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ABSTRACT: With the continuous development of brain network technology, it has become a hot area of neuroscience and
information technology to research the human emotion changes, cognitive status and psychiatric disorders by means of brain
network. In recent years, any smart device can be used as a terminal sensor in the Internet of Things for information
interaction. It will be the new research aspect for brain-computer Interface (BCl) to regard the human brain (the most
intelligent ““device’’) as a terminal sensor in the Internet of Things and to construct a network based on the human brains (we
name it as Internet of Brains). In this paper, a causal connectivity brain network (CCBN) was firstly constructed based on
multivariate autoregressive (MVAR) modeling, independent component analysis (ICA) and partial directed coherence (PDC).
Then the different features of three emotional states (positive, neutral, negative) were respectively extracted by graph
theoretical analysis based on the CCBN estimated by granger causality analysis. The relationship between characteristics
of EEG pattern and emotional states was disclosed. Result suggested that a classification rate of about 88.75% was achieved
in the human subject studied, thus it is feasible to discriminate emotional states with causal connectivity brain network and
is a promising non-invasive approach for studying the model of affective computing. Furthermore the model of wearable
affective computing was estimated based on above relationship with the portable EEG acquisition device, and prototype
system of Internet of Brains would be achieved for BCI.
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1. Introduction

Emotion is an inseparable part of human intelligence, and it plays an important role in the human brain cognition, reasoning,
decision-making, diagnosis and treatment of mental illness [1, 2]. Affective Computing will acquire the physical and behavioral
characteristics of physiological signal caused by the human emotion through a variety of sensors, then establish emotional
model, and give intelligent, sensitive, friendly response to users’ emotion. The wearable computer is the best platform for
affective computing. Internet of Things [3] is booming today, any smart device can be used as terminal sensor for information
exchange. While the human brain, as the most intelligent “device” terminal of the Internet of Things, can provide powerful
support in real-time monitoring of human emotional changes, cognitive status, and mental disease. Thus it provides the
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opportunity for us to make the wearable computer to be fulfilled for affective computing.

Human brain consists of different functional regions which are interconnected to flow the interactive information. Thus, brain
network is constructed with the graph theory according to the different brain regions and information flow. Furthermore, we
could detect the different biomarkers of diverse brain cognition functions according to brain network. While emotion is the
unstable process for brain cognition, thus it is the key problem to explore the characteristics of dynamic interaction for human
brain. Dynamic brain network is defined to reflect the causal connectivity and transient transmission of human brain. It is the
physiological basis for human emotional response, as the characterization of the human brain emotional recognition, reasoning,
decision-making and mental diseases. It will become a hotspot issue for BCI [4] in the Internet of Things to explore executable
mechanism and information processing of dynamic brain network and to construct the Internet of Brains according to the
mechanism above.

To sum up, it will be trend to combine the neural feedback technology, data acquisition of real-time brain imaging, characteristics
of dynamic brain network and wearable affective computing model for the application of BCI. However, there is still no consistent
conclusion about how to construct dynamic brain network and wearable affective computing model, especially in the area of
emotion recognition; until now, to our knowledge, there is also no report to apply the dynamic brain network to extract the
characteristics of different emotions, while there is still no review to regard human brains as terminal sensor in Internet of Things
and to construct the model of wearable affective computing for Internet of Brains.

2. Theory

2.1 Multivariate Autoregressive Modeling

Multivariate Autoregressive (MVVAR) Modeling is a linear multivariate time series model which has a long history of application
in econometrics. The MVVAR model characterizes inter-regional dependencies within data, specifically in terms of the historical
influence one variable has on another. Consider d time series generated from d variables within a system such as a brain network
and where m is the order of the model. AMVAR (m) model predicts the next value in a d-dimensional time series, y_ as a linear
combination of the m previous vector values

=30 A0 e

wherey =[y (1),y,(2),......y,(d)]isthe n' sample of a d-dimensional time series, each A(i) is a d-by-d matrix of coefficients

(weights) and e =[e (1), e (2),....., e, (d)]isadditive Gaussian noise with zero mean and covariance R. We have assumed that
the data mean has been subtracted from the time series.

2.2 Independent Components Analysis

Independent components analysis (ICA) is an unsupervised statistical method used for decomposing a complex mixture of
signals into independent sources [5]. It is especially suitable for preprocessing multichannel EEG data in BCI research because
of the capacity for removing a number of different artifacts, such as electromyogram (EMG) or electrooculogram (EOG) signals
[6, 7]. It can also be used to separate different rhythmic EEG components, such as right- and left-hemispheric mu rhythms, from
ongoing EEG [8].

