order of c log k, so
we can compactly represent the sketch using log2 log2 n+ck log k
bits.

If we work with a larger base, collisions are more likely and
introduce bias. The estimators then need to compensate for the
bias. Specialized estimators for base-2 ranks with k-mins sketches
were proposed in [29] and for k-partition sketches in [28]. The HIP
estimators we present next naturally apply with base-b ranks.

4. THE HIP ESTIMATOR
The Historic Inverse Probability (HIP) estimators we present

here gain from using the complete information in ADS(v) rather
than extracting from it a Min-Hash sketch of the neighborhood
whose size we want to estimate, and apply a cardinality estima-
tor to that sketch. HIP estimators can be computed for all three
ADS flavors and naturally extend to base-b ranks. We show that
the HIP estimators obtain a factor 2 improvement in variance over
the respective basic estimator and also show that they are asymp-
totically optimal. We also present a variant of HIP, the permutation
cardinality estimator, which applies to bottom-k ADSs when ranks
are a strict permutation of a domain [n]. This estimator improves
over plain HIP when the cardinality is good fraction of n.

The HIP estimator is computed by scanning entries in ADS(i)
in order of increasing distance from i. For each node j ∈ ADS(i)
we compute an estimate aij > 0 on its presence in ADS(i) which
we call the adjusted weight of j. These adjusted weights are con-
ditioned inverse probability estimates, a twist on a classic Horvitz-
Thompson [31] estimator which applies it conditioned on the ranks
of nodes that are closer to i than j. A similar conditioning tech-
nique, in a different context, was used in [23, 19]. The adjusted
weight aij ≥ 0 has expectation E[aij] = 1 and is positive if and
only if j ∈ ADS(i).

As noted in the introduction, we can estimate Qg(i) (see (1))
from ADS(i) using

Q̂g(i) =
∑
j

aijg(dij , j) =
∑

j∈ADS(i)

aijg(dij , j) . (5)

Unbiasedness follows from linearity of expectation, since each ad-
justed weight is unbiased. The second equality holds since only
nodes j ∈ ADS(i) have positive aij > 0. We note that the esti-
mate can be easily computed from ADS(i), since for each included
node j we have the distance dij .

When we are only interested in queries Qg where g(dij) only
depends on the distance and not on the node ID j, we can compress

6

the ADS representation to a list of distance and adjusted weights
pairs: For each unique distance d in ADS(i) we associate an ad-
justed weight equal to the sum of the adjusted weights of included
nodes in ADS(i) with distance d.

To finish the presentation of the HIP estimators, we need to ex-
plain how the adjusted weights are computed for j ∈ ADS(i).
We focus in detail on bottom-k ADSs and start with full ranks
r(i) ∼ U [0, 1].

4.1 HIP estimate for bottom-k ADS
Consider a node v and list nodes by increasing Dijkstra rank with

respect to v, that is node i has πvi = i.
For node i, we define the threshold value

τi = kth
r {Φ<i(v) ∩ADS(v)} . (6)

The adjusted weights avi for node i are 0 if i 6∈ ADS(v) and 1/τi
if i ∈ ADS(v). Note that τi, and hence avi, can be computed from
ADS(v) for all i ∈ ADS(v).

The adjusted weights are inverse-probability estimates with re-
spect to the probability τi of including i in ADS(v), conditioned
on fixing the ranks of the nodes 1, . . . , i− 1:

LEMMA 4.1. Conditioned on fixed rank values of all nodes in
Φ<i(v), the probability of i ∈ ADS(v) is τi.

PROOF. Node i is included if and only if r(i) < kth
r {Φ<i(v)},

that is, i’s rank is smaller than the kth smallest rank amongst nodes
that are closer to v than i. Note that it is the same as the kth smallest
rank among nodes that are in ADS(v) and closer to v than i, since
ADS(v) must include all these nodes. When r(i) ∼ U [0, 1], this
happens with probability τi.

Since these are inverse-probability weights, they are clearly un-
biased when τi > 0, which happens with probability 1. Note that
for i ≤ k (when i is one of the k closest nodes to v), by definition
i ∈ ADS(v), τi ≡ 1, and therefore avi = 1, since the first k nodes
are included with probability 1. Also note that the adjusted weights
of nodes in ADS(v) are increasing with the distance dvi (or Dijk-
stra rank πvi). This is because the inclusion probability in the ADS
decreases with distance. In particular this means that the variance
of avi increases with dvi.

We show that the variance of the HIP neighborhood cardinality
estimator is at least a factor of 2 smaller than the variance of the
basic bottom-k cardinality estimator, which in turn dominates the
basic k-mins estimator.

THEOREM 4.1. The CV of the ADS HIP estimator for a neigh-
borhood of size n is

≤

√
1− n+k(k−1)

n2√
2(k − 1)

≤ 1√
2(k − 1)

.

PROOF. When nd(v) ≤ k, the estimate is exact (variance is 0).
Otherwise, (assuming nodes are listed by Dijkstra ranks πvi ≡ i),
the variance on i is E[1/p − 1] where p is the probability that the
rank of vi is smaller than the kth smallest rank among v1, . . . , vi−1.
We adapt the analysis of Lemma 3.3 for the variance of the bottom-
k estimator. We use exponentially distributed ranks, and have, con-
ditioned on kth smallest rank τi in Φ<i(v) variance exp(−τi)/(1−
exp(−τi)). We compute the expectation of the variance for τi dis-
tributed according to bi−1,k. This is a similar computation to the
proof of Lemma 3.3 and we obtain that the variance of the adjusted
weight avi is bounded by i−1

k−1
. Estimates for different i are again

negatively correlated and thus the variance of the neighborhood es-
timate on n is upper bounded by

∑n
i=k+1

i−1
k−1

= n2−n−k2−k
2(k−1)

and
the upper bound on the CV follows.

The bound of Theorem 4.1 extends to distance-decay closeness
centralities.

COROLLARY 4.2. For a monotone non-increasing α(x) ≥ 0

(we define α(∞) = 0), Ĉα(i) =
∑
j∈ADS(i) aijα(dij) is an un-

biased estimator of Cα(i) =
∑
j α(dij) with CV that is at most

1/
√

2(k − 1).

The Corollary holds for the more general form (2) when ADSs are
computed with respect to the node weights β(i), see Appendix B.
Otherwise, when estimating Qg(v) using (5), the variance is upper
bounded as follows:

COROLLARY 4.3.

Var[Q̂g(v)] ≤
∑

i|v;i∧πvi>k

g(i, dvi)
2 πvi − 1

k − 1
.

In contrast, we can consider the variance of the naive estimator
for Qg(v) that is mentioned in the introduction. That estimator
uses a Min-Hash sketch, which is essentially a random sample of
k reachable nodes. Since inclusion probabilities are about ≈ k/n
The variance in this case is about n−1

k−1

∑
i g(i, dvi)

2. We can see
that when g(i, dvi) are concentrated (have higher values) on closer
nodes, which the Min-Hash sketch is less likely to include, the vari-
ance of the naive estimate can be up to a factor of n/k higher, where
n is the number of reachable nodes from v.

