
DCT Domain Transcoding of H.264/AVC Video

into MPEG-2 Video

Vasant Patil1,2, Tummala Kalyani1, Atul Bhartia1, Rajeev Kumar1,
and Jayanta Mukherjee1

1 Computer Science and Engineering Department,
Indian Institute of Technology Kharagpur, WB 721 302, India

2 Institute for Systems Studies and Analyses, Delhi 110 054, India

Abstract. As the number of different video compression standards in-
crease, there is a growing need for conversion between video formats
coded in different standards. H.264/AVC is a newly emerging video cod-
ing standard which achieves better video quality at reduced bit rate
than other standards. The standalone media players that are available
in the market do not support H.264 video playback. In this paper, we
present novel techniques that can achieve conversion of pre-coded video
in H.264/AVC standard to MPEG-2 standard directly in the compressed
domain. Experimental results show that the proposed approach can pro-
duce transcoded video with quality comparable to the pixel-domain ap-
proach at significantly reduced cost.

1 Introduction

Video transcoding deals with converting a previously compressed video signal
into another one with different format, such as different bit rate, frame rate,
frame size, or even compression standard. Due to the diversity of multimedia
applications and present communication infrastructure comprising of different
underlying networks and protocols, there has been a growing need for inter-
network multimedia communication over heterogeneous networks. Besides the
problem of channel characteristics and capacities, different end devices used in
today’s communication also introduce some problems. For example, people like
to use small handheld devices, such as cellular phones, handheld computers, etc.,
for video communication and Internet access. Most current handheld devices only
have limited computing and display capabilities, which are not suitable for high
quality video decoding and display. In this case, precoded high quality video
may need to be converted into a lower quality one for displaying on handheld
devices.

There are applications such as video on demand, video browsing, picture in
picture and video conferencing which require video to be transcoded at lower
bit rates, reduced frame size and to different codec formats. H.264/AVC is a
new generation video codec that has been replacing all previous standards. But
it consumes enormous computing and storage resources. So there is a need for
transcoding H.264/AVC bitstream to other formats. In this paper, we consider

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 696–707, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 697

a problem of converting a bitstream coded in H.264/AVC format to MPEG-2
one. A straightforward approach to achieve this is to completely decode the
H.264/AVC video into pixel domain and re-encode the decoded frames into
MPEG-2 video by performing full-scale motion estimation (FSME) and mo-
tion compensation (MC). However, FSME and MC being computationally the
most expensive part of the overall encoding process, this approach is not suitable
for real time applications. We propose an approach that converts the pre-coded
video in H.264/AVC format to MPEG-2 one directly in the DCT domain. The
proposed approach obtains the motion compensated residual errors, required to
code the transcoded video, directly in the DCT domain and incorporates the
motion vector re-estimation techniques to obtain outgoing motion vectors. The
experimental results show that the proposed approach significantly reduces the
computations while achieving quality comparable to the much costlier pixel-
domain approach.

The rest of the paper is organized as follows. Transform domain transcoding of
H.264 video is briefly discussed in Section 2. The proposed techniques to obtain
motion compensated residual errors in transcoding of I slice and P slice of H.264
video are discussed in Sub-sections 2.1 and 2.2, respectively. Experimental results
are presented in Section 3, before we conclude in Section 4.

2 Transcoding in Transform Domain

A picture or frame is a collection of one or more slices in H.264/AVC coding
standard. Each slice can be coded using different coding types such as I slice,
P slice, B slice, SP slice and SI slice. However, baseline profile uses only two
slice coding types, that is, I slice and P slice. In an I slice all macroblocks of the
slice are encoded using intra prediction. In a P slice, in addition to the coding
types of the I slice, some macroblocks can also be coded using inter prediction
with at most one motion vector for prediction macroblock partition [1]; refer [2]
for issues in H.264 to MPEG-2 transcoding.

2.1 Transcoding an I Slice

Unlike H.264/AVC, the MPEG-2 video does not support intra frame prediction.
To transcode H.264 to MPEG-2 the intra predicted macroblocks in I picture
must be converted to intra macroblocks without prediction. Conversion of an I
frame of H.264 to equivalent I frame in MPEG-2 in the compressed domain is a
two step process. First intra prediction is removed and then 8 × 8 DCT blocks
are computed from four adjacent 4 × 4 integer transform blocks.