2.3 Graph Theory

Methods for analyzing causal connectivity of human brain are especially powerful when applied in combination with graph-
theoretic and network-theoretic techniques, which allow their quantitative characterization [9]. In causal networks, nodes
represent variables or system elements and directed edges represent causal interactions among nodes. There is wide range of
graph theory concepts that may find useful application to causal networks.

The causal density and causal flow [9] are the central concerns of this work. Causal density refers to the total amount of causal
interactivity sustained by a network. It is a useful measure of dynamical complexity because high causal density reflects
integration and differentiation in network dynamics. In this case, nodes (functional brain regions or Independent Components)
are both globally coordinated in their activity (useful for predicting each other’s activity) and dynamically distinct (so that
different elements contribute in different ways to these predictions). Causal flow refers to the difference between its out-degree
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(number of outgoing connections) and its in-degree (number of incoming connections). Causal flow can identify nodes that
have distinctive causal effects on network dynamics: a node with a highly positive flow is a causal ‘source’; a node with a highly
negative flow is a causal ‘sink’.

2.4 Brain Network

With the development of study for the structure and function of human brain, it is not only limited to search and locate the region
with the specific cognitive task-related cortex function, but also focus on connectivity among brain regions and construction of
brain network for the research of human brain function. For example: Friston et al. divided the connection among brain regions
into functional connectivity and effective connectivity [10]. Functional connectivity is used to determine whether exist
connectivity among brain regions and the strength for relationship among connectivity; Effective connectivity refers to measure
the pattern of information transfer among brain regions, and to establish the causal interactive relationship between neurons,
and to reflect the dynamic process of neural activity and the dynamics characteristics properties of brain networks. These
characteristics are similar to the real mechanism of human brain. Petra proposed “BrainModes” [11] plan, which was used to
detect the mechanism of human brain and to reveal relationship among the multi-modal neuroscience dataset. Valdés-Sosa
introduced the ICA-STTONNICA [12] model which demonstrates the EEG source localization and dynamic network connectivity;
Chen proposed large-scale causal model by means of conditional Granger Causal [13], and applied it to the study for resting-
state dynamic brain network.

2.5 Granger Causality Analysis

Granger causality (GC) is a method for inferring certain types of causal dependency between stochastic variables based on
reduction of prediction error of a putative effect when past observations of a putative cause are used to predict the effect, in
addition to past observations of the putative effect. The concept was first introduced by Norbert Wiener in 1956 and later
reformulated and formalized by C.W. Granger in the context of bivariate linear stochastic autoregressive models. The concept
relies on two assumptions:

Granger Causality Axioms
(1) Causes must precede their effects in time;

(2) Information in a cause’s past must improve the prediction of the effect above and beyond information contained in the
collective past of all other measured variables (including the effect)

Assumption (1) is intuitive from basic thermo dynamical principles: the arrow of causation points in the same direction as the
arrow of time — the past influences the future, but not the reverse. Assumption (2) is also intuitive: for a putative cause to truly
be causal, removal of the cause should result in some change in the future of the putative effect — there should be some shared
information between the past of the cause and the future of the effect which cannot be accounted for by knowledge of the past
of the effect. The theory and application of GC (and its extensions) to neural system identification has been elaborated in a
number of other articles and texts.

2.6 Affective Computing

Since 1995, Professor Picard defined the term “affective computing” and many scholars followed the study and proposed a
variety of emotion models. 1988, Ortony et al. divided the emotion into 22 categories according to three aspects of the
evaluation criteria of the goals, events and actions, then proposed the OCC emotion model [14] in the point of view of emotional
cognition. In 2002, Kshirsagar introduced the multilayer emotion model of “personality-mood-emotions”, and had a well
relation with personality and emotion, and successfully applied it to the synthesis of facial expressions of virtual human [15]. In
2005, Gebhard extended the work of Kshirsagar, proposed the ALMA (A layered model of affect) [16] model. Yong Chen, from
University of Shandong, constructed a fuzzy set of emotion model [17], this model provided a novel method to combine fuzzy
sets and Markov chain, and described the dynamic changes in process of emotion and static emotional space. In 2006, Hernandez,
et al. established an emotional model that combined the OCC model and dynamic decision network, then applied it to the
intelligent tutoring system with mobile robots (the Intelligent tutoring System ITS) [18].

3. Experiment and Dataset
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3.1 Experimental Paradigm

3.1.1 Subject

As part of a study to investigate the relative mechanism between “inner” emotion and EEG pattern at the level of CCBN
characteristics, a twenty-eight-year-old-right-handed male was paid for his participation. Written informed consent was obtained
and the protocol was approved by the Research Ethics Board.

