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Abstract. Object composition is often advocated as a more flexible alternative
to standard class inheritance since it takes place at run-time, thus permitting the
behavior of objects to be specialized dynamically. In this paper we present [-Java,
an extension of the Java language with a form of incomplete objects, i.e., objects
with some missing methods which can be provided at run-time by composition
with another (complete) object. Therefore, we can exploit object composition as
a linguistic construct, instead of resorting to a manual implementation. This work
builds on our theoretical model of incomplete objects, which was proved type-
safe.
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1 Introduction

Design patterns were introduced as “programming recipes” to overcome some of the
limitations of class-based object-oriented languages. Most of the design patterns in [17]
rely on object composition as an alternative to class inheritance, since it is defined at
run-time and it enables dynamic object code reuse by assembling existing components.
Patterns exploit the programming style consisting in writing small software components
(units of reuse), that can be composed at run-time in several ways to achieve software
reuse. However, design patterns require manual programming, which is prone to errors.

Differently from class-based languages, object-based languages use object compo-
sition and delegation to reuse code (see, e.g., the languages in [33, 12], and the calculi in
[15, 1]). Every object has a list of parent objects: when an object cannot answer a mes-
sage it forwards it to its parents until there is an instance that can process the message.
However, a drawback of delegation in the absence of any type discipline is that run-time
type errors (message-not-understood) can arise when no delegates are able to process
the forwarded message [34]. We refer to Kniesel [23] for an overview of problems when
combining delegation with static type discipline.

We wanted to design a form of object composition with these goals in mind: main-
taining the class-based type discipline, gaining some of the flexibility of the object-
based paradigm, preventing the message-not-understood error statically, and preserv-
ing the nominal type system of Java. In [8, 6] we presented two possible solutions for
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Java-like languages: the first combines incomplete objects with consultation, and the
second with delegation [26]. In both cases an object A has a reference to an object B.
However, when A forwards to B the execution of a message m, two different bindings
of the implicit parameter this can be adopted for the execution of the body of m:
with delegation, this is bound to the sender (A), while with consultation, during the
execution of the body the implicit parameter is always bound to the receiver B. Dele-
gation is more powerful as it allows dynamic method redefinition. Both proposals are
type-safe, therefore they allow to capture statically message-not-understood errors. In
particular, we formalized two versions of Incomplete Featherweight Java (IFJ), as ex-
tensions of Featherweight Java [21, 30]. The programmer, besides standard classes, can
define incomplete classes whose instances are incomplete objects that can be composed
in an object-based fashion. Hence, in our calculi it is possible: (i) to instantiate standard
classes, obtaining fully-fledged objects ready to be used; (i7) to instantiate incomplete
classes, obtaining incomplete objects that can be composed (by object composition)
with complete objects, thus yielding new complete objects at run-time; (iii) in turn, to
use a complete object obtained by composition for composing with other incomplete
objects. This shows that objects are not only instances of classes (possibly incomplete
classes), but they are also prototypes that can be used, via the object composition, to
create new objects at run-time, while ensuring statically that the composition is type-
safe. We then can use incomplete and complete objects as our re-usable building blocks
to assemble at run-time, on the fly, brand new objects.

The goal of this paper is to present an implementation of the incomplete objects
with consultation [8] by means of I-Java, an extension of the Java language with in-
complete objects and object composition. We implemented a preprocessor that, given
a program that uses our language extension, produces standard Java code (the prepro-
cessor is available at http://i-java.sf.net). The transformation implemented by
the preprocessor (presented in Section 3) models the incomplete classes, the method
composition, the method call via consultation, and integrates well the Java subtyping
within the incomplete object model subtyping. Our prototype implementation has one
limitation with respect to the field treatment, that will be discussed in the conclusions
(see Section 5). However, being the emphasis of incomplete object extension on a more
flexible method addition, fields treatment can be seen as orthogonal and postponed to
future work.

We describe briefly our proposal, borrowing from our previous work on the calcu-
lus IFJ with consultation [8]. Classes, besides standard method definitions, can declare
some methods as “incomplete” (these can be seen as abstract methods); these miss-
ing methods must be provided during object composition by complete objects. Thus,
incomplete objects represent the run-time version of inheritance and dynamic binding
mechanisms. This is a sort of dynamic inheritance since it implies both substitutivity
(that is, a composed object can be used where a standard object is expected) and dy-
namic code reuse (since composition permits supplying at run-time the missing methods
with those of other objects).

One of the key design choices is the nominal subtyping mechanism that is typical
for mainstream languages like Java and C++. This feature makes the extension conser-
vative with respect to the core Java, since it does not affect those parts of the programs



L ::= class C extends C {C f; K; M} classes
A ::= class C abstracts C {C f; K; M N} incomplete classes
K ::= C(C f){super(f); this.f=f;} constructors
M::=Cm (CX){returne;} methods
N:=Cm(CX); abstract methods
en=x | e.f | e.m(e) } new C(e) | e—te expressions
v = newC(V):: € ‘ new C(Vv) i v values

Fig. 1: IFJ syntax; run-time syntax appears shaded.

that do not use incomplete objects. Furthermore, incomplete classes can rely on stan-
dard class inheritance to reuse code of parent classes (although this kind of inheritance
does not imply subtyping in our setting). Thus incomplete objects provide two forms
of code reuse: vertical (i.e., the code reuse achieved via standard class inheritance) and
horizontal (i.e., the one achieved via object composition). Finally, in order to enhance
run-time flexibility in composing objects we implicitly use structural subtyping during
composition: an incomplete object can be composed with any object providing all the
requested methods (the signatures must match) independently of the classes of these
objects.