Removing intra prediction: The H.264/AVC comprises of two intra coding
modes denoted as Intra4×4 or Intra16×16 together with chroma prediction and
IPCM prediction modes; see [3] for further details. In Intra4×4 and Intra16×16

macroblock, the predicted block can be obtained in transform domain by using
appropriate transformation matrices. For example, the predicted block for modes
0 and 1 is obtained by Eqn. (1) and Eqn. (2) as follows:

698 V. Patil et al.

Mode 0 (Horizontal prediction):

DCT
(x x x I

x x x J
x x x K
x x x L

)
DCT

(0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

)
= DCT

(I I I I
J J J J
K K K K
L L L L

)
(1)

Mode 1 (Vertical prediction):

DCT
(0 0 0 1

0 0 0 1
0 0 0 1
0 0 0 1

)
DCT

(x x x x
x x x x
x x x x
A B C D

)
= DCT

(A B C D
A B C D
A B C D
A B C D

)
(2)

Mode 2 (DC prediction): It is the average of all the neighboring pixels in up-
per and left neighboring blocks. To get a predicted block for prediction mode

2 in DCT domain, the upper block is pre-multiplied by DCT
(0 0 0 1

0 0 0 1
0 0 0 1
0 0 0 1

)
and

post-multiplied by DCT
(1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

)
. Similarly, the left block is pre-multiplied by

DCT
(1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

)
and post-multiplied by DCT

(0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

)
. The resultant blocks are

then summed up and averaged. Since, the transformation matrices are sparse
and their transform is also sparse, intra prediction for these modes in DCT do-
main requires less computation than pixel domain computation. Similarly, proper
transformation matrices for other macroblocks are obtained. The transform do-
main residual is then added to the predicted blocks so obtained. Table 1 shows
the comparison of the intra prediction techniques with pixel domain processing.
In this table, a, s and d denote addition, shift and division operations, respec-
tively. It is found that transcoding I picture in transform domain is three times
faster as compared to pixel domain transcoding.

Table 1. Computational complexity of transcoding an I slice

Functions Pixel Domain Transform Domain
Mode 0 Mode 1 Mode 2

IDCT 16a+24s 0 0 0

Computing a 0 for mode 0 and 1
predicted block 128a+16d for mode 2 12a+16s 12a+16s 40a+40s+16d

Adding residual 16a 16a 16a 16a

forward DCT 16a+24s 0 0 0

Total 48a+32s+16s for mode 0 and 1
176a+32s+16s+16d for mode 2 28a+16s 28a+16s 56a+40s+16d

Transform and block size conversion: Four 4 × 4 adjacent blocks of H.264
bitstream are converted into one single 8 × 8 block as follows:

X ′ =
[
S8

]{[
It
4 0

0 It
4

] [
X1 X2

X3 X4

] [
I4 0
0 I4

]} [
St

8

]
(3)

where, ’t’ denotes transposition operation, S8 is an 8 × 8 real 2D DCT matrix
and X1 . . . X4 are 4× 4 transform coefficient blocks of H.264/AVC bitstream. I4

is a 4 × 4 integer transform matrix given as:

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 699

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎦

Let T =
[
S8

] [It
4 0

0 It
4

]
and T t =

[
I4 0
0 I4

] [
St

8

]
. The matrix T is given as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 a 0 0 0
b f −l p −b f l p
0 g 0 j 0 −g 0 −j

−c h m −q c h −m −q
0 0 a 0 0 0 a 0
d −i n r −d −i −n r
0 −j 0 g 0 j 0 −g

−e k −o s e k o s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where a = 1.4142, b = 1.2815, f = 0.4618, l = 0.1056, p = 0.0585, g = 1.1152,
j = 0.0793, c = 0.4500, h = 0.8899, m = 0.7259, q = 0.0461, d = 0.3007,
i = 0.4319, n = 1.0864, r = 0.5190, e = 0.2549, k = 0.2412, o = 0.5308,
s = 0.9875. It can be pre-computed and stored. Since, this matrix is sparse and
symmetric it can be computed as similar to the method suggested by [4]. It needs
a total of 704 operations. The pixel domain approach needs 256 multiplications
and 416 additions for DCT(S8). According to [3], each inverse transform (I4)
needs 8 shifts and 32 additions giving a total of 32 shifts and 128 additions for
four I4. The overall computation requirement of the pixel domain processing
is 256 multiplications, 32 shifts, 544 additions, for a total of 832 operations.
Hence, the DCT domain approach with fast transform implementation saves
128 operations for an 8 × 8 block, saving about 15% of the computation.