3.1.2 Stimulus

Ninety pictures were taken from International Affective Picture System (IAPS) [19], depicting 30 unpleasant events (e.g. spiders,
mutilations, etc.), 30 pleasant events (e.g. attractive infants, gracious old man, etc.) and 30 neutral events (e.g. neutral faces
household objects, etc.). The content groups were selected so that there was almost no overlap in IAPS normative affective
valence ratings, i.e. the three stimulus contents were distinct and representative of affect type: mean valence (nine-point scales,
pleasant high) for pleasant pictures, 7.4; neutral pictures, 5.0; unpleasant pictures, 2.7. All neutral pictures had lower standard
emotional arousal ratings (mean 2.9) than the pleasant (mean 5.8) and unpleasant (mean 6.4) pictures. The distributions of
arousal ratings for pleasant and unpleasant pictures were overlapping. Both contents were anchored at the high end by similar
high arousal exemplars; because of the natural picture distribution of the IAPS, the low arousal end of the unpleasant pictures
range was somewhat less extended than for pleasant pictures.

3.1.3 Procedure

The experiment paradigm was illustrated in Figure 1. After arrival at the laboratory, participants read and signed an informed
consent form and filled out several questionnaires, then was briefly introduced to the experiment protocol and the use of self-
assessment questionnaire. Participants were then seated in a recliner in a dimly lit room, and electrodes were attached. The
participant was told that a series of slides would be presented and that he should attend to each picture the entire time it
appeared on the screen. The pictures were presented as color slides, arranged in the random sequence and presented for 1000ms
in the computer. In order to promote a stable mental set, the participant was asked to try to maintain the image of the slide for a
short period after its presentation (terminated by a keyboard number button). The participant was then asked to judge their
emotional reactions while viewing the picture on bi-polar scales measuring affective valence and arousal. The subject was asked
to quantify the valence and arousal for nine-point scales. A 30s resting baseline was initiated at the beginning of the experiment
to facilitate laboratory adaptation, and 30s resting after thirty trials.

3.2 Data acquisition

EEG data were recorded using a 32-channel EEG system (actiCHamp, Brain Products, Munich, Germany). The EEG cap consisted
of 28 scalp electrodes distributed according to the 10-20 system and two additional electrodes, one of which was attached
approximately 2 cm below the left collarbone to record the ECG, while the other was attached below the left eye for measurement
of the electrooculogram. TP9 and TP10 were reference electrodes. Data were sampled at 500Hz.

IAPS Valence Arousal
picture sam 1 sAm Rest
500ms 1000ms 1000ms 500ms 1000ms

Figure 1. Experiment paradigm for emotion-induced

4, Methods and Results

4.1 Data Preprocessing

The data collected in our experiment using the 32-channel EEG device was analyzed to characterize EEG patterns for positive,
negative and neutral emotion. EEG data were referenced to the common average, resampled to 128 Hz, and high-pass filtered with
a 1-Hz cutoff-frequency using EEGLAB. Eye movement and blinking artefacts were removed with a blind source separation
technique from the AAR toolbox for EEGLAB. 1 to 40 Hz band-pass filter was applied to the raw data as the major EEG waves
(theta, delta, alpha, beta, and gamma) lie in this band [20, 21].
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4.2 Causal Connectivity Brain Network

A useful property of any network consisting of multiple nodes is its Topology. The topology of a network describes the way
network nodes are connected to each other. That is, it describes the pattern of network edges. In the case of a MVVAR model, the
Topology property describes how the nodes of the model, the y, (d), send or receive information from/to other nodes. We

referred to the elements of vector y (d) as the nodes of the model. The term “nodes” was used because each time-series y, (d) can
be understood as the temporal activation pattern of a network node. Then, nodes may or may not be connected to each other by
directional edges.

4.2.1 Nodes Definition

ICA described above was applied for discriminating brain and non-brain activity from brain components to determine the nodes
of brain network. In this paper, the specific ICA algorithm employed was FastICA. One of the reasons for this choice was the
large number of successful applications in various fields of data mining, particularly medical signal processing. The other
factors were the broad availability of the algorithm and the diversity in the way the unmixing matrix is estimated.

The FastICA algorithm [22] extracts independent components by separately maximizing the negentropy J(y) of each mixture.
FastICA has two algorithmic approaches available for the estimation of the unmixing matrix: one is the symmetric approach and
the other is the deflationary approach where independent components are estimated one by one like in projection pursui [23].
There are a number of parameters available that can be tuned in order to optimize the performances of FastICA. For this study,
FastICA was using a tangent hyperbolic as its non-linearity instead of the default third order polynomial, which was not found
to be a robust parameter, because it is only recommended when there are no outliers. This was not the case for the data analyzed
in this paper, because all trials were retained and no artifacts were rejected. Moreover, the deflationary approach was used in
favor to the symmetric approach.