Therefore, the language extension we propose is not a simple automatic implemen-
tation of the object composition that one might implement manually. In fact, any object
providing the required methods can be used in object composition, no matter what its
class is. In case of a manual implementation, instead, the object should be stored in a
class field, thus forcing it to belong to a specific class hierarchy.

We observe that, although the preprocessor performs a static code generation (by
using also static type information), the code generated is thought to perform object
composition dynamically (without relying on static type information anymore); thus,
the preprocessor generates statically code that has all the features to provide dynamic
object composition.

2 Overview of the IF]J calculus

This section is devoted to presenting some details of the calculus with consultation (we
refer the reader to [8] for the complete formalization). The calculus IFJ (Incomplete
Featherweight Java) is an extension of FJ (Featherweight Java) [21,30] with incom-
plete objects. We assume the reader is familiar with the main features of FJ (however,
this is not strictly necessary for the general comprehension of the paper).

The abstract syntax of IFJ constructs is given in Figure 1 and it is just the same
as FJ extended with incomplete classes, abstract methods and object composition (and
some run-time expressions that are not written by the programmer, but are produced
by the semantics, that we will discuss later). As in FJ, we will use the overline no-
tation for possibly empty sequences (e.g., “€” is a shorthand for a possibly empty
sequence “eq,...,e,”) and for sequences of pairs in a similar way, e.g., C £ stands
for C; £1,...,C, £,. The empty sequence is denoted by e. A class declaration class
C extends D {C f; K; M} is as in FJ. An incomplete class declaration class C




abstracts D {C f; K; M N} inherits from a standard (or incomplete) class D and,
apart from adding new fields and adding/overriding methods, it can declare some meth-
ods as “incomplete” (we will call these methods also “abstract” or “expected”). On the
other hand, standard classes cannot inherit from incomplete classes (this is checked by
the typing). The main idea of our language is that an incomplete class can be instan-
tiated, leading to incomplete objects. Method invocation and field selection cannot be
performed on incomplete objects.

An incomplete object expression e can be composed at run-time with a complete
object expression ej; this operation, denoted by e «— ey, is called object composition.
The key idea is that e can be composed with a complete object e, that provides all the
requested methods, independently from the class of e, (of course, the method signa-
tures must match). Then, in e; <+ e, e; must be an incomplete object and e, must be
a complete object expression (these requirements are checked by the type system); in-
deed, e; can be, in turn, the result of another object composition. The object expression
e| <+ e represents a brand new (complete) object that consists of the sub-object ex-
pressions ej and ej; in particular, the objects of these sub-expressions are not modified
during the composition.

Finally, values, denoted by v and u, are fully evaluated object creation terms. How-
ever, the object representation of IFJ is different from FJ in that fully evaluated objects
can be also compositions of other objects. Thus, objects are represented as lists of terms
new C(V) (i.e., expressions that are passed to the constructor are values too). For in-
stance, new C(V) :: new D(T) :: € represents the composition of the incomplete object
of class C with a standard complete object of class D (¢ denotes the empty list). We
represent a standard object with a list of only one element, new C(V) :: €.

In the type system we distinguish between the type of an incomplete object and the
type of a composed object (i.e., an incomplete object that has been composed with a
complete object). If C is the class name of an incomplete object, then (C) is the type
of an incomplete object of class C that has been composed. The types of the shape (C)
are only used by the type system for keeping track of objects that are created via object
composition. Indeed, the programmer cannot write (C) explicitly; this is consistent with
Java-like languages’ philosophy where the class names are the only types that can be
mentioned in the program (apart from basic types).

The subtype relation <: on classes (types) is induced by the standard subclass re-
lation extended in order to relate incomplete objects. First of all, we consider an in-
complete class class C abstracts D {...}; if D is a standard class, since C can
make some methods of D incomplete, then it is obvious that an incomplete object of
class C cannot be used in place of an object of class D. Thus, abstracts implements
subclassing without subtyping. Instead, when the incomplete object is composed with
a complete object (providing all the methods requested by C), then its type is (C), and
it can be used in place of an object of class D. Since, as said above, we do not permit
object completion on a complete object, then a complete object can never be used in
place of an incomplete one.

Typing rules are adapted from those of FJ in order to handle incomplete objects
and object composition. In particular, field selection and method selection are allowed
only on objects of concrete types, where a concrete type is either a standard class C or



newC(V)::€«+v—newC(V) v (R-Comp)

mbody(m,C) = (X, eq)

(new C(¥) :: v).m(W) — [X/T, this/new C(¥) :: v]eg (R-INVK)

mbody(m,C) = e

(new C(¥) :: v).m(W) — v.m(T)

(R-DINVK)

Fig. 2: Semantics of IFJ

(C). A key rule for dealing with object composition is introduced. It checks that the left
expression in a composition is actually an incomplete object and that the right one is a
complete object that provides all the methods needed by the incomplete object. (This
also shows that the typing of < is structural, which is a key feature of the system,
since it enhances the flexibility of object composition.) The final type is the concrete
type based on the original class of the incomplete object. Also typing rules for methods
and classes of FJ were adapted to deal with incomplete classes. All the typing rules of
IFJ that are related to incomplete objects, therefore not checked by the Java language
compiler, have been implemented as checks in the I-Java preprocessor (Section 3.3).

