Information Technology and Management Science

doi: 10.2478/itms-2013-0012
2013/16

Suitability Analysis of Routing Algorithms for
Web-based Transportation Planning

Davis Jaunzems', Arnis Lektauers?®, ' Riga Technical University

Abstract — The routing of vehicles in complex urban or
regional systems is a task that needs to be solved in numerous
transportation-oriented applications. This paper describes the
process and approaches used for routing algorithm analysis
emphasizing transportation planning in interactive web-based
planning, analysis and simulation solutions. The objectives of the
presented research are to examine existing routing algorithms
used for finding the shortest path between the nodes in transport
networks and to analyse the implementation possibilities and
efficiency of routing algorithms in web-based geographical
information systems.

Keywords — Routing algorithms, transportation planning,
web-based geographical information systems

I. INTRODUCTION

The development progress of private and public
transportation networks as well as infrastructure leads to an
increase in demand for efficient methods and algorithms to
solve the actual tasks and problems of transportation planning
and control. Transportation systems are increasingly complex
systems incorporating diverse travel modes and services;
therefore, the need to integrate and efficiently operate these
systems poses a challenge to planners and operators [1]. By
using new technologies and applications, as well as
development assistance and evaluation tools prior to field
implementation in transportation systems, it is possible to find
a solution to this complex problem area.

One of the actual tasks that needs to be solved in numerous
transportation-oriented applications is the routing of vehicles
or persons. The basic concept of routing algorithms is to
model the specific problem in a suitable graph and to compute
the shortest path to solve it. While it is simple to come up with
an algorithm that just solves the problem, it is much more
difficult to engineer an efficient routing algorithm.

This paper describes the process and approaches used for
routing algorithm analysis emphasizing transportation
planning in interactive web-based planning, analysis and
simulation solutions. The objectives of the presented research
are to examine existing routing algorithms used for finding the
shortest path between the nodes in transport networks and to
analyse the implementation possibilities and efficiency of
routing algorithms in web-based geographical information
systems.

II. ROUTING ALGORITHMS FOR TRANSPORTATION PLANNING

A, Classification of Routing Algorithms

Based on the graph theory, multiple routing algorithms can
be used for solving the shortest path problem. This paper

focuses on four well-known methods classified as the shortest
path algorithms [2]:

* Dijkstra;

¢ Bellman—Ford;

* Floyd—Warshall;

o A* (A star).

The existing shortest path algorithms have different
structure, functionality and working principles depending on
the used graph types, edge directions, edge weights, graph
density and other parameters. Some algorithm functionalities
are overlapping in the case when they are derived from the
same base algorithm. For example, the A* algorithm is an
extended version of Dijkstra, adding possibility to use
heuristics to determine the order of node searching [3]. The
Bellman—Ford [4] and Floyd—Warshall [5], [6] algorithms are
used to compute all possible paths in the graph. This
functionality can be used in the so-called graph pre-
processing. However, the searching of all possible paths
requires more computational resources than single path
searching does. This aspect is considered when algorithms are
compared in the analysis carried out in this study.

The research presented in this paper focuses on the analysis
of the necessary computational resources — time and
memory — needed for algorithms to find the shortest path in
diverse contextual situations. The theoretical behaviour of
each algorithm can be calculated using the big O notation [7].
This gives only the worst- and best-case scenario results using
graph size measurements. In transportation planning, the route
properties between sources and destinations can change
multiple times as the route passes through dense regions like
cities and through highways that are considered scattered
regions. Therefore, the analysis results of routing algorithms
using real-life geographical data may significantly differ from
the theoretically estimated results.

B. Hierarchical Routing Algorithms

Transport networks can be modelled as graphs consisting of
nodes and edges connecting the nodes [8]. Large scale routing
is a complex task that requires considerable amount of
computation using graph data structures. A specific graph
functionality is required to achieve effective routing, for
example, a procedure is there needed that searches the graph
for connected nodes in relation to a single entry node. As the
graph density grows, the number of edges between nodes
increases and, therefore, the shortest path search requires more
computational resources. The following list gives an overview
of two possible graph data processing and storage approaches:

* A graph is pre-processed and later used in a real-time

application; usually the information is stored in the

79

Information Technology and Management Science

2013/16

random access memory (RAM). In such a case, routing is
fast but the data processing capabilities are limited by the
available system resources.