2.2 Transcoding a P Slice

Motion estimation (ME) is the most compute intensive process in video encoding.
The ME component is more complex in H.264 because it uses motion vectors
that can point to areas outside the picture boundary. The H.264 coding also
supports a number of different macroblock partition shapes and sizes for each
macroblock resulting in a maximum of sixteen motion vectors [3]. It also uses
multiple reference frames and quarter-pixel motion vector resolution increasing
the search range thereby the complexity.

To transcode H.264 to MPEG-2, the multi-frame references have to be col-
lapsed to a single-frame reference and motion vectors have to be displaced based
on the macroblock partition size used in H.264 as MPEG-2 does not support
as many macroblock partition sizes for motion compensation. Note that, in this
case of transcoding H.264 to MPEG-2, we have considered only baseline profile
video which uses single reference frame only. Transcoding inter frames involves
three step. First, all the P slices of H.264/AVC are converted into I slices by
inverse motion compensation in 4 × 4 DCT domain. Next, these I slices are

700 V. Patil et al.

converted to an equivalent I frames in MPEG-2 using 8 × 8 block DCT and
then finally, converted to P frames by forward motion compensation in DCT
domain.

Converting a P frame to an I frame: A P frame can be converted to an intra
(I) frame by performing the Inverse Motion Compensation (IMC) operation.
The DCT domain IMC was first studied in Chang et al. [5] and subsequently in
Merhav et al. [5], Liu et al. [6] and Assuncao et al. [7]. Their techniques compute
a predicted block in DCT domain. A reference block Bref may intersect with
four neighboring blocks as shown in Fig. 1. The h and w represent vertical

Current Block

Reference Frame Current Frame

B1 B2

B3 B4

E1 E2

E3 E4

Bref

r

c

B

Fig. 1. Single blockwise inverse motion compensation

and horizontal components of the motion vector respectively. If B1, B2, B3, B4

represent the four neighboring blocks in the spatial domain, then block Bref can
be represented by Eqn. (5) as below:

Bref =
4∑

i=1

ci1Bici2 (5)

For a 4×4 block, cij , i = 1 . . . 4 and j = 1, 2 are 4×4 sparse matrices of 0 and 1
that perform window and shift operations accordingly. From Eqn. (5), we have

DCT (Bref) = S4

(
4∑

i=1

ci1S
t
4S4BiS

t
4S4ci2

)
St

4 (6)

where, S4 represents a 4-point DCT matrix. Since, DCT is an unitary orthogonal
transformation and is guaranteed to be distributive to matrix multiplications,
above equation can be re-written as:

DCT (Bref) =
4∑

i=1

DCT (ci1)DCT (Bi)DCT (ci2) (7)

The DCT of the inverse motion compensated block from the current error resid-
ual block E is then given as:

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 701

DCT (B) = DCT (Bref) + DCT (E) (8)

Using the approach presented in [5] and [6] to compute the 4 × 4 DCT block
from the reference frame, we require sixteen iterations to completely predict
a macroblock of partition size 16 × 16. In the proposed approach, we extend
these schemes to compute the macroblock partition block in one step. We also
extend it to include half-pixel interpolation using 6-tap FIR filter. We present
IMC for an 8 × 8 macroblock partition. The extension to the other partitions is
straightforward.