The (deterministic call-by-value) operational semantics is shown partly in Figure 2.
The main idea of the semantics of method invocation is to search for the method defini-
tion in the (class of the) head of the list using a mbody lookup function (this is defined,
together with the function fields, in [8]). If this is found, rule (R-INVK), then the method
body is executed; otherwise, rule (R-DINVK), the search continues on the next element
of the list (of course, in a well-typed program, this search will succeed eventually).
Method and field selections within a method body expect to deal with an object of the
class where the method (or field) is defined (or a subclass). Thus, it is sensible to sub-
stitute this with the sublist whose head new C(¥) is such that mbody(m,C) is defined.
This is also consistent with the concept of consultation. Thus, the list implements the
scope of this inside a method body: the scope is restricted to the visibility provided by
the class where the method is defined. Note that this solves also possible ambiguities
due to name clashes, even for methods hidden by subsumption [31].

The key point is that, when objects are composed, the resulting object consists of a
list of sub-objects; in particular, these sub-objects are not modified. Thus, the states of
the objects within an object composition never change and the object composition pro-
duces a brand new object (see (R-COMP) rule in Figure 2) where all the sub-objects are
actually shared. In an imperative setting, this mechanism will assure that there will not
be problems when an object is pointed to by references in different parts of the program.
Finally, not modifying incomplete objects directly also makes them more re-usable es-
pecially in cases when object composition may not have to be permanent: the behavior
of an object may need to evolve many times during the execution of a program and the
missing methods provided during an object composition might need to be changed, e.g.,
because the state of the incomplete object has changed. Since the original incomplete
object is not modified, then it can be re-used in many object compositions during the
evolution of a program.




class Button abstracts Action {

class Action { void run(); // incomplete method class SaveActionDelegate {

void run() { } void display() { V"}fi’;n”"lgnfenmon
void display() {} // redefined to draw the button ) P
N J
class Menultem abstracts Action { class KeyboardAccel abstracts Action {
void run(); // incomplete method void run(); // incomplete method
void display() { void display() {
// redefined to show the item // redefined to hook key combination
} }
} }

SaveActionDelegate deleg =

new SaveActionDelegate();
myFrame.addToMenu

(new Menultem("save") <- deleg);
myFrame.addToToolbar

(new Button("save") <- deleg);
myFrame.setKeybAcc

(new KeyboardAccel("Ctrl+S") <- deleg);

class Frame {
void addToMenu(Action a) {...}
void addToToolbar(Action a) {...}
void setKeybAcc(Action a) {...}

}

Listing 1: The implementation of action and action delegates with incomplete objects
and object completion.

2.1 A case study

In this section, we show a programming example written in a slightly Java-sugared
syntax (we consider all methods as public and we will denote object completion opera-
tion with <-). We consider the development of an application that uses widgets such as
graphical buttons, menus, and keyboard shortcuts. These widgets are usually associated
to an event listener (e.g., a callback function), that is invoked when the user sends an
event to that specific widget (e.g., one clicks the button with the mouse or chooses a
menu item).

The design pattern Command [17] is useful for implementing these scenarios, since
it permits parametrization of widgets over the event handlers, and the same event han-
dler can be reused for similar widgets (e.g., the handler for the event “save file” can be
associated with a button, a menu item, or a keyboard shortcut). Thus, they rely on this
object for the actual implementation of the action semantics, while the action widget
itself abstracts from it. This decouples the action visual representation from the action
controller implementation.

We can implement directly this scenario with incomplete objects, as shown in List-
ing 1: the class Action and SaveActionDelegate are standard Java classes (note that
they are not related). The former is a generic implementation of an action, and the latter
implements the code for saving a file. We then have three incomplete classes implement-
ing a button, a menu item, and a keyboard accelerator; note that these classes inherit
from Action, make the method run incomplete, and override the method display.




We also assume a class Frame representing an application frame where we can set key-
board accelerators, menu items, and toolbar buttons. An instance of class Button is
an incomplete object (it requires the method run) and, as such, we cannot pass it to
addToToolbar, since Button £: Action (subclassing without subtyping). However,
once we composed such instance (through object completion operation, <-) with an
instance of SaveActionDelegate, then we have a composed complete object (of type
(Button)) that can be passed to addToToolbar (since (Button) <: Action). Note
that we compose Button with an instance of SaveActionDelegate which provides
the requested method run, although SaveActionDelegate is not related to Action.

Moreover, we use the same instance of SaveActionDelegate for the other incom-
plete objects. Thus, modifying the internal state of deleg will assure that all the actions
are updated, too. For instance, if the SaveActionDelegate had logging features, we
could enable them and disable them during the execution of our program, and all the
actions resulting from the object compositions will use logging consistently.

We now discuss some possible manual implementations in Java of this scenario,
showing that our proposal is not simply syntactic sugar. With standard Java features,
one could write the Button class with a field, say deleg, on which we call the method
run. This approach requires deleg to be declared with a class or interface that provides
such method, say Runnable. However, this solution would not be as flexible as our
incomplete objects, since one can then assign to deleg only objects belonging to the
Runnable hierarchy. This might not be optimal in case of reuse of existing code (that
cannot be modified); in particular, this scenario is not ideal for unanticipated code reuse.
The solution can be refined to deal with these problems by introducing some Adapters
[17], but this require additional programming. On the other hand, if one wanted to keep
the flexibility, one should declare deleg of type Object, and then call the method run
by using Java Reflection APIs, (e.g., getMethod); however, this solution is not type
safe, since exceptions can be thrown at run-time due to missing methods.