» A set of nodes and vertices are stored in a graph-
supported database. Large size graph data can be easily
stored and retrieved. However, routing is slower and is
limited by the existing database system resources and
restrictions.

Additional research of hierarchical information storage
methods was conducted by the authors of the paper to find
performance improvements for a routing system. Two routing
capable hierarchical graph methods were analysed — Transit
Node Routing [9] and Contraction Hierarchies [10].

Transit Node Routing is based on the method of Highway
Hierarchies. In the road network, graph routes that lead to
other places are there identified. These routes act as
connection points for less active roads. By using such a route
separation method, multiple road layers can be identified. The
main highways are located in a top layer, which provides
routes between cities. Going deeper in the hierarchy, smaller
routes are stored that provide information about city streets.
This method greatly decreases the graph size and reduces the
amount of computation needed for finding the shortest path in
large-scale graphs.

As an alternative to the Transit Node Routing, there is the
Hierarchical Contraction method. This method contracts graph
nodes together, therefore, reducing the total node and edge
count. As a result of contraction, shortcuts between nodes are
created, but the calculated shortest path value is still available.
The increase in overall system performance can be observed
when the shortest path algorithms are executed on contracted
graphs.

To achieve a lower level of computation time and resource
usage when searching for the shortest paths, in graph-based
data structures the data pre-processing is required. One of the
shortcomings of graph pre-processing is the necessity to use
static geographical data. The existing systems are not capable
of working with dynamic data. However, to support
computationally effective transportation planning it is required
that routing systems provide the latest actual road information.

I11. SUITABILITY ANALYSIS OF ROUTING ALGORITHMS

The theoretical analysis of routing algorithm execution
times does not fully provide information about the algorithm
suitability for transportation planning using real-life data.
While building graphs using cartographic information, several
special use cases can be examined. In cities and around them,
graph vertices are located relatively dense and there are
multiple edges between two single nodes. On the other hand,
rural area vertices are scattered and fewer edges can be there
identified. The observations for suitability analysis were made
by the authors of the paper by constructing a road graph using
publicly available data of Latvia’s territory.

C. Analysis Model

This paper focuses on the routing algorithms for application
in web-based cartographic transportation planning systems.

80

Since such systems require the processing of a large amount of
data, the execution time is one of the most essential indicators.
Execution time provides information about the time required
for an algorithm to find the shortest path. Time parameter can
also be used to measure the complexity of a graph structure —
the more nodes and edges exist in a graph, the more time is
required for its construction. For obtaining valid results, the
algorithm execution and graph construction are separated
processes.

Such routing algorithms as Floyd—Warshall calculate all the
possible routes in a graph and store this information in a
matrix format. The Dijkstra algorithm calculates the single
shortest path between two nodes. To compare routing
algorithms, it is necessary that all possible routes are
calculated with each of the analysed algorithms. The
information about the shortest paths is stored in a unified data
structure — matrix. Calculation of all shortest paths provides
more accurate analysis information about algorithm suitability
for pre-processing operations.

Routing algorithms use edge values (costs) between vertices
to determine the shortest path. In this analysis, edge values
represent the distance between nodes calculated using the
Haversine equation [7]:

haversin d r = haversin ¢, — ¢, Q)
+ cos ¢; cos ¢,
X haversin 1, — A,

where
* haversin is the haversine function:
haversin & = sin? § 2 = 1—cosf 2 #))

* d is the distance between two nodes;

+ ris the radius of the world;

o ¢4, ¢, is the latitude of point 1 and point 2;

* A4, A, is the longitude of point 1 and point 2.

For correct suitability analysis of routing algorithms,
multiple graph scenarios should be tested. For this task, two
experimental environments are created: the first one is the
road network graph wusing all available Latvia’s road
information and the second one is random structure graphs
using geographical data of Latvia’s cities. A graph containing
road and city graph elements of Latvia is shown in Fig. 1.

- b

-'-'-L

Pl A] 1\/‘
ThEh T
.

Fig. 1. Latvia’s road and city map

Information Technology and Management Science

2013/16

OpenStreetMap [11], open source geospatial web database
containing data of territory of Latvia, was used to construct
routing algorithm analysis models. The database consists of
more than 4 million records. The information about 76 cities is
extracted to construct random structure graphs, and 119590
nodes and 112600 edges are used in the construction of road
network graph based scenarios. The database is stored in the
PostgreSQL database management system using spatial
extension PostGIS.