x1x1x1

x1x1x1x1

x2 x2x2

x2x2x2x2

x3x3x3

x3x3x3x3

x4 x4x4

x4x4x4x4

x5 x5x5

x6x6x6

x6x6

x7x7x7x7 x8x8

x9

x9x9x9

x10

x11x11x11 x14 x15

x16x16x16 x17 x18 x19x19 x20x20

x21x21x21 x22 x23x24 x24 x25x25

16 × 16 16 × 8

8 × 16

8 × 8
4 × 8

8 × 4

4 × 4

Fig. 2. Macroblock partition wise inverse motion compensation

As shown in Fig. 2, X ′ is the predicted macroblock in the reference frame
which starts from the location (r, c) with reference to the first block in the array
of adjacent blocks. If x1 . . . x9 are the adjacent blocks in spatial domain then
an 8× 8 macroblock partition block from the 12× 12 block can be extracted as
follows:

x′ = Lr

(
x1 x2 x3
x4 x5 x6
x7 x8 x9

)
Rc (9)

where, x′ is the predicted macroblock in spatial domain, Lr is an 8× 12 matrix
and Rc is a 12 × 8 matrix. These matrices are different for different values of r
and c (refer Fig. 1). Since 1 ≤ r ≤ 4 and 1 ≤ c ≤ 4, there can be four different
Lr and Rc matrices which can be pre-computed and stored. The structure of Lr

matrix is given as:
Lr =

[
08×r−1 I8 08×4−r+1

]
8×12

where, I8 is an identity matrix of length 8 and ’0’ represents a matrix of zero
elements. Similarly, we can derive Rc matrices. Let us define 12 × 12 matrices
S, S

t
and A as follows:

S =

⎛
⎝

I4 0 0
0 I4 0
0 0 I4

⎞
⎠ , S

t
=

⎛
⎝

It
4 0 0
0 It

4 0
0 0 It

4

⎞
⎠ and A =

⎛
⎝

X1 X2 X3

X4 X5 X6

X7 X8 X9

⎞
⎠

702 V. Patil et al.

where, I4 is a 4 × 4 forward integer transform matrix, ’t’ denotes matrix trans-
position. It

4 is a 4 × 4 inverse integer transform matrix of H.264/AVC and
Xi = DCT (xi). Assuming that we have obtained X1 to X9 by partial decoding,
Eqn. (9) can be re-written to extract macroblock X ′ in DCT domain as:

X ′ =
(

S4 0
0 S4

){
Lr × S

t × A × S × Rc

}(
St

4 0

0 St
4

)
(10)

The matrix multiplication inside the curly braces results in an 8× 8 spatial do-
main block. The pre-multiplication of

(
S4 0
0 S4

)
and post-multiplication of

(
St

4 0

0 St
4

)

result in an 8 × 8 macroblock partition. With the above procedure, macroblock
partitions of size 16× 16, 16× 8, 8× 16 etc., can also be computed. Since, H.264
uses motion vectors that can point to areas outside the picture boundary, all
adjacent blocks required to compute the predicted block may not be available.
In that case, the reference frame is extrapolated beyond the image boundaries by
repeating the edge samples before interpolation. For example, Fig. 3 illustrates
the need for expansion. The blocks outside the picture boundary are obtained by

a b c

e f g h

i j k l

m on

d

p

m

m

m

m

n

n

n

n

o

o

o

o

p

p

p

p

d d d d

h h h h

l l l l

p p p p

p p p p

p

p

pp

p

pp

p

p

p

p

p

MV

Fig. 3. Motion vectors pointing outside object boundary

copying the boundary row or column pixels. This is achieved by pre-multiplying
the collected adjacent block matrices x1 to x9 in Eqn. (9) for up and down
directions and post-multiplying them for left and right directions with proper
matrices. It is found that total sixteen type of expansion matrices are required.
Eqn. (10) may be re-written to consider expansion matrices as follows:

X ′ =
(

S4 0
0 S4

){
Lr × er × S

t × A × S × ec × Rc

}(
St

4 0

0 St
4

)
(11)

where, er and ec are row and column wise expansion matrices.