2.2 Incomplete objects and design patterns

As we have already mentioned in the introduction, design patterns propose interest-
ing solutions to recurrent programming problems in specific contexts, and they often
rely to object composition and method forwarding as a more flexible alternative to
class-based inheritance. However, in spite of their usefulness, they still require man-
ual programming: the programmer cannot use directly linguistic constructs and must
prepare the structure of classes and their interaction relations from scratch, and follow
the “informal” scheme of the patterns to be implemented. Furthermore, as also stated
in [17], some design patterns can be seen as an ad-hoc solutions to fulfill the lacks of a
programming language. For instance, the Visitor’s mechanism of visit/accept methods
would not be required in a language with dynamic overloading or multi-methods: only
the visit methods would be enough, by relying on their dynamic overloading semantics
(“CLOS has multi-methods, for example, which lessen the need for a pattern such as
Visitor” [17]).

With incomplete objects, we tried to shorten the distance between the language fea-
tures and the design patterns, so that their implementation can be smoother [10]. We



do not aim at replacing design patterns completely: design patterns will keep on pro-
viding “a high-level language of discourse for programmers to describe their systems
and to discuss common problems and solutions” [11]. Language features should make
the application of a pattern easier and possibly more efficient [11]. For instance, im-
plementations of patterns were proposed using aspect-oriented programming [19] and
collaboration-based design [25].

Summarizing, we are not claiming that incomplete objects and their composition-
ality features allow the programmers to implement some development scenarios which
would not be implementable simply by using design patterns. We claim instead that,
by using the proposed linguistic features, the programmer can express the structure and
the interaction relations in a specific context directly, with less additional manual pro-
gramming; furthermore, as linguistic features with their own additional typing system
and operational semantics (which was proved sound), incomplete objects represent a
flexible and safe programming mechanism. After all, one could do even without inher-
itance and dynamic binding, but one would need to implement these mechanisms from
scratch in many development scenarios, and such manual implementations, besides be-
ing tedious and time consuming, would not enjoy the same safety properties of those
provided by the linguistic constructs themselves (“Our patterns assume Smalltalk/C++-
level language features, and that choice determines what can and cannot be imple-
mented easily. If we assumed procedural languages, we might have included design
patterns called Inheritance, Encapsulation, and Polymorphism.” [17]). Finally, incom-
plete objects and object composition can be used to implement other design patters that
rely on object composition and forwarding [17]: Adapter, Bridge, Decorator, Proxy,
Strategy and Chain of Responsibilities.

Some works, such as [16, 18], provide programming tools to help the programmer
implement and use design patterns: it is possible to describe patterns, instantiate them
(possibly starting from templates), merge them into the existing programs, check their
correct implementation and usage, and also recognize them in the source code. Thus,
these tools act at a meta-level with respect to the programming language, while we
wanted to have object composition at the linguistic level. However, we believe that the
value of these tools would still be profitable in order to have a higher level view also of
incomplete objects and object composition, moreover they could still deal with patterns
even when implemented via incomplete objects.

3 The Java extension I-Java

In this section we describe the Java extension I-Java and its implementation, in partic-
ular we describe the classes generated by our preprocessor and the checks performed
by it. We tried to minimize the changes to the original Java syntax in designing our
linguistic extension of Java. Actually, our solution does not need any extension of the
Java grammar at all, it relies instead on Java annotations: we will use two specific anno-
tations to specify incomplete classes and complete classes. The preprocessor will then
transform the annotated classes and generate the appropriate additional code.

In Java, the linguistic construct that is closer to our incomplete classes is the ab-
stract class. Both incomplete classes and abstract classes allow to define the imple-



@Complete
public class SuperC {
private f = false;

@Incomplete
public abstract class IncC extends SuperC {
private int i = 0;

public void myMeth() {
f = true;
mylIncompleteMeth();

public void myCompleteMeth() {
++i;
mylIncompleteMeth(); }

}

// an incomplete method
public abstract void myIncompleteMeth();

public void myIncompleteMeth() {

) -
Listing 2: An incomplete class and a complete class in I-Java (get/set methods are not
shown)

mentation of some methods only, and to delay the implementation of the remaining
methods (specifying only their signatures). However, abstract classes cannot be instan-
tiated, while incomplete classes are the generators of incomplete objects. The basic idea
is that the programmer will use abstract classes to specify incomplete classes, and the
I-Java preprocessor will generate additional (non-abstract) Java classes that will be used
to instantiate objects.

Instead of adding a new keyword to the language, an incomplete class can be defined
by writing a standard abstract class with the annotation @Incomplete. An example of
incomplete class declaration is shown in Listing 2 (left). As for declaring incomplete
methods, we simply reuse the standard Java syntax to declare abstract methods. Thus,
basically, the code for defining incomplete classes is standard Java code with a spe-
cific annotation; this code will be transformed by the preprocessor, generating further
classes. Note that instead of using a keyword abstracts, we simply use the Java key-
word extends; however, for incomplete classes, this is to be intended as subclassing
without subtyping. Thus, it must not be possible to assign an object of class IncC to a
variable of type SuperC. This constraint is checked by the preprocessor (Section 3.3).
As for object composition, we do not add a new operator to the syntax, instead, we sim-
ply use a method generated by the compiler: compose. The choice of not introducing
new keywords in the language also allowed to re-use existing Java editors and IDEs to
write I-Java code.

Another annotation, @Complete, is used to denote those (complete) classes that
are exploited to build incomplete class-based hierarchies (see Listing 2, right). This
is needed in order to enforce by the preprocessor some constraints on the fields of
such classes (see Section 3.3): we require that @Incomplete and @Complete classes
have only private fields, and have public get/set methods for the fields'. Therefore, the
superclass SuperC (and its ancestors) must be annotated with @Complete. Note that:
(i) @Complete classes, with respect to the Java compiler and with respect to our object

! Following the standard convention that if the field is called myField, the corresponding ac-
cessor methods are getMyField and setMyField.