Analysis models were created with the programming
language Java and open source graph library JGraphT [12].
This library supports the creation of graph data structures and
implementation of built-in Dijkstra, Bellman—Ford and
Floyd-Warshall routing algorithms. However, a few additional
changes were introduced to this library:

« the calculated shortest path routes were stored in a matrix
data structure to use the same data storage format across
all algorithms;

* the library did not provide A* algorithm implementation;
therefore, a custom implementation of A* algorithm was
created and added to the JGraphT library.

The graph model analysis process consists of two
phases - initializing or graph constructing and routing or
searching for the shortest path. In each phase, the memory
consumption and time consumption are calculated and then
stored for further analysis.

In the first experimental environment, Latvia’s road
network graph model is used to determine and compare
real-life route accuracy against other cartographic routing
system results. The graph construction takes most of the time
because all information should be extracted from the database
and stored in a temporary real time data structure. Routing
takes then least of the time when all routes are calculated and
stored in a matrix after the search for the first route.

In the second experimental environment, cities are used as
random graph nodes and edges between them are determined
in a random order. 100-degree levels of graph density are
used, where the value of 100 means the densest graph (all
nodes are mutually connected) and 1 means the most scattered
graph (only a few edges exist). In each density level, 100
random graphs are constructed and all shortest paths are
determined. The computational resource estimation and graph
parameter results are then stored for each graph for the further
analysis.

All routing modes are tested on a computer system with
Intel Core i7-3970X 3.5GHz CPU, 32GB RAM and Windows
8 OS.

D. Analysis Results

Results of a random structure graph represent algorithm
performance in the cases of different graph densities. 100
density degrees are tested, where density is calculated by
dividing the sum of vertex edges by the total vertex count.
10000 shortest paths between all graph nodes were calculated
using previously described routing algorithms. Additionally,
the diameter of each graph was calculated. The diameter is the

longest possible path between two nodes. Figure Fig. 2 shows
the relation of the graph diameter to the graph size.

The results show that by decreasing the edge count between
nodes, the diameter size increases, but such a tendency does
not apply to all graphs. As the edge count decreases, more
nodes become disconnected from the graph and, therefore, the
graph diameter decreases. In Table I, the average computation
results across different density levels can be seen.

The A* algorithm uses heuristics to find the shortest paths.
In this paper, edge heuristic values are calculated based on the
node edge count. The more edges are connected to a node, the
higher the probability that a path going through this node will
lead to the resulting node.

Diameter, km
9000,00
8000,00 -
7000,00 -
6000,00
5000,00 -
4000,00 -
3000,00 -
2000,00
1000,00 -
0,00 "4

T

Fig. 2. Graph diameter range across multiple densities

TABLE 1

RANDOM GRAPH COMPUTATION RESULTS

Density Average Max shortest Creation Memory
degree density paths time, ms usage, MB
1 375 2850 199.56 679.89

5 7.80 2850 27.87 52.986

25 1.82 2775 22.35 7.054

50 0.76 1187 21.21 10.933
100 0.33 38 20.76 4.725

In the first analysis scenario, routing algorithms were tested
for finding the single shortest path based on a random node
selection. The average computation time can be seen in
Fig. Fig. 4.

w— A star

==Bellman-Ford

Dijkstra

Floyd-Warshall

O e b W A ON

.“;..':..“—-',._.ﬂ;*m L —
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 Density

Fig. 3. Computation times required for the search of all the shortest paths

81

Information Technology and Management Science

2013/16

The Floyd—Warshall algorithm requires time between 3 to 8
milliseconds to find the shortest path. The Bellman— Ford
algorithm calculates all the possible shortest paths from the
starting node and the time required for such an operation is
comparable to Dijkstra and A* algorithms. In a few occasions
this algorithm shows even faster results than other algorithms.
All algorithms except the Floyd—Warshall one show search
time in the range of 0.5 milliseconds. As the graph becomes
more scattered, the algorithm execution time, as well as the
possible count of roads decreases. In addition, the difference
between execution times becomes insignificant.

Also, the analysis routing algorithms were tested by finding
all the shortest paths based on a random node selection. In
each situation, a new graph was generated because all results
should be stored in matrixes when the first search was
completed. The model was designed in such a way that the
algorithms would use the shortest path data stored in a matrix
rather than recalculating data each time. The Floyd—Warshall
algorithm is specially designed for such situations and shows
the fastest execution time. In fact, it shows the shortest
execution time in comparison with other algorithms that can
be clearly seen in Fig. Fig. 3. The A* algorithm requires the
longest time to find all the shortest paths. This is associated
with a fact that this algorithm requires additional computation
of a heuristic value for each graph edge.