1(5.3%) 2 (11%)

5 (1.4%)

6 (4.4%) 7 (15%) 9 (1.9%)

12 (2%) 13 (3.8%) 14 (25%)

19 (12%)

23 (35%) 24 25 (38%)

>

Figure 2. Dipole locations and ICs on scalp maps

Finally, ICA linearly decomposed EEG data into 25 maximally independent components. We implemented FastICA for 20 times
with random initialization. To determine which components were common across implementations, we performed cluster analysis
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using mutual information between components and got greatly successful at this task. Since the activities of cortical and other
EEG sources are not perfectly independent, after performing ICA a low level of dependence still exists between the returned
maximally independent Component (ICs). This residual mutual information can be used to infer relations between different ISs.
Figure 2 below showed the scalp maps 25 ICs returned for the positive emotion dataset (neutral and negative also have similar
25 ICs). Figure 3 showed a 3-D representation in which closer ICs have higher mutual information or activity dependence.
Components are colored according to their respective cluster.

Mutual Information Clusters

- Cluster 1
I Cluster 2

Cluster 3
Cluster 4

- Cluster 5

Figure 3. 3-D representation in which closer ICs have higher mutual information

4.2.2 Edges Definition
Once determine the nodes of brain network, here we will focus primarily on edges, which multivariate extensions of the granger-
causal for connectivity estimates computed.

In this paper we proposed a study on the application of the PDC technique, already used for the assessment of information flows
between ICs, to the source activity estimated by using realistic models of head. The PDC analysis started by fitting a VAR model
to the EEG data of different emotional states, and the AR model underlying the computation of PDC was estimated using the
ARFIT package. A global measure of interaction was obtained by averaging the scores related to all frequency bins for PDC. Since
the PDC was just estimates, it was affected by random estimation errors. Therefore, it was necessary to assess how large a PDC
value needs to in order to consider it significantly larger than 0. This could be done using a one-tailed one sample t-test (P < 0.05).
Finally, the significant flows were defined as edges among ICs.

4.3 Characteristics of CCBN
Based on the Granger causality network estimated by GCA, graph features of the brain network were quantitatively characterized
by GTA.

For now, a simple classification rule can be defined based on causal connectivity brain network

(1) For causal density analysis, the classification is correct if the causal density of positive or negative emotion is higher than
neutral emotion over all independent sources; while the causal density for positive and negative is different from the special
independent source.

(2) For causal flow analysis, the classification is correct if the causal flow of positive or negative emotion has more ‘source’ or
‘sink’ than neutral emotion over all independent sources; while the causal flow of positive, compare to negative, has different
‘source’ and ‘sink’ with the special independent source.
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The classification accuracy was defined as the ratio of the number of trials the present casual connectivity brain network method
for which the different emotion was classified correctly over the total number of trials. Based on these two criteria, we obtained
88.75% classification accuracy in the human subject studied.

4.4\\earable affective computing model

The causal density and causal flow of causal connectivity brain network under different emotional states were computed by
independent components (nhodes) and effective connectivity among ICs (edges). Thus, the common characteristics of EEG
signal pattern in the specific emotion were identified. Then the different emotional states could be discriminated according to the
special EEG pattern, and the model of affective computing was built by means of statistical analysis and classified algorithm
based on the EEG pattern for different emotions. Furthermore, with the portable EEG signal acquisition device, such as Emotiv
[25] or self-designed EEG device, we could build the model of wearable affective computing based on the relationship between
common characteristics of EEG pattern and emotional states of human brain. Then the portable EEG signal acquisition devices
were connected to the Internet with wireless/wired devices, and we developed a web-based application that would enable users
to upload their encrypted EEG data to Internet. Finally, the web-based application could process EEG data from the Internet and
the wearable affective prototype system (we named it as Internet of Brains) was achieved for BCI.

5. Conclusion

In this paper, we proposed a promising methodology for constructing EEG-based casual connectivity brain network (CCBN) and
anovel concept to build model of wearable affective computing underlying Internet of Things (name it as Internet of Brains).The
CCBN was constructed by Multivariate Autoregressive Modeling, Independent Component Analysis (ICA) and Granger Causality
Analysis (GCA) to discriminate emotional states of human brain with the characteristics of CCBN. The results showed that ICA
could be applied to decomposed different independent components of EEG data under different emotional states, furthermore
determined the nodes of CCBN. Then we identified the causal relations among independent components via Granger causality
analysis and determined the directed edges of CCBN which was constructed based upon PDC. Finally, the corresponding
relationship between common characteristics of EEG pattern and emotional states of human brain were explored, therefore
affective computing model was constructed based on the causal density and causal flow characterized by GCA. By means of
portable EEG acquisition device, the wearable affective computing model was fulfilled. The promising results we have obtained
in this pilot study suggest that characteristics of causal connectivity brain network could be the biomarker for discriminating
different emotional states of human brain, and EEG-based Internet of Brains will be the future for BCI.
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