<<Complete>>

SuperC

<<Abstjract>>

<<Interface>>
IncCinterfacelncomplete

A

ComplCAdapter
1
ComplC

<<Incomplete>>
IncC <<Interface>>

IncCinterfaceAdapter
L |

IncCincomplete

IncCComposition

Fig. 3: The original and generated classes (in gray).

composition, are treated as standard Java classes, i.e., they can be extended, instantiated,
and their (complete) objects can be used within any object composition with incomplete
objects; (if) objects of both @Complete classes and normal Java classes can be exploited
in the object composition, making possible a form of reuse.

3.1 Code generated by the preprocessor

As said above, the preprocessor will generate some additional classes, starting from an
incomplete class. In the following we describe in detail the role of the generated classes.
The name of these classes will be formed using the original incomplete class name and
adding a suffix. In the following, we assume that the incomplete class is named IncC
(we will use the example of Listing 2). Note that the generated classes will not be used
by the programmer directly (actually the programmer is not aware of these additional
generated classes). In Figure 3, we show the UML diagram containing the original
classes (in white) and the generated classes and interfaces (in gray).

Since we use standard Java abstract classes to define incomplete classes, we would
not be able to create objects of incomplete classes since we would need to be able to
instantiate an abstract class. Thus, the preprocessor will generate the class IncCIn-
complete: this is the “instantiable” version of the incomplete class IncC. The gener-
ated class extends the original incomplete class and provides a definition for the corre-
sponding abstract methods which simply throws a run-time exception. Note that these
methods will never be invoked in the code, since the preprocessor checks that no meth-
ods are invoked on an incomplete object and we assume that the programmer never uses
directly the generated code; however, these methods can be discoverable and invoked
in regular Java code by reflection and we preferred to raise an error in case of invo-
cation. The generated IncCIncomplete will also contain the method compose that
will be used to perform an object composition; in particular x. compose (y) returns an




public class IncCIncomplete extends IncC implements IncClInterface Adapter {
private IncClnterfaceAdapter myThis = this;

public void setMyThis(IncClnterfaceAdapter myThis) { this.myThis = myThis; }

// copied from IncC with some adjustments

public void myCompleteMeth() {
setl(getl()+1);
myThis.myIncompleteMeth ();

}

// copied from SuperC with some adjustments
public void myMeth() {
setF(true);
myThis.myIncompleteMeth();

}

// will never be called
public void myIncompleteMeth() {
throw new RuntimeException("call of incomplete method myIncompleteMeth")

}

public IncCComposition compose(Object ob) {
IncClnterfacelncomplete aii = (IncClnterfacelncomplete)ob;
return new IncCComposition<IncClnterfacelncomplete>(aii, this);

Listing 3: The generated class IncCIncomplete

object which corresponds to the composed object x <+ y. The generated class IncC-
Incomplete corresponding to the incomplete class in Listing 2 is shown in Listing 3.
Before getting into details of IncCIncomplete and of the generated class IncCCompo-
sition, we first need to explain other generated classes and interfaces.

One of the main features of the calculus of [8] is that the methods that are incom-
plete can be provided, within an object composition, by any (complete) object that has
those methods, independently from the complete object class. However, in Java, an
object used in a composition must implement a specific interface with all the methods
requested by the incomplete object. For this reason, the preprocessor generates the inter-
face IncCInterfaceIncomplete; this interface contains all the incomplete methods
of the class IncC, i.e., all the methods that must be provided during object composition.
The basic idea is that this interface represents any complete object in an object com-
position that will provide all the missing methods. As an alternative implementation,
we could have used the class Object and then use reflection to invoke the requested
method or use casts; however, this would have increased the overhead in the generated
code.




public class IncCComposition implements IncCInterface Adapter
extends SuperC {
private IncCIncomplete head;
private IncClnterfaceIncomplete complete;
// constructor omitted...

public void myCompleteMeth() {
head.setMyThis(this);
head.myCompleteMeth();
head.setMyThis(head);

}

public void myIncompleteMeth() {
complete.myIncompleteMeth();

}
}

Listing 4: IncCComposition generated class.

Suppose we use an object of class ComplC, which provides all the methods required
by the incomplete object of class IncC. Our translated code would require that Comp1C
also implements IncCInterfaceIncomplete, but since this is a generated interface
this would require to modify the code of ComplC, which is quite unacceptable. We solve
this issue by generating, for each class ComplC whose objects are used in an object
composition with an incomplete object of class IncC, an additional class ComplCAda-
pter, which implements IncCInterfaceIncomplete by forwarding to a wrapped
instance of class ComplC. Of course, if ComplC is used in several object composition,
the generated ComplCAdapter will implement all the corresponding generated Inter—
faceIncompletes.

The generated class IncCComposition, Listing 4, is crucial since it implements
the actual composition between an incomplete object and a complete object. In the
calculus of incomplete objects that we are considering, [8], we can only compose an
incomplete object with a complete one; thus the incomplete object can only be of
type IncCIncomplete, but the complete one can be, in turn, the result of another ob-
ject composition. For this reason, the class IncCComposition declares the complete
sub-object as IncCInterfaceIncomplete, and the implementation of an incomplete
method simply consists in forwarding the method invocation to the complete object.
The implemented interface IncCInterfaceAdapter will be clear in the following.
Note that IncCComposition extends the original class “abstracted” by the incomplete
class. This respects the fact that in the calculus, if C abstracts D, then a composed
object of type (C) is such that (C) <:D.