Time, ms
5000
4000 w— A star
s Bellman-Ford
3000
Diyjkstra
“, |
0 Floyd-Warshall
1000 -
0

Fig. 4. Computation times required for the search of single shortest path

As the graph density decreases, the algorithm execution
time also decreases. When the node to the edge ratio becomes
less than 1.0, execution times become similar for all
algorithms. These results show that for a scattered or small
graph the algorithm execution times are similar and they all
are equally suitable for routing purposes. These results also
show that Floyd—Warshall algorithms are better suited for data
pre-processing of large graphs. Analysis results of the existing
Latvia’s road network graph represent the overall routing
behaviour in large scale graphs based on static geographical
information. Unlike random graph-based tests, the routing
algorithms on the existing road network are executed only
after the graph construction. The test graph consists of 119590
nodes and 112600 edges with density ratio of 0.94. The
average graph construction time was 426.47 seconds. Despite
the large number of nodes and edges, all the calculations of
shortest paths provided the same results.

82

In all shortest path searching cases, the Dijkstra algorithm
showed the fastest execution time. In this analysis no
pre-processing of paths was made, therefore the
Floyd-Warshall algorithm showed the slowest execution time
as it required computing around 7 billion different paths. The
results showed that if the target nodes were located more
closely, A* algorithm would have shown better results than
the Bellman—Ford one, but it still would have required more
computation time than the Dijkstra algorithm because
additional heuristic calculations would be required.

The retrieved shortest paths between cities in a road graph
were compared to other cartographic web routing systems —
Google Maps and Bing Maps. The Dijkstra routing algorithm
was used for the path comparison. No additional heuristics
were calculated, only the graph edge directions were
identified. In some routes, the difference between other
routing systems was only 0.02%, but in some cases it was
even 24.97%. These results characterize the data accuracy of
the open source geographical road database OpenStreetMap in
different places in the territory of Latvia.

IV. WEB-BASED TRANSPORTATION ROUTING SOFTWARE
PROTOTYPE

For better understanding of routing algorithm suitability in
advanced transportation planning information systems, a
routing software prototype was developed. The main functions
of the developed prototype are:

» digital geographical data rendering into visual
vector-based images;
+ geographical information presentation in a

cross - platform environment;

* usage of previously analysed routing algorithms for
shortest path calculations;

+ visualization of transportation routes on the top of
cartographical base information.

E. Geographical Information Visualization

The research presented in this paper uses OpenStreetMap
geographical data of Latvia’s territory. The analysis of the
performed algorithm proved that the existing data was
accurate and could be compared to other existing geographical
information system (GIS) data.

The prototype uses PostgreSQL database for storage of the
geographical data extracted from the OpenStreetMap using
osm2pgsql utility program. The database was installed on a
separate virtual Ubuntu 12.04 server. The data contains more
than 4 million geographical points converted in the WGS-84
coordinate reference system.

To obtain easily understandable geographical data
representation, an additional data styling was needed for
visualization purposes. The TileMill software was used for
data visualization and styling. This program uses Cascading
Style Sheets (CSS) language to create vector-based images.
After creating a multi-layer map, this software provides an
option for data export in specific mbtiles format specifically
designed for storage of a large number of image tiles.

Information Technology and Management Science

2013/16

A decision was made to store map tiles in the Mapbox
geographical cloud platform.

The transportation routing prototype was built using
modern web browser technologies. For map tile serving and
route representing, the open source Javascript based library
Leaflet was used. This library provides built-in functionality
that detects the coordinates the user tries to use, and this
information together with the Mapbox platform APIs makes it
possible to serve exactly the necessary tiles. Leaflet also
provides a multi-layer architecture that allows putting in
additional information on the top of the base map.

The prototype allows the user to choose two Latvia’s cities
and then determine and visualize the shortest path between
them using the previously analysed routing algorithms. As
described previously, a network graph of Latvia’s roads and
cities using geographical data was constructed and stored on a
separate virtual server. An additional functionality for the
prototype was also implemented to enable city detection in the
graph structure. The shortest paths were computed using the
Dijkstra algorithm as it required the smallest number of
computation resources. The communication between a web
browser and the routing application server was performed
using HTML5 web socket technology. The shortest path was
returned to the browser as a set of coordinates in
web-supported GeoJSON format displayed on the top of a
geographical map. A graphical example of the shortest path
between such two cities as Riga and Liepaja using a routing
prototype can be seen in Fig. Fig. 5.