4.2 HIP estimate for k-mins and k-partition
We briefly present the HIP estimators for k-mins and k-partition

ADS. Similarly, the adjusted weight is 0 if i 6∈ ADS(v) and is 1/τi
otherwise, where the inclusion threshold τi is computed as follows.
For k-mins, a node i is included in ADS(v) only if it has rank value
strictly smaller than the minimum rank in Φ<i(v) in at least one of
the k assignments rh h ∈ [k]. Conditioned on fixed ranks of all the
nodes Φ<i(v), the inclusion threshold is

τi = 1−
k∏
h=1

(1− min
j≤i−1

rh(j)) . (7)

For k-partition ADS, we again fix both the rank values and the
partition mapping (to one of the k buckets V1, . . . , Vk) of all nodes
in Φ<i(v). We then compute the inclusion threshold, which is the
probability that i ∈ ADS(v) given that conditioning. This is with
respect to a uniform mapping of node i to one of the k buckets and
random rank value. We obtain inclusion threshold

τi =
1

k

k∑
h=1

min
j∈Vh∩Φ<i(v)

r(j) , (8)

defining the minimum rank over an empty set Vh ∩ Φ<i(v) to be
1. Note that the threshold τi, and therefore the respective adjusted
weight avi, can be computed from ADS(v).

4.3 Lower bound on variance
We show that the variance of the HIP estimates is asymptotically

optimal for n� k:

THEOREM 4.2. The first order term, as n � k, of the CV of
any (unbiased and nonnegative) linear (adjusted-weights based)
estimator of nd(v) applied to ADS(v) must be ≥ 1/

√
2k.

PROOF. The inclusion probability of the ith node from v i ≥ k
in a bottom-k ADS(v) is pi = k/i. If we had known pi, the best
we could do is use inverse probability weighting, that is, estimate
0 if not sampled and 1/pi if the node is included. The variance

7

of this ideal estimator is 1/pi − 1. There are very weak negative
correlations between inclusions of two nodes, making them almost
independent (for i � k � 1): The probability pi given that j < i
is included is≥ (k−1)/i and given that j is not included is k/(i−
1). The covariance is thereforeO(1/i). The sum of all covariances
involving node i is therefore O(1) and the sum of all covariances
is O(n). The variance of this ideal estimator on a neighborhood of
size n > k is at least the sum of variances minus an upper bound on
the sum of covariances Var[n̂] =

∑n
i=k+1

i−k
k

= (n+k+1)(n−k)
2k

−
(n − k) − O(n). The CV,

√
Var[n̂]/n, has first order term for

n� k, of 1/
√

2k.
Similar arguments apply to k-mins and k-partition ADS. For k-

mins ADS, the inclusion probability in ADS(v) of the ith node
from v is pi = 1− (1− 1/i)k ≈ k/i, and we obtain the same sum
for i = 1, . . . , n as with bottom-k ADS. For k-partition, the inclu-
sion probability is pi = E[1/(1 + x)] where x ∼ B[i, 1/k].

4.4 Permutation estimator
The permutation estimator we present here is applied to a bottom-

k ADS that is computed with respect to ranks σi ∈ [n] that consti-
tute a random permutation of [n]. In terms of information content,
permutation ranks dominate random ranks r(i) ∼ U [0, 1], since
random ranks can be associated based on the permutation ranks σ.
The main advantage of the permutation estimator is that we obtain
tighter estimates when the cardinality we estimate is a good fraction
of n. The permutation estimator is only evaluated experimentally.

The permutation estimator, similarly to HIP, is viewed as com-
puted over a stream of elements. In the graph setting, the stream
corresponds to scanning of nodes so that first occurrences of nodes
are according to increasing distance from v. The entries in ADS(v)
correspond to nodes on which the sketch was updated. A positive
weight is then associated with these updates. The weight is an esti-
mate of the number of distinct elements scanned from the previous
update (or the beginning if it is the first update) to the current one.
We maintain a running estimate ŝ on the cardinality s of the set
S of distinct elements seen so far. When there is an update, ŝ is
increased by its weight w.

The first k updates corresponds to the first k distinct elements.
Each of these updates has weight 1 and when the cardinality s ≤ k,
our estimate is exact ŝ = s.

Consider now an update that occur after the first k distinct ele-
ments. Let µ > k be the kth smallest rank in S (which is the kth
smallest permutation rank in the bottom-k sketch).

We now argue that after an update, the expected number of dis-
tinct nodes until we encounter the next update is w′ = n−s+1

µ−k+1
. To

see this, note that the number of nodes in S with permutation rank
µ or below is k. So there are µ − k remaining nodes with rank
smaller than µ amongst those in [n] \ S. The expectation is that of
sampling without replacement until we find a node with permuta-
tion rank below µ.

When the update occurs, we would like to compute w′ and up-
date our estimate ŝ. But we actually do not know s. So instead we
plug-in the unbiased estimate ŝ to obtain w = n−ŝ+1

µ−k+1
. We then

update the bottom-k sketch (and µ if needed) and ŝ← ŝ+ w.
Note that when µ = k, that is, the k smallest elements of the

permutation, those with σi ≤ k, are included in S, the probability
of an update is 0 as the sketch is saturated. We then need to correct
the estimate to account for the number of nodes that are farther than
the nodes with permutation rank [k]. The correction is computed as
follows.

If the cardinality is x, then conditioned on it including all the ele-
ments with permutation ranks [k], the expected number of elements
that are farther than all the elements with permutation ranks in [k]

is x−k
k+1

. So the expected number of elements till the last update is
x′ = x− n−k

k+1
. Note that our estimate ŝ was unbiased for x′.

Solving x− x−k
k+1

= x′ for xwe obtain the relation x = x′ k+1
k
−

1. We plug-in ŝ for x′ and obtain the correction x̂ = ŝ k+1
k
− 1.

This correction is used when our sketch contains the k elements of
permutation ranks [k].

4.5 Simulations
We use simulations to study the Normalized Root Mean Square

Error (NRMSE), which corresponds to the CV when estimator is
unbiased, and the Mean Relative Error (MRE), defined as E[|n −
n̂|]/n of the basic, HIP, and permutation neighborhood-cardinality
estimators. We evaluated the basic estimators for all three flavors
and the bottom-k HIP estimators. We use sketches with full ranks,
because the optimal basic estimators are well understood with full
ranks. Actual representation size for “full” ranks is discussed in
Section 3.4.

The cardinality nd(v) is estimated from nodes in ADS(v) of
distance at most d. The structure of the ADS and the behavior of
the estimator as a function of the cardinality nd(v) do not depend
on the graph structure. When nodes are presented in increasing
distance from v, the ADS only depends on the ranks assigned to
these nodes. Our simulation is therefore equivalently performed on
a stream of n distinct elements, and ADS content is built from the
randomized ranks assigned to these elements. After processing i
distinct element, we obtain an estimate of i from the current ADS.
We do so for each cardinality. We use multiple runs of the simu-
lation, which are obtained by different randomization of ranks. In
case of the permutation estimator, the ranks we use are permutation
ranks from a random permutation on all n nodes. For other estima-
tors, the estimate for a certain cardinality does not depend on the
total number of nodes.

Figure 2 shows the NRMSE and the MRE estimates by average
of multiple simulation runs. We also provide, for reference, the
exact values of the CV (1/

√
k − 2) and MRE (≈

√
2/(π(k − 2)))

of the k-mins basic estimator. These values are independent of
cardinality and upper bounds the respective measures for the basic
bottom-k estimator.