Indeed, the hardest part is the implementation of a complete method. If we simply
forwarded to the IncCIncomplete instance, then, upon the invocation of an incomplete
method from within IncCIncomplete we would simply call the empty implementation
(i.e., the one throwing a run-time exception), which is wrong: we need to “go back” to
the original message receiver, which is the object of type IncCComposition. To solve
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Fig. 4: The sequence diagram of a complete method invocation.

this issue, we need to simulate the binding of this; we do it by introducing “another
this” in the class IncCIncomplete (Listing 3), that we call myThis. Note that the
complete methods of the original incomplete classes are copied into IncCIncomplete,
and all the occurrences of method invocations on this are replaced with invocations on
myThis. The implementation of a complete method in IncCComposition takes care
of setting myThis, through method setMyThis, to the IncCComposition instance
itself. In Figure 4 we show the sequence diagram of an invocation of myCompleteMeth
(which also calls myIncompleteMeth).

This will guarantee that upon the invocation of an incomplete method on a com-
posed object, the right implementation will be selected (using myThis). This holds also
for inherited methods (which are neither redefined, nor made incomplete, such as my-
Meth): they are copied and adjusted so that method invocations are performed on my-
This and field accesses are transformed into invocations of the get/set corresponding
methods.

Finally, the preprocessor generates the interface IncCInterfaceAdapter, contain-
ing all the methods in the original incomplete class (both complete and incomplete).
Note that this interface is implemented both by IncCIncomplete and IncCCompo-
sition, since it represents the type for myThis.

3.2 Code modified by the preprocessor

The preprocessor needs also to modify the client code that uses incomplete objects.
However, due to the way the classes and interfaces generated by the processor are re-
lated through subtyping relations, we only need to preprocess incomplete object instan-
tiation expressions. Furthermore, complete object instances used in object compositions
need to be wrapped using the generated adapter class. Thus, if we consider the following
code:

IncC inc = new IncC();
ComplC compl = new ComplC();
SuperC ¢ = inc.compose(compl);
c.mylIncompleteMeth();




the preprocessor will only replace the incomplete object instantiation and the composi-
tion statement as follows:

IncC inc = new IncCIncomplete();

ComplC compl = new CompIC();

SuperC c = inc.compose(new ComplCAdapter(compl));
c.mylIncompleteMeth();

3.3 Checks performed by the preprocessor

The preprocessor of I-Java is not a simple program translator: it also performs some
type checks. These checks guarantee that the corresponding generated Java program
will be not only well-typed, but also type-safe, in the sense that no method invocation
on an incomplete object will take place at run-time (of course, this relies on the fact that
the programmer does not modify the generated code). All these checks correspond to
the type checking rules of the incomplete object calculus of [8].

First of all, it checks that no method invocation (but compose) is performed on
an incomplete object. Remember that the Java type checker would allow such invoca-
tions since an incomplete object in I-Java corresponds to an instance of a preprocessor-
generated class; that is why our preprocessor must check this. Then, it checks that the
argument of a compose invocation is correct, i.e., that it is a complete object providing
all the required methods. Furthermore, it checks that an incomplete class is not used as
the base class of a standard Java class. Finally, it checks that the subtyping rules of the
calculus are respected: the only one non-standard in Java is that an incomplete class is
not a subtype of a complete class (or of another different incomplete class).

Another check is performed on all @Incomplete and @Complete classes: their
fields must be private and all the related accessory methods must be provided. If not,
the preprocessor rises an error. This is necessary because of two (orthogonal) issues:
(i) all fields, including the inherited ones, must be accessible from all methods of the
IncCIncomplete class, since the preprocessor copies there all complete methods that
the incomplete class inherits directly and indirectly from its SuperC; (ii) at the same
time, we want to forbid that the wrong copy of the fields be modified, that is, the one of
the composition object, that inherits from SuperC (we recall that in our formal model
[8] fields do not belong to the composition, but to the single objects, part of the com-
position, as the former is not an object in the model and the field access is orthogonal
to the method access). It would be possible to provide a different implementation that
gives total freedom to the programmer in choosing the preferred visibility modifiers for
all classes by building a preprocessor that: (i) adds by default the appropriate accessory
methods to all classes belonging to an incomplete hierarchy, regardless the visibility
modifiers; (i) and modifies the client code by substituting to all field accesses on in-
stances of classes of an incomplete hierarchy the appropriate accessory methods’ calls.
However, we believe that our restriction on having private fields and public accessory
methods for all classes of an incomplete hierarchy is a reasonable one, as the direct
access to fields is often seen as a not totally convenient design choice. Note also that
the classes of the complete objects used to be composed with the incomplete ones do
not have any constraint to be subjected to.



4 Related Work

Incomplete objects can be seen as wrappers for the objects used in object composition.
However, they differ from decorator-based solutions such as the language extension pre-
sented in [9]: incomplete objects provide a more general-purpose language construct
and the wrappers of [9] could be actually implemented through incomplete objects.
Another form of wrapping of methods is the one offered by the delegates of C#. Del-
egates are objects pointing to one method or to a set of methods, that will be executed
when invoked appropriately on the delegate. Therefore, it is possible to treat methods
as anonymous functions, implementing a form of reuse. Delegates can be then seen
as complementary to incomplete objects, as the latter implements a different form of
reuse, allowing to customize a prototype (i.e., an incomplete object) in more than one
way via object composition.

A further construct of C# that deals with some form of incompleteness is the one of
partial classes, that makes it possible to subdivide a class definition among two or more
files. This mechanism is useful to implement a form of reuse oriented to the design of
large scale projects, as a class distributed over distinct files allows more programmers to
work on it, moreover it helps the addition of new code to a class without modifying the
source. Moreover, the mechanism of partial classes is a static one, and it does not take
place at run-time like our object-composition. Once again, the form of reuse offered by
partial classes is complementary to the one implemented by incomplete objects.