Half-pixel and quarter-pixel inverse motion compensation: H.264/AVC
uses quarter-pixel accurate motion vectors with 6-tap FIR filter. The motion vec-
tors in MPEG-2 are half-pixel accurate and the half-pixel samples are obtained
by bilinear interpolation of the neighboring four samples. In inverse motion com-
pensation using fractional sample accuracy, the 6-tap FIR filter should be used

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 703

to obtain luma half-pixel samples, bilinear interpolation to obtain quarter-pixel
luma samples and weighted bilinear interpolation to obtain 1

8

th pixel accurate
chroma samples. The fractional pixel predicted luma block is computed by apply-
ing 6-tap FIR filter in horizontal direction only, vertical direction only, horizontal
first and then vertical direction, vertical first and then horizontal direction. This
is achieved by modifying the Lr and Rc matrices in Eqn. (9) and Eqn. (10) to
include the 6-tap FIR filter. For example, Lr and Rc matrices for 4 × 4 mac-
roblock partition using horizontal direction only half samples when r = 3 and
c = 3 are given below:

Lr =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
2 column

1 −5 20 20 −5 1 0 0 0
0 1 −5 20 20 −5 1 0 0
0 0 1 −5 20 20 −5 1 0
0 0 0 1 −5 20 20 −5 1

9 column

0
0
0
0

1 column

⎤
⎥⎥⎥⎥⎦

and

Rc =

⎡
⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎦

t

Similarly, Lr and Rc matrices for vertical direction only half samples are ob-
tained.

Chroma sub-pixel interpolation in transform domain: Chroma 1
8

th pixel
samples are obtained using Lr and Rc matrices. For r = 3 and c = 3, we have

Lr =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
2 column

jf0 jf1 0 0 0
0 jf0 jf1 0 0
0 0 jf0 jf1 0
0 0 0 jf0 jf1

5 column

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

5 column

⎤
⎥⎥⎥⎥⎦

and

Rc =

⎡
⎢⎢⎣

0 0 if0 if1 0 0 0 0 0 0 0 0
0 0 0 if0 if1 0 0 0 0 0 0 0
0 0 0 0 if0 if1 0 0 0 0 0 0
0 0 0 0 0 if0 if1 0 0 0 0 0

⎤
⎥⎥⎦

t

where, if0 = xFrac, if1 = 8 − xFrac, jf0 = yFrac, jf1 = 8 − yFrac. The
xFrac and yFrac denote fractional part of x and y component of a motion
vector, respectively. Similar, matrices can be derived for other values of r and c.

In this way, a P frame in H.264 is converted to an I frame without intra
prediction. This I frame consists of DCT blocks of size 4 × 4. The transform
block size and kernel is converted by using the conversion transform kernel in
Eqn. (4). The I frames are then converted back to the P frames in MPEG-2 as
discussed in the following section.

704 V. Patil et al.

Conversion of an I frame in MPEG-2 into a P frame in MPEG-2: A P
frame is obtained by performing motion estimation and then motion compensa-
tion. In this case, the motion vectors can be re-estimated by AMVR method [8].
Motion compensation in DCT domain is done using the similar approach dis-
cussed in Section 2.2. The predicted macroblock (16×16) is obtained by applying
Merhav’s scheme [5] for the whole macroblock at once as follows:

X ′ =
(

S8 0
0 S8

){
Lr × Ŝt × A × Ŝ × Rc

}(
St

8 0

0 St
8

)
(12)

where, S8 is forward DCT matrix of size 8 × 8. Lr and Rc are row and column
transformation matrices, respectively, as explained in Sect. 2.2. Ŝ, Ŝt and A

denote 32 × 32 matrices given as Ŝ =
(S8 0 0

0 S8 0
0 0 S8

)
, Ŝt =

(St
8 0 0

0 St
8 0

0 0 St
8

)
and A =

(X1 X2 X3
X4 X5 X6
X7 X8 X9

)
. An 8-point DCT matrix is factorized as S8 = DPB1B2MA1A2A3

where, D is an 8× 8 diagonal matrix and P is an 8× 8 permutation matrix. B1,
B2, A1, A2, A3 are 8 × 8 sparse matrices of 1, 0 and −1. M is an 8 × 8 sparse
matrix of real numbers. Refer [5] for exact entries of D, P , B1, B2, A1, A2, A3

and M matrices.
Then, Ŝt can be re-written using the above factorization as follows:

Ŝt =

⎡
⎣
Qt 0 0
0 Qt 0
0 0 Qt

⎤
⎦

︸ ︷︷ ︸
�Qt

⎡
⎣

Bt
2 0 0

0 Bt
2 0

0 0 Bt
2

⎤
⎦

︸ ︷︷ ︸
�Bt
2

⎡
⎣
Bt

1 0 0
0 Bt

1 0
0 0 Bt

1

⎤
⎦

︸ ︷︷ ︸
�Bt
1

⎡
⎣
P t 0 0
0 P t 0
0 0 P t

⎤
⎦

︸ ︷︷ ︸
�P t

⎡
⎣
Dt 0 0
0 Dt 0
0 0 Dt

⎤
⎦

︸ ︷︷ ︸
�Dt

(13)

where Qt = (MA1A2A3)t given as:

Qt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 a 1 −c 0 b 1
1 −1 a 0 −c a b 0
1 −1 −a 0 b a c 0
1 1 −a −1 b 0 c 0
1 1 −a −1 −b 0 −c 0
1 −1 −a 0 −b −a −c 0
1 −1 a 0 c −a −b 0
1 1 a 1 c 0 −b 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a = 0.7071, b = 0.9239, and c = 0.3827. Note that, D̂t, P̂ t, B̂t
1, B̂t

2 and Q̂t denote
matrices of size 24 × 24. Similarly, Ŝ can also be factorized as Ŝ = D̂P̂ B̂1B̂2Q̂.
The Eqn. (12) can be re-written as:

M ′ =
(

S8 0
0 S8

){
Lr × Q̂tB̂t

2B̂
t
1P̂

tD̂t × A × D̂P̂ B̂1B̂2Q̂ × Rc

}(
St

8 0

0 St
8

)
(14)

The multiplication by Q̂t(Q̂), B̂t
2(B̂2), B̂t

1(B̂1), P̂ t(P̂) and D̂t(D̂) can be real-
ized by performing multiplication with corresponding 8× 8 component matrices

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 705

Qt(Q), Bt
2(B2), Bt

1(B1), P t(P) and Dt(D), respectively. When counting the op-
erations, multiplication by P t and P can be ignored as they cause only changes
in the order of the components. The multiplications by Dt and D can also be
ignored while counting the operations because these can be absorbed in the
quantizer and dequantizer [5]. The multiplication of B̂1(B̂t

1) and B̂2(B̂t
2) matri-

ces with another 24× 24 arbitrary matrix requires 288 addition operations. Let
Jr = Lr × Qt and Kc = Q × Rc. The Jr and Kc matrices are sparse having
similar kind of structure. We adopt a similar strategy as suggested in [5] to per-
form multiplication with Jr and Kc matrices. This in worst case (r = c = 5)
requires 880m + 5248a operations, where ’a’ denotes addition and ’m’ denotes
multiplication operation. This means 3.59m + 23.06a operations per pixel to ex-
tract a 16 × 16 macroblock. By assuming one multiplication to be equivalent to
three machine instructions and one addition to be equivalent to one machine in-
struction this is 23.52% improvement over 8×8 block based approach of Merhav
et al. [5].

Half-precision motion vectors: With half-pixel precision motion vectors, either
two or four pixels are needed to calculate the actual prediction of single pixel.
This means, in worst case, we need to apply Eqn. (14) four times to extract M ′

with half-pixel precision motion vectors along both the directions as:

M ′ =
(

S8 0
0 S8

){
Lr × Q̂tB̂t

2B̂
t
1P̂

tD̂t × A × D̂P̂ B̂1B̂2Q̂ × Rc

}(
St

8 0

0 St
8

)
(15)

where, Lr = 1
2 (Lr + Lr+1) and Rc = 1

2 (Rc + Rc+1). Multiplication by Lr and
Rc require 384 multiplications and 384 addition operations each. This means
6.09m + 19.38a operations per pixel to extract a 16 × 16 macroblock with half-
pixel precision motion vectors along both the directions. By assuming one mul-
tiplication to be equivalent to three machine instructions and one addition to
be equivalent to one machine instruction this is 79.42% improvement over the
brute-force approach of Merhav et al. [5].