Looking at basic estimators, we can see that (as expected from
analysis) for n� k, the error is similar for all three flavors and the
NRMSE is around 1/

√
k − 2. For smaller values of n, the bottom-

k estimator is more accurate than the k-mins which in turn is more
accurate than the k-partition estimator: The bottom-k estimator is
exact for k ≤ n and then the relative error slowly increases until
it meets the k-mins error. We can observe that, as explained by
analysis, the k-partition estimator is less accurate for n ≤ 2k.

The figures also include the first-order term (upper bound) for
HIP. The results for the bottom-k HIP estimator clearly demon-
strate the improvement of the HIP estimators: We can see that the
error of the bottom-k HIP estimator is a factor of

√
2 smaller than

that of the basic bottom-k estimator. The figures also demonstrate
the benefit of using our permutation estimator: The NRMSE and
MRE of the permutation estimate were always at most that of HIP.
The two are comparable when the estimated cardinality is at most
0.2n. When it exceeds 0.2n, we observe a significant advantage
for the permutation estimator over plain HIP.

4.6 HIP with base-b ranks
The application and analysis of HIP estimators carries over nat-

urally, retaining unbiasedness even with collisions. Recall that the
adjusted weight of i is obtained by first computing a threshold
value, based on fixing ranks (and partition) of nodes closer to v

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

N
R

M
S

E

size

NRMSE k=5, 1000 runs, max n = 10000

kmins basic
kpart basic
botk basic

botk HIP
perm

basic cv UB
HIP cv UB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000 10000

N
R

M
S

E

size

NRMSE k=10, 500 runs, max n = 10000

kmins basic
kpart basic
botk basic

botk HIP
perm

basic cv UB
HIP cv UB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 10 100 1000 10000

N
R

M
S

E

size

NRMSE k=50, 250 runs, max n = 50000

kmins basic
kpart basic
botk basic

botk HIP
perm

basic cv UB
HIP cv UB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000 10000

M
R

E

size

MRE k=5, 1000 runs, max n = 10000

kmins basic
kpart basic
botk basic

botk HIP
perm

basic MRE UB
HIP MRE UB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000 10000

M
R

E

size

MRE k=10, 500 runs, max n = 10000

kmins basic
kpart basic
botk basic

botk HIP
perm

MRE basic UB
 MRE HIP UB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000 10000

M
R

E

size

MRE k=50, 250 runs, max n = 50000

kmins basic
kpart basic
botk basic

botk HIP
perm

basic MRE UB
HIP MRE UB

Figure 2: NRMSE (normalized root mean square error) and MRE (mean relative error) of neighborhood size estimators with
k = 5, 10, 50, as a function of neighborhood size, averaged over multiple runs. We show k-mins, bottom-k, and k-partition basic esti-
mators and our bottom-k HIP and permutation estimators. For reference, we also show the exact values 1/

√
k − 2 and 1/

√
2(k − 1)

of the CV of the basic and HIP k-mins estimators. These are upper bounds on the CV of respective bottom-k estimators. We also
show

√
2

π(k−2)
for the MRE of the basic k-mins estimator and

√
1

π(k−1)
as a reference MRE for HIP.

than i. We then use an inverse probability estimate, based on the
probability of being below the threshold. The necessary property
for unbiasedness of inverse probability estimators, which is satis-
fied with base-b ranks, is that for any legal threshold τ , there is
nonzero probability of having rank that is below τ .

When using base-b ranks, however, the threshold probability pi
we obtain will be “rounded down” from the corresponding full
rank probability. Since the probability is strictly smaller than with
the full ranks, the threshold inclusion probability τ is lower and
therefore the contribution to the variance of the estimate, which is
1/τ − 1, is higher. We perform a back-of-the-envelope calculation
which shows that τ can be expected to increase by a factor of 1+b

2
,

which implies the same-factor increase in variance: Considering a
range between discretized values, a = 1/bi and ba = 1/bi−1, and
assuming the full rank x lies uniformly in that interval. The full-
rank inclusion probability is x whereas the rounded-down one is a.
We consider the expectation of the ratio x/a. This expectation is

1

a(b− 1)

∫ ba

a

x

a
dx =

b+ 1

2
.

Simulations in the next section show that this calculation is fairly
accurate. We can use this calculation to find a sweet spot for the
base b, considering the tradeoff between representation size and

variance. The CV as a function of k, b is
√

(1+b)
4(k−1)

. The represen-
tation size depends on application. If sketch is only used for count-
ing, maintaining few bits for counter, there is diminishing value
with smaller bases. If the sketch is used as a sample (which sup-
ports selection queries) and stores meta-data (or node IDs), then k
is the dominant term and it is beneficial to work with full ranks.

5. APPROXIMATE DISTINCT COUNTING

Our HIP estimators (with full or base-b ranks) can be used to
approximate the number of distinct elements in a stream. A Min-
Hash sketch is maintained for the distinct elements on the prefix of
the stream that is processed.

To apply HIP, we augment the Min-Hash sketch with an addi-
tional register which maintains an approximate count of the num-
ber of distinct elements. Each time the sketch is updated, we com-
pute the adjusted weight of the element and accordingly increase
the count by that amount. Since the expected total number of up-
dates is ≤ k lnn, where n is the number of distinct elements in
the stream (see Lemma 2.2), the additional work performed for an
update balances out as a diminishing fraction of the total stream
computation.

An explicit representation of the additional counter as an approx-
imate counter (see Appendix A) would require storing the expo-
nent, which is of size dlog logne + 1 and dlog2

√
(4k/3) + 4e

significant bits (precision with respect to the CV of HIP). The ex-
ponent can more efficiently be stored as an offset to the exponent
values stored in the sketch, removing its dependence on n. Thus,
using only O(log2 k) for the approximate count. An even more
compact representation of the approximate count also eliminates
the dependence on k, and requires only few bits in total. To do
that we represent the HIP estimate as a correction of a basic esti-
mate obtained from the Min-Hash sketch. The correction can be
expressed as a signed multiplier of n̂/

√
k using a fixed number of

bits. When the sketch is updated, we recompute the basic estimate
n̂ and accordingly update the correction to be with respect to the
new HIP estimate.