Traits [13] are composable units containing only methods, and they were proposed
as an add-on to traditional class-based inheritance, allowing a higher degree of code
reuse. Traits (in particular the ones with fields [5]) and incomplete objects share an im-
portant feature, composition, which permits composing sets of methods “at the right
level”, for instance not too high in a hierarchy for traits, and “when needed” for incom-
plete objects. There is a main difference between traits and incomplete objects: traits are
more oriented towards software reuse, in the sense they help avoiding code duplication
and other bad design choices, while incomplete objects are a device to model certain
forms of unanticipated evolution. This seems to make the two approaches orthogonal
and complementary, thus, it might be interesting to investigate the coexistence and co-
operation of traits and incomplete objects in the same language. An issue to pursue as
a further research may be the use of incomplete objects as an exploratory tool to design
traits: experiments made at run-time without modifying a class hierarchy might give
indications on where to put a method in a new version of the hierarchy. In [7] we pre-
sented a tool for identifying in a Java class hierarchy the methods that could be good
candidates to be refactored in traits (this is the adaption of the Smalltalk analysis tool
of [27] to a Java setting). It would be interesting to investigate the application of this
approach also for detecting possible candidates for incomplete classes.

There are some relations between aspects [22] and our incomplete objects. Both
are used to combine features taken from different sources. In the aspect case, the main
idea is to factorize into aspects some cross-cutting functions (such as logging services
or concurrency primitives) that are needed globally by a library, instead of duplicating
and scattering them into the business code. In our case, we consider objects as building
blocks that can be used to combine features on the fly, in order to obtain and experiment
with multi-function objects whenever it is desired. In a sense, the role of incomplete



objects is orthogonal to the one of aspects, because the former play a local role, while
the latter a more global one.

In [2], a general model (Method Driven Model) for languages supporting object
composition is proposed: this is based on the design of classes in an aspect-oriented
style. The authors do not formalize their model within a calculus, but it is possible
to see that the main feature of a language based on this model would be to compose
dynamically the overall behavior of an object from the multiple “aspects” that abstract
the variant behavior, as discussed in [3]. The main difference between their proposal and
ours is that for them the run-time behavior is codified in aspects, whereas we internalize
it in Java by exploiting incomplete classes and object composition.

The language gbeta [14] supports a mechanism called “object metamorphosis”,
which is a mechanism to specialize dynamically an existing object, by applying to it
a class as a constraint in such a way the object becomes an instance of that class. The
main difference between the gbeta specializing objects and our incomplete objects is
that the former maintain the object identity, while the latter are used to create dynam-
ically new objects which are not instances of any classes present in the program. Both
proposals are proved type-safe, but a more direct comparison is not straightforward,
as the type system of gbeta exploits concepts such as virtual classes which are not
present in a Java-like setting like ours. The language gbeta also supports dynamic class
composition [28] (classes are first class values and existing classes may be composed
dynamically to yield new classes), while in our language we act on object composition.
It is important to remark that one of our main design decision was that our extension
must integrate seamlessly in a Java-like language as a conservative extension.

Roles [24] are a conceptual abstraction that can be used in object-oriented systems
to implement specific entities within a domain. ObjectTeams/Java (OT/J) [20] is a pro-
gramming language that provide roles in a Java context, following the criteria defined
in [32]. Although the inherent compositional nature of roles looks similar to incomplete
objects, the two approaches are rather different both for features and for intention. First
of all, incomplete objects are a low level linguistic feature: they represent a dynamic and
object-based implementation of inheritance. Thus, once objects are composed, they can-
not be de-composed (although we might consider studying such an operation and how
this affects the static type system). On the contrary, roles can be attached to base ob-
jects and detached; in particular, upon removal, a role is also destroyed. This is another
important difference with respect to our object composition: objects in our language
keep their own identity and life-cycle (and they can be used in many object composi-
tion), while roles can be attached to one base object only and they “live” only when
they are part of such a base object. Role definitions also specify the class of their base
objects, and this couples them to these classes (this coupling can be reduced, but not
removed, by using unbound roles, similar to abstract classes, and subroles), while in our
approach the type of objects in composition is not known in advance. Moreover, OT/J
implements a “flattening” semantics concerning fields, while in our composed objects
all the subobjects have their own fields. Summarizing, roles are a higher level feature
which is somehow complementary to incomplete objects, and these two linguistic con-
structs aim at solving different programming contexts. These differences seem inherent
of the role approach and can be found in other implementations (see, e.g., [4]).



5 Conclusions

In this paper we presented I-Java, which enhances the Java language by adding to it
some features related to dynamic object evolution in a type-safe way. In particular,
some behavior that was not foreseen when the class hierarchy was implemented might
be supplied dynamically by making use of already existing objects, thus generating an
unanticipated reuse of code and a sharing of components. The code generated by the
preprocessor does not contain much overhead with respect to manual implementations
(e.g., of patterns): first of all, if get/set methods are final they can be inlined by the Java
compiler itself; moreover, method forwarding for incomplete methods would be present
also in standard design pattern implementations. The only additional overhead is the one
due to myThis; note, however, that this is due to the enhanced flexibility of incomplete
objects that can be composed with objects independently from their types, and to the
“navigation” capabilities when invoking methods on a composed object (again if these
capabilities were to be implemented manually, the overhead would be the same).

The extension of I-Java with a delegation mechanism (as studied in [6]) is under
development; the structure of the generated classes, in particular the usage of myThis,
should make the extension with delegation reasonably easy, with respect to the gener-
ated code. However, the preprocessor will have to perform some more involved checks
and the code for method invocation in the generated classes will have to take care of
avoiding possible name clashes (we refer to [6] for further details about the formal
treatment of delegation in our calculus of incomplete objects).