Kuldiga Tukums Jurmata

,~—Riga

Pivlosta

S Olaine

Aizpute /

Skrunda- saldus:
> . Dobele Jelgava

Liepgdja

Fig. 5. The shortest path between Riga and Liepaja

F. Prototype Testing

During the testing process, the transportation routing software
prototype was compared to other existing cartographic routing
solutions. The road network graph analysis that was
previously described already showed path length calculation
results similar to the results of other systems. However, this
information did not provide a specific visual insight into roads
used for the shortest path determination. The prototype
provides visual confirmation that in most cases the resulting
roads are very similar but as Fig. Error! Reference source
not found. shows in some cases they are different.

This can be explained by the lack of detailed information
about algorithms used in the compared routing solutions.

The prototype testing also revealed that geographical
information used in route construction was not precise at city
road cross-points. As Fig. Fig. 7 shows, some corners that are
crossed result in a shorter path than it actually is. These
mistakes should be further corrected if such information is
essential in navigation systems.

Limbagi

E\

67]

Saulkrasti
o

a1 % 4

) Sigu
* ﬁg} Sig
_.--m. fin .
aAd
& ga

(a) (b) (c)

Saulj:rasli

Zemes
priekspilséta

Riga Lat

Fig. 6. The shortest path: (a) Google Maps; (b) Bing Maps; (¢) implemented
prototype

Fig. 7. The shortest path with cutting corners at road cross-points

The developed transportation routing software prototype
allows not only for better understanding of routing algorithm
suitability in real-life situations but also for visualizing
algorithm execution results. Visualization provides additional
information about geographical data usage, errors and actual
road data used in the shortest paths.

V. CONCLUSION

In the presented research, routing algorithm suitability was
analysed in the context of transportation planning. Different
kinds of real-life scenarios using real geographical data were
observed and results were comparatively analysed. From the
results gathered and analysed in the current research, the
following main conclusions can be drawn:

e The existing routing algorithms provide different
performance results in dense and scattered environments.
In dense environments, the Bellman—Ford algorithm
shows the fastest execution time during the searching
process of single shortest path, but in scattered situations—
the Dijkstra’s algorithm requires the least amount of
computation time.

e The road data pre-processing requires more resources
during a graph construction phase, but can greatly
decrease the shortest path search time. Hierarchical
routing algorithms can decrease search time from
milliseconds to microseconds. The Floyd—Warshall
algorithm shows the fastest pre-processing time in all
possible determination scenarios of the shortest path.

e The Dijkstra algorithm without specific heuristic data
shows results similar to other existing routing solutions.
In some situations, the difference between routing results
was only 0.02%.

83

Information Technology and Management Science

2013/16

For better result suitability for web-based transportation
planning, a routing software prototype was developed. The
results gathered from the prototype show visual information

[10] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks,” in in Experimental Algorithms SE - 24, vol. 5038, C.
McGeoch, Ed. Springer Berlin Heidelberg, 2008, pp. 319-333.

[11] OpenStreetMap, “Atvérta Wiki pasaules karte.” [Online]. Available:
http://www.openstreetmap.org. [Accessed: Sep. 25, 2013]

[12] JGraphT, “Java mathematical graph-theory objects and algorithms,”
2013. [Online]. Available: http://jgrapht.org. [Accessed: Sep. 25, 2013]

about roads used to determine the shortest paths. The obtained
results are similar to other routing solutions, but in some
occasions they differ, which can be explained by the lack of
detailed information about the used algorithms and difference
in geographical data. | Davis J_aunzems is a master’s §tudent_ maj'oring in
information technology at Riga Technical University.

Since 2009 he has been working in software
development companies and at the same time working on
projects focusing on large data processing and analysis. He
has also participated in many events aimed at building
prototypes with the latest technologies. His professional
interests include mobile technologies, data analysis and
geographical information systems.