HIP is very flexible. It applies to all three sketch flavors, to full
and to base-b ranks, and also works with truncated registers that
can get saturated. In this case we simply take the update prob-
ability of a saturated register to be 0. The HIP estimate quality
gracefully degrades with the number of saturated registers. Even-

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000 10000 100000 1e+06

N
R

M
S

E

cardinality

NRMSE HLL, HIP k=16 MB=32 5000 runs

HLLraw NRMSE
HLL NRMSE
HIP NRMSE

HIP base-2 CV analysis
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000 10000 100000 1e+06

N
R

M
S

E

cardinality

NRMSE HLL, HIP k=32 MB=32 5000 runs

HLLraw NRMSE
HLL NRMSE
HIP NRMSE

HIP base-2 CV analysis
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 10 100 1000 10000 100000 1e+06

N
R

M
S

E

cardinality

NRMSE HLL, HIP k=64 MB=32 2000 runs

HLLraw NRMSE
HLL NRMSE
HIP NRMSE

HIP base-2 CV analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000 10000 100000 1e+06

M
R

E

cardinality

MRE HLL, HIP k=16 MB=32 5000 runs

HLLraw MRE
HLL MRE
HIP MRE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000 10000 100000 1e+06

M
R

E

cardinality

MRE HLL, HIP k=32 MB=32 5000 runs

HLLraw MRE
HLL MRE
HIP MRE

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 10 100 1000 10000 100000 1e+06

M
R

E

cardinality

MRE HLL, HIP k=64 MB=32 2000 runs

HLLraw MRE
HLL MRE
HIP MRE

Figure 3: HIP and HLL raw and bias-corrected estimators. Applied with k = 16, 32, 64 and 5-bit counters. (k-partition base-2
Min-Hash sketches)

tually, if all registers are saturated, the HIP estimate saturates and
becomes biased. In order to compare the HIP estimate with Hyper-
LogLog (HLL) [28, 30], which is the state of the art approximate
distinct counter, we implemented it on the same Min-Hash sketch
that is used by HLL. HLL uses k-partition Min-Hash sketches with
base-2 ranks. The registers have 5 bits and are thus saturated at 31.
Pseudo code for the HIP estimator when applied to the HLL sketch
is provided in Figure 4.

Require: Random uniform hash functions: BUCKET(v) :
[k], r(v): first 32 bits of U [0, 1].

1: Initialization:
2: for i = 1, . . . , k do M [i]← 0 . M [i] are 5-bit registers
3: c← 0 . c is an approximate counter

4: Processing stream element v:
5: h(v)← min{31, d− log2 r(v)e}
6: if h(v) > M [BUCKET(v)] then

7: c← c+
(∑k

i=1 IM [i]<312−M [i]
)−1

8: M [BUCKET(v)]← h(v)

Figure 4: Pseudo code for HIP on the HyperLogLog Min-Hash
sketches: k-partition, base-2, each register uses 5 bits. To apply
HIP we maintain an additional register c.

Figure 3 shows results for the performance of the HIP and HLL
estimators. Noting again that each simulation can be performed on
any stream of distinct elements (multiple occurrences do not up-
date the sketch or the estimate). We implemented HyperLogLog
using the pseudocode provided in [28]. We show both the raw es-
timate and the improved bias corrected estimate as presented. The
Figure also shows the back-of-the-envelope approximate bound we
calculated for the CV of HIP,

√
b+1

4(k−1)
, and we can see that it ap-

proximately matches simulation results.

A more recent and more complicated implementation of HLL
[30] obtains improved performance. The improvement amounts to
smoothing out the “bump” due to the somewhat ad-hoc bias re-
ducing component, but the asymptotic behavior is the same as the
original hyperLogLog. We can see that HIP obtains an asymptotic
improvement over HLL and also has a smooth behavior. Moreover,
HIP is unbiased (unless all counters are saturated) and elegant, and
does not require corrections and patches as with [28, 30].

We quantify the improvement more precisely in terms of the
number k of registers: The NRMSE of HLL is ≈ 1.08/

√
k ver-

sus ≈
√

3/(4k) ≈ 0.866/
√
k of HIP. This means that an HLL

estimator requires ≈ 0.56k more registers for the same square er-
ror as a HIP estimator. As discussed above, HIP requires an addi-
tional register c, but its benefit, in terms of accuracy outweighs the
overhead.

Some encoding optimizations that were proposed for HLL [30]
and elsewhere [32] can also be integrated with HIP. In particular,
the content of the k registers is highly correlated can be represented
compactly by storing only one value and offsets for others (the ex-
pected size of each offset is constant). Recall that the “exponent”
component of the approximate count c can also be represented as
an offset (see discussion above).

We note that HIP permits us to work with a different base, and
get further improvements with respect to HyperLogLog. Consider
using base b = 21/i for i ≥ 1. With smaller base, we need
larger counters but we also have a smaller variance. We need about
log2 logb n bits per register, for counting up to cardinality (num-
ber of distinct elements) n/16 (since we want to have the counters
large enough so that at most a fraction of them get saturated). Since
log2 logb n = log2(log2 n/ log2 b) = log2 log2 n− log2 log2 b ≈
log2 log2 n + log2 i, it means we need about log2 i additional bits

per register relative to base-2. The CV is ≈
√

b+1
4(k−1)

. So with

i = 1 (base b = 2) we had CV≈ 0.866/
√
k, with i = 2 (b =

√
2),

we need 1 additional bit per register but the CV is ≈ 0.777/
√
k,

meaning that we need 20% fewer registers for the same error as

10

when using base-2. The advantage of base-
√

2 kicks in when n ex-
ceeds about 3×108. If the counting algorithm also retains a sample
of distinct elements (such as with reservoir sampling) and thus IDs
of sampled elements are retained, representation size is dominated
by k logn in which case we might as well use full ranks for the
approximate distinct count.

Our evaluation aims at practice and we mention some differences
with the theory literature. First, our analysis applies to random
hash functions. This is justified by simulation results with standard
generators. We mention that a lower bound of Alon et al. [3] on
the sketch size has logarithmic dependence on the cardinality (and
there is a matching upper bound by Kane et al. [32]) whereas the
HLL sketch has a much smaller, double logarithmic, size. The rea-
son is that the lower bound “includes” the encoding of the hash
function as part of the sketch, a requirement which is not justified
when many counters use the same hash function.

Lastly, we comment on the mergeability of our extended Min-
Hash sketches. Mergeability means that we can obtain a sketch of
the union of (overlapping) data sets from the sketches of the sets.
This property is important when parallelizing or distributing the
computation. The Min-Hash component of the extended sketch are
mergeable, but to correctly merge the counts, we need to estimate
the overlap between the sets. This can be done using the similarity
estimation hat of Min-Hash sketches. We leave further details for
future work.

6. DISTANCE RANGES
We can obtain a small relative error (CV of 1/

√
2(k − 1) with

HIP) for estimating neighborhood cardinalities, that is, nd(v) for
any v and d. In this section we explore the estimation quality For
nJ(v), where J is an arbitrary interval J , and in particular for es-
timating the number of nodes within distance exactly d from v.
These problems generalize diameter estimation. The best known
approximation of the diameter D that can be obtained in near lin-
ear time is [0.5D,D]: we pick an arbitrary node v and perform a
single source shortest paths computation to find the farthest node
from v. When the graph is undirected, the distance to the farthest
node is at least 0.5D. It is widely believed that a better approxima-
tion requires polynomially more time.

Consider estimating n(a,b](v) from ADS(v) using the HIP es-
timator

∑
j∈N(a,b)(v) avj . For a node j, the probability that j ∈

ADS(v) is min{1, k/πvj}. The expected number of nodes from
N(a,b](v) in ADS(v) is k(Hnb(v)−Hna(v)) ≈ k ln(nb(v)/na(v)).
Since inclusions are negatively correlated, the variance of the HIP
estimate is≤

∑nb(v)

i=na(v)+1
i−1
k−1

= 1
k−1

(nb(v)+na(v)+1)(nb(v)−na(v))
2

and the CV, which is the ratio of the square-root of the variance to

the mean (nb(v) + na(v)), is ≤
√

1
k−1

nb(v)+na(v)
2(nb(v)−na(v))

. We can
see that when nb(v) � (1 + 1/k)na(v), that is, when there is
sufficient expansion, we obtain a vanishing CV with k.