Acknowledgments. We warmly thank Betti Venneri for her work on the calculus IFJ.
The anonymous referees provided many important suggestions to improve the quality
and the clarity of the paper. We are also grateful to Alexandre Bergel for his suggestions
on the paper.

References

1. C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, and S. Drossopoulou. Can Addresses
be Types? (a case study: Objects with Delegation). In WOOD’03, volume 82(8) of ENTCS,
pages 1-22. Elsevier, 2003.

2. C. Babu and D. Janakiram. Method Driven Model: A Unified Model for an Object Compo-
sition Language. ACM SIGPLAN Notices, 39(8):61-71, 2004.

3. C. Babu, W. Jaques, and D. Janakiram. DynOCoLa: Enabling Dynamic Composition of
Object Behaviour. In Proc. of RAM-SE, 2005.

4. M. Baldoni, G. Boella, and L. W. N. van der Torre. Interaction between Objects in powerJava.
Journal of Object Technology, 6(2), 2007.

5. A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits. In Advances in Smalltalk
— ISC 2006, volume 4406 of LNCS, pages 66-90. Springer, 2007.

6. L. Bettini and V. Bono. Type Safe Dynamic Object Delegation in Class-based Languages.
In Proc. of PPPJ, pages 171-180. ACM Press, 2008.

7. L. Bettini, V. Bono, and M. Naddeo. A trait based re-engineering technique for Java hierar-
chies. In Proc. of PPPJ, pages 149-158. ACM Press, 2008.

8. L. Bettini, V. Bono, and B. Venneri. Object incompleteness and dynamic composition in
Java-like languages. In Paige and Meyer [29], pages 198-217.



10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

. L. Bettini, S. Capecchi, and E. Giachino. Featherweight Wrap Java: wrapping objects and

methods. Journal of Object Technology, 7(2):5-29, 2008.

J. Bishop. Language features meet design patterns: raising the abstraction bar. In ROA "08,
pages 1-7. ACM, 2008.

J. Bishop and R. N. Horspool. On the Efficiency of Design Patterns Implemented in C# 3.0.
In Paige and Meyer [29], pages 356-371.

C. Chambers. Object-Oriented Multi-Methods in Cecil. In Proc. of ECOOP, volume 615 of
LNCS, pages 33-56. Springer, 1992.

S. Ducasse, O. Nierstrasz, N. Schérli, R. Wuyts, and A. Black. Traits: A mechanism for
fine-grained reuse. ACM TOPLAS, 28(2):331-388, 2006.

E. Ernst. gbeta — a Language with Virtual Attributes, Block Structure, and Propagating,
Dynamic Inheritance. PhD thesis, Dep. of Computer Science, Univ. of Arhus, 1999.

K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping. In Proc.
of FCT, volume 965 of LNCS, pages 42-61. Springer, 1995.

G. Florijn, M. Meijers, and P. van Winsen. Tool Support for Object-Oriented Patterns. In
Proc. of ECOOP, pages 472495, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

. Y. Guéhéneuc. Three Musketeers to the Rescue — Meta-Modeling, Logic Programming,

and Explanation-based Constraint Programming for Pattern Description and Detection. In
Workshop on Declarative Meta-Programming at ASE 2002, 2002.

J. Hannemann and G. Kiczales. Design pattern implementation in Java and Aspect]. In Proc.
of OOPSLA, volume 37 of ACM SIGPLAN Notices, pages 161-173. ACM Press, 2002.

S. Herrmann. A precise model for contextual roles: The programming language Object-
Teams/Java. Applied Ontology, 2(2):181-207, 2007.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java
and GJ. ACM TOPLAS, 23(3):396-450, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, volume 1241 of LNCS, pages 220-242. 1997.
G. Kniesel. Type-Safe Delegation for Run-Time Component Adaptation. In Proc. of ECOOP
99, volume 1628 of LNCS, pages 351-366. Springer, 1999.

B. B. Kristensen and K. @sterbye. Roles: Conceptual abstraction theory and practical lan-
guage issues. Theory and Practice of Object Sytems, 2(3):143-160, 1996.

M. Kuhlemann, S. Apel, M. Rosenmiiller, and R. E. Lopez-Herrejon. A Multiparadigm Study
of Crosscutting Modularity in Design Patterns. In Paige and Meyer [29], pages 121-140.

H. Lieberman. Using prototypical objects to implement shared behavior in object oriented
systems. ACM SIGPLAN Notices, 21(11):214-214, 1986.

A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept analysis. In
Proc. of ASE, pages 66-75. IEEE, 2005.

A. B. Nielsen and E. Ernst. Optimizing Dynamic Class Composition in a Statically Typed
Language. In Paige and Meyer [29], pages 161-177.

R. Paige and B. Meyer, editors. Proc. of TOOLS, volume 11 of LNBIP. Springer, 2008.

B. C. Pierce. Types and Programming Languages. The MIT Press, Cambridge, MA, 2002.
J. Riecke and C. Stone. Privacy via Subsumption. Inf. and Computation, (172):2-28, 2002.
F. Steimann. On the representation of roles in object-oriented and conceptual modelling.
Data Knowledge Engineering, 35(1):83-106, 2000.

D. Ungar and R. B. Smith. Self: The power of simplicity. ACM SIGPLAN Notices,
22(12):227-242, 1987.

J. Viega, B. Tutt, and R. Behrends. Automated Delegation is a Viable Alternative to Multiple
Inheritance in Class Based Languages. Technical Report CS-98-03, 1998.