E-mail: davis.jaunzems(@gmail.com

REFERENCES

[1] T. Toledo, O. Cats, W. Burghout, and H. N. Koutsopoulos, “Mesoscopic
Simulation for Transit Operations,” Transp. Res. Part C Emerg.
Technol., vol. 18, no. 6, pp. 896-908, Dec. 2010. i

[2] D. Joyner, M. Van Nguyen, and D. Phillips, Algorithmic Graph Theory
and Sage, Version 0.8-r1991, 2013, p. 304. [E-book] Available:
https://code.google.com/p/graphbook/.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” Syst. Sci. Cybern.
IEEE Trans., vol. 4, no. 2, pp. 100-107, 1968.

Arnis Lektauers, Dr.sc.ing., is an Assistant Professor at
the Department of Modelling and Simulation of Riga

[4] R. Bellman, “On a Routing Problem,” Q. Appl. Math., vol. 16, pp. 87— _Technical. University (RTU). His rr_lain p_rofessiongl
90, 1958. interests 1nclud§ the .developr-nent of interactive hybrld
[S] R.W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. modelling and simulation algorithms with an application to
6, p. 345- 1,962 ’ ’ ’ complex systems analysis and the research of industrial,

economic, ecological and sustainable development
problems. A. Lektauers is the Secretary of Latvia Section of
the Institute of Electrical and Electronics Engineers (IEEE),
a member of the Council of RTU Faculty of Computer Science and
Information Technology, and a member of Latvian Simulation Society,
System Dynamics Society and European Social Simulation Association
(ESSA). He is the author of 1 textbook and more than 30 papers in scientific
journals and conference proceedings in the field of Information Technology.

E-mail: arnis.lektauers@rtu.lv

[6] S. Warshall, “A Theorem on Boolean Matrices,” J. ACM, vol. 9, no. 1,
pp. 11-12, 1962.

[77 M. J. d. Smith, M. F. Goodchild, and P. A. Longley, Geospatial
Analysis: A Comprehensive Guide to Principles, Techniques and
Software Tools, 3rd Revise. Matador, 2009, p. 516.

[8] K. Gutenschwager, A. Radtke, S. Volker, and G. Zeller, “The shortest
path: Comparison of different approaches and implementations for the
automatic routing of vehicles,” in Simulation Conference (WSC),
Proceedings of the 2012 Winter, 2012, pp. 1-12.

[9] P. Sanders and D. Schultes, “Engineering Highway Hierarchies,” in in
Algorithms — ESA 2006 SE - 71, vol. 4168, Y. Azar and T. Erlebach,
Eds. Springer Berlin Heidelberg, 2006, pp. 804-816.

Davis Jaunzems, Arnis Lektauers. MarSruté$anas algoritmu piemérotibas analize timeklt bazétai transporta planoS$anai

Transporta lidzeklu marSrut€$ana sarezgitas pilsétvides vai regionalajas sistémas ir uzdevums, kuru nepiecie$ams risinat dazadiem pielietojumiem, pieméram,
privata vai sabiedriska transporta tiklu detalizétas analizes modelos. Saja raksta ir aprakstits marSrute§anas algoritmu analizes process un panémieni transporta
planosanai timek]a bazetas kartografiskajas sistémas. Piedavata petijuma meérkis ir izp&tit eksistejosos marsrutésanas algoritmus isaka cela meklesanai transporta
tiklos un analizét marSrutéSanas algoritmu implementacijas iesp&jas un efektivitati timek|T bazetas geografiskajas informacijas sistémas. Balstoties uz grafu
teoriju, Tsaka cela mekl&Sanai var tikt izmantoti dazadi mar§rutéSanas algoritmi. Saja rakstd galvena uzmaniba ir pievérsta Getru metoZu analizei, kas ir
klasificgjami ka isaka cela algoritmi: Deikstras, Bellmana-Forda, Floida-Varsala, A* (A zvaigznes). Piedavatais pétijums fokusgjas uz skaitlosanas laika un
datora atminas resursu analizi, kas nepiecieSami marSrutéSanas algoritmiem 1saka cela noteikSanai atSkirigas kontekstualas situacijas. Definéta p&tijuma mérka
sasniegSanai ir izstradata un notestéta interaktiva timekli bazéta kartografiska sisteéma ar iebuveétam marSrutésanas iesp&jam. Balstoties uz publiski pieejamiem
Latvijas teritorijas celu tikla datiem, ir veikti vairaki eksperimenti, notestgjot dazadus Tsaka cela atraSanas scenarijus un nosacijumus. Izstradatais prototips Jauj
noteikt katra analiz€ta marSrutéSanas algoritma piemérotibas nosacijumus, ka arT nepiecieSamas darbibas timekli baz€ta transporta planoSanas procesa
optimizacijai.