For undirected graphs, we are able to provide bounds that do
not depend on expansion: We show that when there is a pair with
distance d in the graph, then with high probability there must be
a sampled pair, that is a pair i, j such that i ∈ ADS(j) or vice
versa, so that dij ∈ J = [d/2, 3d/2]. Moreover, for any i, j of
distance d we can estimate with good relative error the number of
pairs of nodes nJ(i) + nJ(j) that are within distance that is in J
from either i or j. These bounds match and extend what we can do
for the diameter in near-linear time.

THEOREM 6.1. For an undirected graph, for all i, j, and J =

[dij/2, 3dij/2], the HIP estimator n̂J(i)+n̂J(j) has CV≤
√

2
k−1

.

PROOF. Let d ≡ dij and J = [d/2, 3d/2]. Clearly, N(0,d/2)(i)
and N(0,d/2)(j) are disjoint, N(0,d/2)(i) ⊂ NJ(j), and vice versa.

We first consider the covariances of the adjusted weight ajh (for
h ∈ NJ(j)) and ai` (for ` ∈ NJ(i)). The covariance Cov[ahj , a`i]
is not zero only when ` = h. In this case, there is positive correla-
tion and Cov[ajh, aih] ≤ max{Var[aih],Var[ajh]}.

As a coarse upper bound,

Var[n̂J(i) + n̂J(j)] ≤ 2(
∑

h|dih∈J

Var[aih] +
∑

`|dj`∈J

Var[aj`]) .

(9)
We have

∑
h|dih∈J

Var[ahi] =

n(0,3d/2](i)∑
h=n(0,d/2)+1(i)

h− 1

k − 1

=
1

2(k − 1)
(n(0,3d/2](i) + n(0,d/2](i)− 2)nJ (i)

≤
1

2(k − 1)
(nJ (i) + 2n(0,d/2](i))nJ (i)

≤
1

2(k − 1)
(nJ (i) + 2nJ (j))nJ (i) =

nJ (i)
2 + 2nJ (i)nJ (j)

2(k − 1)
.

The last inequality uses the fact that N(0,d/2](i) ⊂ NJ(j) and
therefore n(0,d/2](i) ≤ nJ(j). Substituting in (9) we obtain

Var[n̂J (i) + n̂J (j)]

(nJ (i) + nJ (j))2
≤

1

k − 1

nJ (i)
2 + 4nJ (i)nJ (j) + nJ (j)

2

(nJ (i) + nJ (j))2

=
1

k − 1

(nJ (i) + nJ (j))
2 + 2nJ (i)nJ (j)

(nJ (i) + nJ (j))2

≤
1.5

k − 1

Conclusion
ADSs, introduced two decades ago, are emerging as a powerful
tool for scalable analysis of massive graphs. We introduce HIP es-
timators, which apply to an extensive class of natural queries, are
simple to apply with all sketch flavors, and significantly improve
over state of the art. For neighborhood cardinalities and closeness
centralities, HIP estimators have at most half the variance of previ-
ous estimators. Moreover, HIP estimators outperform state of the
art practical estimators for approximate distinct counting on data
streams.

In follow-up work on social network analysis, we applied HIP
for ADS-based estimation of closeness similarity of two nodes [15]
and timed-influence of a set of seed nodes [16].

We provided here a unified view of ADS flavors and algorithms
which we hope will facilitate further applications of these versatile
structures. Beyond the applications mentioned already, an ADS set
can be used as a spanner or emulator. We recently showed that
when ADSs are used as distance oracles [15], they have the worst-
case guarantees of [45] on undirected graphs and a very good per-
formance in practice on both directed and undirected graphs.

Lastly, we obtained interesting insights on Min-Hash sketch-
based cardinality estimation through rather straightforward appli-
cations of the classic theory of point estimation. Specifically, we
obtain exact (rather than asymptotic) lower bounds on the variance
of an estimator applied to a certain sketch. We expect that this pow-
erful theory, as is, or with some adaptations to discrete settings, can
provide further insights on other sketch structures.

11

Acknowledgement
The author would like to thank Seba Vigna for helpful pointers.

7. REFERENCES
[1] D. Aingworth, C. Chekuri, P Indyk, and R. Motwani. Fast estimation

of diameter and shortest paths (without matrix multiplication). SIAM
J. Comput., 28(4):1167–1181, 1999.

[2] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In SIGMOD,
pages 349–360, 2013.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. J. Comput. System Sci.,
58:137–147, 1999.

[4] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four
degrees of separation. In WebSci, pages 33–42, 2012.

[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
RANDOM. ACM, 2002.

[6] A. Bavelas. A mathematical model for small group structures.
Human Organization, 7:16–30, 1948.

[7] D. Blackwell. Conditional expectation and unbiased sequential
estimation. Annals of Mathematical Statistics, 18(1), 1947.

[8] P. Boldi, M. Rosa, and S. Vigna. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. In WWW,
2011.

[9] P. Boldi, M. Rosa, and S. Vigna. Robustness of social networks:
Comparative results based on distance distributions. In SocInfo,
pages 8–21, 2011.

[10] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics,
2014.

[11] K. R. W. Brewer, L. J. Early, and S. F. Joyce. Selecting several
samples from a single population. Australian Journal of Statistics,
14(3):231–239, 1972.

[12] A. Z. Broder. On the resemblance and containment of documents. In
Proceedings of the Compression and Complexity of Sequences, pages
21–29. IEEE, 1997.

[13] A. Z. Broder. Identifying and filtering near-duplicate documents. In
Proc.of the 11th Annual Symposium on Combinatorial Pattern
Matching, volume 1848 of LNCS, pages 1–10. Springer, 2000.

[14] E. Cohen. Size-estimation framework with applications to transitive
closure and reachability. J. Comput. System Sci., 55:441–453, 1997.

[15] E. Cohen, D. Delling, F. Fuchs, A. Goldberg, M. Goldszmidt, and
R. Werneck. Scalable similarity estimation in social networks:
Closeness, node labels, and random edge lengths. In COSN, 2013.

[16] E. Cohen, D. Delling, T. Pajor, and R. Werneck. Influence
computation scaled-up in sketch space, 2014. Manuscript.

[17] E. Cohen and H. Kaplan. Spatially-decaying aggregation over a
network: model and algorithms. J. Comput. System Sci., 73:265–288,
2007. Full version of a SIGMOD 2004 paper.

[18] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches.
In ACM PODC, 2007.

[19] E. Cohen and H. Kaplan. Tighter estimation using bottom-k sketches.
In Proceedings of the 34th VLDB Conference, 2008.

[20] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. J. Algorithms, 59:19–36, 2006.

[21] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A comparison of
three algorithms for approximating the distance distribution in
real-world graphs. In TAPAS, 2011.

[22] Ch. Dangalchev. Residual closeness in networks. Phisica A, 365,
2006.

[23] N. Duffield, M. Thorup, and C. Lund. Priority sampling for
estimating arbitrary subset sums. J. Assoc. Comput. Mach., 54(6),
2007.