3 Experimental Results

The experimental results are based on our transcoding implementation using
JM reference software version 10.2. To present the results we use Foreman and
Container test sequences. The first 150 frames of these sequences in SIF (352×
288) format are encoded using the baseline profile with I and P frames. Table 2
shows the computation comparison of the proposed DCT domain approach with
the pixel domain approach. To obtain the outgoing motion vectors in transform
domain approach, we have used AMVR method [8]. It is assumed that only 50%
of the 4 × 4 transform block has non zero coefficients. It is observed that about
80% of the inter frame blocks have diagonal mode of interpolation. Fig. 4(a)
and (b), show the PSNRs (dB) for individual frames of Foreman and Container
sequences, respectively. As it can be seen, the proposed DCT domain approach
produces the transcoded video with quality comparable with the pixel-domain
approach at substantially reduced computations.

706 V. Patil et al.

0 50 100 150
20

25

30

35
PSNR Comparision of 500Kbps Foreman Video with GOP2

Frame number

ps
nr

 in
 d

B

Pixel Domain
Pure Transform Domain

0 50 100 150
26

27

28

29

30

31

32

33

34

35

36
PSNR Comparision of 500Kbps Container Video with GOP2

Frame number

ps
nr

 in
 d

B

Pixel Domain
Pure Transform Domain

(a) (b)

Fig. 4. Experimental results: (a) Foreman (b) Container

Table 2. Computational complexity

Approach Functions Complexities
Mults. Adds. Shifts

IDCT (32a+8s per 4x4 block) 512 128
IMC interpolation (192m+192a per 4x4 block) 3072 3072

Pixel-Domain AMVR (36m+50a per Macroblock) 36 50
FDCT (256m+461a per 8x8 block) 1024 1844

Total 4132 5478 128

MPIMC interpolation(24a+94s per 4x4 block) 384 1504
8 × 8 DCT conversion (352m+352a per 8x8 block) 1408 1408

DCT-Domain AMVR (36m+50a per Macroblock) 36 50
MC (3.59m+23.06a or 6.09m+19.38a per pixel) 879 5248

Total 2323 7090 1504

4 Conclusions

We have presented a transform domain approach to convert the H.264/AVC
video to MPEG-2 video. In this, we have presented novel techniques to convert
I and P slice in H.264/AVC video to MPEG-2 frames, directly in the DCT
domain. As compared with the pixel domain approach, the proposed approach
significantly reduces the computational requirement. Our experimental results
using baseline profile show that the proposed approach produces MPEG-2 video
with PSNR comparable to the pixel domain approach.

References

1. Sullivan, G., Topiwala, P., Luthra, A.: The H.264/AVC advanced video coding
standard: Overview and introduction to fidelity range extensions. SPIE Conference
on Applications of Digital Image Processing XXVII Special Session on Advances in
the New Emerging Standard: H.264/AVC (2004)

DCT Domain Transcoding of H.264/AVC Video into MPEG-2 Video 707

2. Kalva, H.: Issues in H.254/MPEG-2 video transcoding. In: First IEEE Consumer
Communications and Networking Conference. (2004) 657–659

3. Weigand, T., Sullivan, T.: Draft ITU-T recommendation and final draft interna-
tional standard of joint video specification. ITU-T Rec. H.264 — ISO/IEC 14496-10
AVC (2003)

4. Xin, J., Vetro, A., Sun, H.: Converting DCT coefficients to H.264/AVC transform
coefficients. In: IEEE Pacific-Rim Conference on Multimedia (PCM), Lecure Notes
in Computer Science. (2004)

5. Merhav, N., Bhaskaran, V.: Fast algorithms for DCT-Domain image down-sampling
and for inverse motion compensation. IEEE Transactions on Circuits and Systems
for Video Technology 7 (1997) 468–474

6. Koc, U.V., Liu, K.J.R.: Motion compensation on DCT domain. EURASIP Journal
on Applied Signal Processing (2001) 147–162

7. Assuncao, P.A.A., Ghanbari, M.: A frequency-domain video transcoder for dynamic
bitrate reduction of MPEG-2 bit streams. IEEE Transactions on Circuits and Sys-
tems for Video Technology 8 (1998) 953–967

8. Shen, B., Ishwar, I.K., Bhaskaran, V.: Adaptive motion-vector re-sampling for com-
pressed video downscaling. IEEE Transactions on Circuits and Systems for Video
Technology 9 (1999) 929–936

	Introduction
	Transcoding in Transform Domain
	Transcoding an I Slice
	Transcoding a P Slice

	Experimental Results
	Conclusions