Jasuc Slynzemc, Apanc Jlektayspc. AHAJIN3 NIPUTOJHOCTH AJTOPHTMOB MAPIIPYTH3AIMH /IS TPAHCIIOPTHOTO IVIAHMPOBAHUS B IJ106a/1bHOIT ceTH
MapipyTu3anust TPaHCHOPTHBIX CPEICTB B CIOXKHBIX TOPOJCKHX WM DPETHOHANBHBIX CHCTEMax sBISIETCS 3aJadeil, KOTOPYI0 HYXKHO PEIIUTh B Pa3HBIX
HPHUIIOKECHUSAX, HAIIPUMEP, B JICTAIHN3UPOBAHHBIX MOJEIAX aHAIM3a CETeH JIMYHOTO MM OOLIECTBEHHOrO TpaHCHopTa. B JaHHOW cTaThe OmMcaH Impouecc H
METO/IMKA aHaJIN3a aIrOPUTMOB MapUIPyTH3ALMH IS [UIAHUPOBAHUS TPAHCIIOPTA B BeO-0a3MpOBaHHBIX KapTorpaduuecKux cucTeMax. Llebio mpeacTaBieHHOro
HCCIIeIOBAHMS SBIISIETCS M3YYEHUE CYLIECTBYIONIMX AITOPHTMOB MapIIPYTHU3ALUX I HAXOXKACHUS KpaTJaiIero IMyTH B TPAHCIIOPTHBIX CETAX W JUIL aHaIH3a
BO3MOXHOCTHU 1 3(()EKTHBHOCTH peanu3aliy alropuTMOB MapLIPyTH3aLKU B BeO 6a3MpOBaHHBIX reorpaduyeckux HHHOPMALMOHHBIX cHcTeMax. basupyscs Ha
Teopur rpad)oB, IS HAXOXKACHHS KpAaT4aHIIero MyTH MOXKHO HCIIONB30BAaTh PasHbIC alrOPUTMbl MapIIpyTH3alud. B maHHON cTaThe ITaBHOC BHUMAaHHE
o0palieHo K aHaIn3y 4eTHIPEX METOI0B, KOTOpBIe KIIacCH(HUIMPOBAHbI KaK alfOPUTMBI KpaTdaiiiiero mytH: anroputmsl Jelikcrpsl, bemmmana—®opaa, Oioiima—
VYopuenaa, A* (A star). [IpencraBnenHoe ucciaenoBanue GpoKycHpyeTcs Ha aHauu3e TPEOYEeMbIX BBIYHCIUTENBHBIX PECYPCOB BPEMEHH M MAaMSTH, KOTOPbIE
HEOOXOANMBI TSl pean3aluii aropuTMOB BO BPEMst HAXOK/ICHHSI KpaTyaillero IyTH B Pa3HbIX KOHTEKCTYalIbHBIX CUTYyalusX. JJIst JOCTHKEHHS TOCTAaBICHHO
LEeTH HCCIENOBAaHHUS CO3JaH M IIPOTECTHPOBAH IPOTOTUII HHTEPAKTHBHOW BeO Oa3HpOBaHHOI KapTorpaduueckoil CHCTEMBI C HHTETPHPOBAHHBIMU
BO3MOXHOCTSMU MapuipyTuzanuu. basupysicb Ha IyOJIMYHO JOCTYNHBIX JAHHBIX JOPOXHOH ceTM Ha Tepputopun JlatBum, ObUIO NPOBEAECHO HECKOIBKO
9KCIIEPUMEHTOB [0 M3YYCHHIO Pa3HBIX CLICHAPUEB H YCIOBHil IJI1 HaXOXACHMS KpaTdaiimiero myTd. Co3aHHBIA HPOTOTHUII MO3BONSET ONPEACIUTH YCIOBHUS
MIPUTOHOCTH KaXKIOTO NPOAaHAIM3UPOBAHHOTO AJITOPUTMA MapLIPYTU3aLHH, a TAKKe HEOOXOUMbIe AEHCTBUS JUIs ONTHMH3AINY IIporiecca BeO 6a3upoBaHHOTO
TPaHCHOPTHOTO TJIAHUPOBAHHS.

84