[24] M. Durand and P. Flajolet. Loglog counting of large cardinalities
(extended abstract). In ESA, 2003.

[25] D. Eppstein and J. Wang. Fast approximation of centrality. In SODA,
pages 228–229, 2001.

[26] W. Feller. An introduction to probability theory and its applications,
volume 2. John Wiley & Sons, New York, 1971.

[27] P. Flajolet. Approximate counting: A detailed analysis. BIT, 25,
1985.

[28] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. In
Analysis of Algorithms (AOFA), 2007.

[29] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
data base applications. J. Comput. System Sci., 31:182–209, 1985.

[30] S. Heule, M. Nunkesser, and A. Hall. HyperLogLog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm. In EDBT, 2013.

[31] D. G. Horvitz and D. J. Thompson. A generalization of sampling
without replacement from a finite universe. Journal of the American
Statistical Association, 47(260):663–685, 1952.

[32] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for
the distinct elements problem. In PODS, 2010.

[33] E. L. Lehmann and H. Scheffé. Completeness, similar regions, and
unbiased estimation. Sankhya, 10(4), 1950.

[34] P. Li, , K. W. Church, and T. Hastie. One sketch for all: Theory and
application of conditional random sampling. In NIPS, 2008.

[35] P. Li, A. B. Owen, and C-H Zhang. One permutation hashing. In
NIPS, 2012.

[36] M. H. Malewicz, G.and Austern, A.J.C Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD. ACM, 2010.

[37] R. Morris. Counting large numbers of events in small registers.
Comm. ACM, 21, 1977.

[38] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP, 2013.

[39] E. Ohlsson. Sequential poisson sampling. J. Official Statistics,
14(2):149–162, 1998.

[40] T. Opsahl. Closeness centrality in networks with disconnected
components. http://toreopsahl.com/2010/03/20/,
2010.

[41] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast and
scalable tool for data mining in massive graphs. In KDD, 2002.

[42] L. Roditty and V. Vassilevska Williams. Fast approximation
algorithms for the diameter and radius of sparse graphs. In STOC.
ACM, 2013.

[43] B. Rosén. Asymptotic theory for order sampling. J. Statistical
Planning and Inference, 62(2):135–158, 1997.

[44] M. Rosenblatt. Remarks on some nonparametric estimates of a
density function. The Annals of Mathematical Statistics, 27(3):832,
1956.

[45] M. Thorup and U. Zwick. Approximate distance oracles. In
Proceedings of the 33th Annual ACM Symposium on Theory of
Computing, Crete, Greece, pages 183–192, 2001.

12

APPENDIX
A. APPROXIMATE COUNTING

We provide some details here on approximate (not distinct!) coun-
ters. We used such counters in our implementation of approximate
distinct counters, and they have other important applications.

An approximate counter is applied to a stream of positive inte-
gers {wi} and represents n =

∑
i wi approximately. Whereas an

exact representation takes dlog2 ne bits, an approximate counter
that uses only O(log logn) bits was proposed by Morris [37] and
analysed and extended by Flajolet [27]. This Morris counter is an
integer x ≥ 0 and the estimate is n̂ = bx − 1, where the (fixed)
base b > 1 controls a tradeoff between approximation quality and
representation size.

Approximate counters were originally presented only for incre-
ments of 1. We provide procedures here for efficient weighted
updates and for merges of two counters. An update of Y to a
counter x is performed as follows: Let i ← blogb(Y/b

x − 1)c
be the maximum such that increasing the counter by i would in-
crease the estimate by at most Y . We then compute the leftover
∆← Y − bx(bi− 1) and update x← x+ i. Lastly, we increase x
by 1 with probability ∆/(bx(b− 1)) (this is an inverse probability
estimate of ∆). Merge of two Morris counters x1, x2 is handled the
same as incrementing x1 with bx2 − 1. The estimator n̂ is clearly
unbiased (by induction on updates).

It is easy to show that the variance is dominated by the analysis
in [37, 27] for increments, since it can only improve when two
consecutive updates are combined to a single update with the sum
of their values. Intuitively, only the “leftover” part of the updates
contributes to the variance at all.

This is particularly relevant to our HIP approximate distinct coun-
ters since it has an approximate counter as a component. In this
particular case, the magnitudes of the updates are increasing and
typically are about 1/k of the total. Therefore, with the choice of
b ≤ 1 + 1/k, the variance is significantly lower than for the unit
increments as analysed in [37, 27]. The number of bits needed for
counter representation is log2 logb n ≈ log2 log2 n+ log2(1/(b−
1)) and the CV is about (b− 1). When using b = 1 + 1/2j we ob-
tain that with j additional bits in the representation we can obtain
relative error of 1/2j .

B. NON-UNIFORM NODE WEIGHTS
To simplify the presentation, we focused on uniform weights but

briefly discuss the extension to arbitrary weights, which are appro-
priate in many applications. The closeness centrality definition (2)
incorporates node weights β(j). We can also consider neighbor-
hood weights

nd(v) =
∑

j|dvj≤d

β(j)

instead of just cardinalities.
To obtain the same CV as estimators for the uniform weights, we

need to compute the ADSs with respect to the weights β(i). To do
that we draw the rank r(i) for node i using the exponential distri-
bution with parameter β(i) [14, 18]. This is the same as drawing
uniform ranks r′(i) and using ranks r(i) = − ln(1− r′(i))/β(i).
With these ranks, nodes with higher β values have higher inclusion
probabilities. The same ADS definitions and algorithms apply, sim-
ply using the modified ranks. Note however, that ADSs can have
larger expected sizes (the β weights can be viewed as emulating
multiple copies of a node).

We first discuss Min-Hash cardinality estimators. The k-mins
basic estimator (with exponentially distributed ranks) applies with

same CV of 1/
√
k − 2 to weighted k-mins Min-Hash sketches

[14]. An estimator for weighted bottom-k Min-Hash sketches was
given in [19] for weighted sampling without replacement and gen-
eral order samples. An alternative with bottom-k is to use r(i) =
r′(i)/β(i), which corresponds to Sequential Poisson (Priority) sam-
pling [39, 23]. The priority sampling estimator [23] applies to the
Min-Hash sketch.

The HIP estimators we presented here naturally extend, and re-
main unbiased, with any weight-based rankings r(i) = f(i, β(i), r′(i)).
We simply compute the probability that r(i) is below the threshold
value. If r(i) are exponentially distributed, the CV of estimating
neighborhood weights and centralities is at most 1/

√
2(k − 1).

C. ESTIMATOR WHICH USES ONLY THE
ADS SIZE

We derive the size estimator which is the unique unbiased cardi-
nality estimator that is only based on the size (number of entries)
of the ADS. Specifically, to estimate the cardinality of Nd(v) we
look at the number of entries in ADS(v) with distances at most d.
In a stream context, we can apply the size estimator to the num-
ber of updates (which resulted in modifying) the Min-Hash sketch.
The size estimator is weaker than the HIP estimator but uses less
information. This estimator is of interest in a setting where one can
observe the approximate counter as a black box, only observing the
number of modifications.

The estimator we derive below is applied to the number of en-
tries in a bottom-k ADS that are within distance at most d from
v. The estimator assumes that the ADS is computed with respect
to “unique” distances. That is, we apply some symmetry breaking
and ADS may include multiple nodes of same distance.

LEMMA C.1. The unique unbiased estimatorEs of |Nd(v)| based
solely on ADS size s = |Nd(v) ∩ADS(v)| is

Es =

{
s ≤ k : s
otherwise : k(1 + 1

k
)s−k+1 − 1 .

PROOF. LetCi,` be the probability that exactly i nodes are sam-
pled from the first `. For ` ≥ k and i < k or for ` ≤ k and i < `,
Ci,` = 0. If ` ≤ k, then C`,` = 1. We have the relations

` > k : C`,` =(k/`)C`−1,`−1

k < i < ` : Ci,` =(1− k/`)Ci,`−1 + (k/`)Ci−1,`−1

k < ` : Ck,` =(1− k/`)Ck,`−1

(k/`) is the probability that the `th node is one of the first k in the
random permutation induced on the ` nodes closest to v.

If s < k, which is only possible if nr(v) = s, we have Es = s.
If s = k, to be unbiased for the case where nr(v) = k and this is
the only possible count, we haveEk = k. Otherwise, for s > k, we
have that any estimator that is unbiased on neighborhoods of size s
must satisfy s =

∑s
i=k EiCi,s, which we rearrange to obtain

Es =
s−

∑s−1
i=k EiCi,s

Cs,s
. (10)

We iteratively apply (10) to uniquely determine Es for s ≥ k + 1.
To determine Ek+1, we consider the two possible ADS counts are
k and k + 1 with respective probabilities Ck,k+1 = 1/(k + 1)
and Ck+1,k+1 = k/(k + 1). From (10) k + 1 = EkCk,k+1 +
Ek+1Ck+1,k+1 = k/(k+1)+Ek+1k/(k+1). We obtainEk+1 =
(k+ 1)2/k− 1. It can be verified that the general solution satisfies
Es = k(1 + 1

k
)s−k+1 − 1 .

This estimator is also applicable with k = 1, in which case it is
simply 2s.

13

D. ADS WITHOUT TIE BREAKING
We provide here a modified ADS definition, and respective HIP

probabilities, for when there is a smaller set of distinct distances.
The advantages of the modified definition is a smaller ADS size:
The modified ADS (we provide here the bottom-k flavor) includes
a subset of the entries that would have been included under the
original definition (with tie breaking on distances), but at most k
entries (those with smallest ranks) from each distinct distance.

Formally, a node u with is included in (modified) ADS(v) if
r(u) is smaller than the kth lowest rank amongst nodes within dis-
tance at most dvu from v.

We can assign HIP inclusion probabilities for the modified ADS
as follows.

For each v, u, we compute the probability of u, conditioned on
fixed ranks of all other nodes excluding u, of u having one of the
k−1 smallest ranks amongst nodes with distance in dvu from v. We
compute this probability only for nodes that satisfy this condition of
having one of these k−1 smallest ranks. The threshold probability
is that kth smallest rank. Note that a node u ∈ ADS(v) that has
the kth smallest rank in Ndvu(u) is not considered “sampled.”

The modified HIP probabilities can be applied to the same queries.
The HIP probabilities of an entry in the modified ADS are at most
the values in the full with tie-breaking ADS. Therefore, adjusted
weights and variances are higher. The CV is at most 1/

√
k − 2,

this is because when all distances are the same (say edges have 0
lengths and the ADS is a reachability sketch), the modified ADS is
a bottom-k Min-Hash sketch of the reachability set.

E. ADS COMPUTATION
We provide a unified presentation of ADS algorithms and pro-

pose some extensions. There are two existing approaches. The first,
PRUNED DIJKSTRA’S is based on pruned applications of Dijkstra’s
single-source shortest paths algorithm (BFS when unweighted) [14,
18]. A pseudo-code is provided in Algorithm 1. The second, DP,
is applicable only to unweighted graphs and based on dynamic pro-
gramming or Bellman-Ford shortest paths computation. It was (im-
plicit) in [41, 8].

PRUNED DIJKSTRA’S was first proposed for k-mins sketches
[14] and extended to bottom-k sketches in [18]. DP was considered
with k-mins [41] and k-partition sketches [8]. Both approaches,
however, can be easily adopted to work with all three ADS flavors.

LOCAL UPDATES, proposed here and provided in pseudo-code
as Algorithm 2, extends DP to weighted graphs. Local updates has
a simple node-centric form, which is appropriate for MapReduce or
similar platforms [36, 38]. When the operations are synchronized,
as with MapReduce, the total number of iterations needed until no
more updates can be performed is bounded by the diameter of the
graph (maximum over pairs of nodes of the number of hops in the
shortest path between them).

Algorithm 1 ADS set for G via PRUNED DIJKSTRA

for u by increasing r(u) do
Perform a pruned Dijkstra from u on GT (the transpose

graph)
When visiting node v:
if |{(x, y) ∈ ADS(u) | y < dvu}| then prune Dijkstra at v
else ADS(v)← ADS(v) ∪ {(r(u), dvu)}

Both PRUNED DIJKSTRA’S and DP can be performed inO(km logn)
time (on unweighted graphs) on a single-processor in main mem-
ory, where n andm are the number of nodes and edges in the graph.

These algorithms maintain a partial ADS for each node, as en-
tries of node ID and distance pairs. ADS(i) is initialized with the
pair (i, 0). The basic operation we use is edge relaxation (named
after the corresponding operation in shortest paths computations).
When relaxing (i, j), ADS(i) is updated using ADS(j). For bottom-
k, the relaxation modifies ADS(i) when ADS(j) contains a node v
such that r(v) is smaller than the kth smallest rank amongst nodes
in ADS(i) with distance at most djv +wij from i. More precisely,
if v was inserted to ADS(j) after the most recent relaxation of the
edge (i, j), we can update ADS(i) using INSERT(i, v, djv +wij):
1: function INSERT(i, x, a) . update ADS(i) with (x, a)
2: if x 6∈ ADS(i) then . if x ∈ ADS(i) do nothing.
3: if r(x) < kth {r(y)|y ∈ ADS(i) ∧ diy ≤ a} then
4: ADS(i)← ADS(i) ∪ {(x, a)}

Both PRUNED DIJKSTRA’S and DP perform relaxations in an
order which guarantees that inserted entries are part of the final
ADS, that is, there are no other nodes that are both closer and have
lower rank: PRUNED DIJKSTRA’S iterates over all nodes in in-
creasing rank, runs Dijkstra’s algorithm from the node on the trans-
pose graph, and prunes at nodes when the ADS is not updated. DP
performs iterations, where in each iteration, all edges (i, j) such
that ADS(j) was updated in the previous step, are relaxed. There-
fore, entries are inserted by increasing distance.

The edge relaxation function INSERT is stated so that it applies
for both algorithms, but some of the conditional statements are re-
dundant: The test x 6∈ ADS(i) is not needed with PRUNED DI-
JKSTRA’S (we only need to record that if/when node i was already
updated in the current Dijkstra) and the test diy < a is not needed
with DP (since all entries in current iteration are of distance at most
a).

To obtain a bound on the number of edge relaxations performed
we note that a relaxation of (i, j) can be useful only when ADS(j)
was modified since the previous relaxation of (i, j). Therefore,
each relaxation can be “charged” to a modification at its sink node,
meaning that the total number of relaxations with sink j is bounded
by the size of ADS(j) times the in-degree of j. We obtain that the
expected total number of relaxations is O(km logn).

We provide details on bottom-k ADS algorithms. A k-mins ADS
set can be computed by performing k separate computations of a
bottom-1 ADS sets (using k different permutations). To compute a
k-partition ADS set, we perform a separate bottom-1 ADS compu-
tation for each of the k buckets (but with the modification that the
ADS of nodes not included in the bucket is initialized to ∅). The to-
tal number of relaxations is O(km logn), which again is m times
the expected size of of k-partition ADS (which is the same as the
size of a bottom-k ADS).

LOCAL UPDATES incurs more overhead than PRUNED DIJK-
STRA, as entries can also be deleted from the ADS (in a CLEAN-
UP step). For adversarially constructed graphs (where distance is
inversely correlated with hops), the overhead can be made large.
In practice, however, we can expect a small overhead. We can also
guarantee anO(logn) overhead by settling for (1+ε)-approximate
ADSs (where ε > 1/nc). A (1 + ε)-approximate ADS(u) satisfies

v 6∈ ADS(u) =⇒ r(v) > kth
x{(x, y) ∈ ADS(u) | y < (1+ε)duv} .

We can compute a (1 + ε)-approximate ADS set by updating the
ADS only when on updates INSERT(i, x, a) for which the condition
is not violated, that is,

r(x) < kth {r(y)|y ∈ ADS(i) ∧ diy ≤ a(1 + ε)} .

It is not hard to show that when we compute approximate ADSs, the
overhead on the total number of updates is bounded by log1+ε

nwmax
wmin

,

14

where wmax and wmin are the largest and smallest edge lengths.
With ε at least polynomially small, we can assume wlog that the ra-
tio wmax/wmin is polynomial. Obtaining a logarithmic overhead.

Algorithm 2 ADS set for G via LOCAL UPDATES

Initialize:
for u do ADS(u)← {(r(u), 0)}
Send updates:
if (r, d) was added to ADS(u) in the previous iteration then
∀{y | (u, y) ∈ G} send (r, d+ w(u, y)) to y.

Process updates:
if node u received (r, d) then

if r < kth
x{(x, y) ∈ ADS(u) | y < d} then

ADS(u)← ADS(u) ∪ {(r(v), d)}
CLEAN-UP ADS(v) . Scan

entries (x, y) such that y > d by increasing y. Remove (x, y) if
x > kth

h{(h, z) ∈ ADS(u) | z < y}

In the sequel, we discuss various additional aspects of ADS com-
putation.

E.1 Limited ADS computation
When memory is constrained, we can benefit when not main-

taining the full ADS in “active” memory, but only maintaining the
threshold information required to proceed with the computation.
We refer to this as a limited ADS computation.

With PRUNED DIJKSTRA’S, ranks are processed in increasing
order. In the iteration from node i, when visiting a node, we need
to have access to all rank-distance pairs in the ADS constructed so
far at the visited node. With DP, processing is in increasing dis-
tance. To determine if a proposed entry indeed contributes to the
ADS, we only need to maintain the Min-Hash sketch of ranks pre-
sented so far, which has size k. The ANF [41, 21] and hyperANF
[8] algorithms are essentially limited DP computation with base-
2 ranks. These algorithm maintain in iteration i for each node v
the Min-Hash sketch of Ni(v) (all nodes with distance at most i
from v). Streaming approximate distinct count estimators [29, 24]
were applied to the base-2 Min-Hash sketch of the current Ni(v)
to estimate its cardinality after each DP iteration. The results from
different nodes were aggregated after each iteration to produce an
estimate of the total number of pairs within each distance. More
accurate estimates (as demonstrated in Section 5) can be obtained
using the same implementations by applying our HIP estimators
instead.

PRUNED DIJKSTRA’S base-b: When we work with bottom-k
sketches and base-b ranks, which are not uniquely assigned for
nodes, we have to ensure that the ADS is not updated twice in
the same iteration. This can be done by marking each node after
the first visit in each iteration and stopping the search on subse-
quent visits. Note that the threshold information at each node can
include multiple occurrences of the same base-b rank value (each
corresponding to a distinct node). But because iteration order cor-
responds to the order on the full rank, the entries correspond to the
entries of the full-rank ADS. To obtain the explicit ADS (with node
IDs), we can export each new entry i ∈ ADS(v) and the distance
div to a slower medium. After the computation we can aggregate
all entries of ADS(v) for each v.

With DP, base-b, and bottom-k sketches, we must treat rank val-
ues in the same ADS as unique. This is needed to avoid having
the same node contribute to multiple entries in an ADS of another
node.

E.2 Cost of relaxations
The expected total number of relaxations isO(mk logn) but the

expected number of relaxations that actually result in an update
is O(nk logn). This distinction is important because relaxations
which result in an update are more costly.

We first consider relaxations with DP. With k-mins and k-partition
ADS, we can retain with each update the index (out of k) which was
modified since the last update. If we do so, then the cost of relaxing
an edge is O(1), since we only need to look at the rank value in the
modified index. If the index is not retained, we can perform a co-
ordinate wise minimum of the k entries, in time O(k). The better
choice depends on the hardware.

With bottom-k ADS, we maintain the current bottom-k ranks
in active memory. When relaxing an edge we compare the newly
inserted rank value in the sink ADS. If the entries are maintained in
a max-heap, the maximum entry is compared with the new value.
If the new value is smaller, it is inserted into the heap and the max
entry is removed. The cost isO(1) if the ADS is not updated (node
is not inserted) but O(log k) otherwise (the max node is removed
from the heap and the new node is inserted). Alternatively, we can
maintain the k values in a sorted list and each update takes O(k)
time.

Relaxations with PRUNED DIJKSTRA’S are less efficient than
with DP as we need to search for the minimum rank in a distance
range which increases update times by a factor of log k.

E.3 Removing unique distances assumption in
analysis

The strict ADS is defined with respect to unique distances. We
can apply any symmetry breaking between nodes of equal distance,
but to maintain efficiency, in particular for DP computation, we
specify a particular one (this is all for analysis purposes). The sym-
metry breaking is defined according to the scan order of incoming
edges to v in the representation of the graph. Amongst two nodes u
and w so that x = duv = dwv , we consider all paths of length x to
v originating from u (or w) and associate with u the least ordered
incoming edge to v. The closer one of u and w is the defined as the
one with the earlier edge. If both have the same earliest edge (y, v),
we consider the same order with respect to the common previous
node y on the path, and so on. If DP performs relaxations accord-
ing to this order, then we maintain the property that inserted nodes
are in the final ADS (with respect to the “unique” order).

E.4 Parallelizing PRUNED DIJKSTRA’S

As stated, the algorithm performs n sequential Dijkstra compu-
tations. The dependences can be improved. Consider k = 1: We
partition the nodes to two sets according to rank. We then per-
form the computation from the set of lower rank nodes collapsed
together to a single node. This will provide us ADS entries and
their distances for the closest node in that batch. After we do this,
we can proceed for the second batch without completely resolving
the first set of nodes. Recursing, this gives us logarithmic depth.
Further details are in [14].

15

