

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 6, No.4 (July-2017)

E-mail address: gpv.automacao@gmail.com

 http://journals.uob.edu.bh

Real-Time Operating System FreeRTOS Application for Fire

Alarm Project in Reduced Scale

Luca de Oliveira Turci

1

1 Department of Control and Automation Engineering, Universidade Federal de Ouro Preto, Ouro Preto, Brazil

Received 1 Feb. 2017, Revised 8 Apr. 2017, Accepted 19 Jun. 2017, Published 1 July 2017

Abstract: Uncontrolled fires are responsible for many harmful damages and human losses. Hence, the design of a system in order to

reduce such problems may be considered relevant. The use of real-time operating systems can present a possibility to achieve

significant results and improvements in fire alarm projects, considering that fires are examples of critical time systems in which the

time of response is extremely important. In the proposed project, an algorithm was developed by using Arduino Nano and FreeRTOS

open source kernel in order to accomplish such task in a reduced scale project. Some tests, such as jitter, latency, and worst case

response time are also carried out to evaluate the performance of the real-time system proposed in the present project.

Keywords: Arduino, Fire alarm, Fire sensor, FreeRTOS, Real-time system operating, Jitter, Latency

1. INTRODUCTION

Since the early days of the mankind, fire has been an
important source of security and comfort for the human
race. Humans have been using fire to cook food, keep
warm, and light up [1]. Moreover, fire has also been
massively used in the industry and during the power
generation in combustion processes, which are
responsible for a wide range of energy transformation in
the world.

However, uncontrolled fires are considered as one of
the most common causes of deaths and losses nowadays.
An uncontrolled fire can easily spread itself and cause a
total catastrophe, devastating everything ahead [2].
According to [3], 37.000 fires at industrial or
manufacturing properties were reported each year in U.S.
fire departments during 2009-2013, leading 18 civilian to
deaths, 279 civilian injuries, and $1 billion in losses.

Fire may be considered as a fast form of energy and
self-sustained oxidation process that emits heat and light
in varying intensities. The chemical reactions and changes
of the state in the weak double bond of molecular oxygen
(O2), to the stronger bonds in the combustion products
carbon dioxide (CO2) and water (H2O) release this hot and
fast form of stored chemical energy [1].

A wide variety of factors may lead to a quick
emergence of uncontrolled fires in the industrial
environment. Situations as high fuel loads per unit of area,
transport of toxic products, leakage of flammable liquids
or gases, greasy or dusty electric motors or machines,

overloaded outlets, broken power tools, and exposed
wiring are able to ignite easily with the least carelessness.

Analogously, a fire may be considered a system which
should be replied in a critical time due to the threats it
may cause. Real-time operating systems (RTOS) are time
dependent systems that have to respond to external or
internal reactions in a particular fraction of time. In other
words, RTOS must process the input data and give the
desirable output within a stipulated time. RTOS are
divided into two groups of systems: hard real-time
systems and soft real-time systems.

In soft real-time systems, the deadline is not
compulsory for every task every time. However, the
system cannot miss the deadline for every task, since the
performance of the system would become impaired. The
best examples of soft real-time systems are videos and
audio calls from internet users.

In hard real-time systems, such as fire alarm systems,
medical monitoring systems, and remote satellite imaging
systems, the system is purely deterministic and limited by
the time. If the deadline or time of response is missed, the
consequences may be irreversible and the system
performance will fail [4].

RTOS have been used in plenty of embedded system
for years in the areas of Automation and Computer
Science. Such systems have been developed to support
embedded algorithms in military devices, defense
systems, and softwares used to control large switching

http://dx.doi.org/10.12785/ijcds/060405

198 Luca de Oliveira Turci: Real-Time Operating System FreeRTOS Application…

http://journals.uob.edu.bh

systems. RTOS are normally implemented to be used in
hard real-time systems [5].

The development of RTOS has increased quickly over
the last decades. The applications of these systems are
considered robust and always represent a challenge for
designers. These systems must guarantee satisfying timing
constraints whereas executing complex tasks [6], so they
have to be well designed.

There are plenty of fire alarm projects installed in
buildings and industries, including different devices and
technologies. However, these projects are often outdated
and require improvements in order to obtain a better
execution. In the present project, a hard real-time system
for fire alarm and fire suppression is proposed in a
reduced scale to improve the performance of the time
response of these systems implemented in buildings and
industries. The block diagram of the fire alarm system is
displayed in Fig. 1.

Such project was developed using Arduino Nano and
the open source kernel RTOS FreeRTOS. An alarm, a
cooler acting as an actuator, a blue LED simulating fire
suppression actuator, a lighter, a YS-17 flame sensor, and
a MQ-2 semiconductor sensor for combustible gas were
used as well.

Some tests were accomplished in order to analyze the
performance of the project and evaluate the operation of
the FreeRTOS platform. Some measurement experiments
as jitter, latency, and the worst case response time
(WCRT) of the system were also carried out. It is
important to assess these parameters, because they may
help in making decisions about the scheduling of new
tasks as well as ensuring that all tasks are respecting the
respective deadlines.

Figure 1. Block diagram of the system

The remainder of this paper is organized as follows.
Section 2 shows the background and related works,
section 3 describes the analysis of the system design.
Section 4 explains the algorithm features, section 5
demonstrates the experiments, and section 6 displays the
obtained results and the conclusion.

2. BACKGROUND AND RELATED WORKS

Many studies and researches in computer science,
control and automation, electronics, electrical, and
technology fields have been carried out in order to
minimize and have a better control of the impacts caused
by undesired fires. Tabirca et al. [7] used an algorithm and
equations to provide a study for fire hazard safety in
building environments. Wang et al. [8] used multisensory
technology aiming to assist building managers in fire
emergency management and fire brigades in fire rescue.
Planas-Cuchi et al. [9] carried out a survey of the origin,
type, and consequences of fire accidents in process plants
and in the transportation of hazardous materials.

Furthermore, considering the development and
improvements of fire alarm systems, many projects have
also been carried out by researchers and designers. Dong
et al. [10] designed a wireless automatic fire alarm system
to achieve rapid fire detection and alarm and state
supervision of fire-fighting facilities with low power
consumption. Shu-guang [11] constructed a wireless fire
alarm system based on ZigBee technology to overcome
the limitations of a cable alarm system and avoid high
power consumption of other wireless communication
technology. Jing and Jingqi [12] deployed Bayesian
network model (a graphical network based on
probabilistic inference) into a fire alarm system to
overcome the problem of false alarm and missing alarm
caused by information uncertainty existing in the fire
alarm system. Zheng et al. [13] proposed a fire detection
system model and calculating model of fuzzy neural
network for processing fire signal based on the
characteristic of fire detection signal and the requirements
of fire detection system.

Using RTOS and their applications or aiming to
enhance the performance of such systems, many other
studies and projects have been carried out. Qin et al. [14]
used RTOS µCOS-II platform to realize the state of
charge (SoC) estimation of a battery management system
for lithium-Ion batteries of electric vehicles. Proctor and
Shackleford [15] analyzed the impacts of jitter on stepper
motor control and some techniques to reduce jitter. Salem
et al. [16] deployed RTOS applications for electric control
applications. Vetromile et al. [17] evaluated the pros and
cons of RTOS scheduler implementation from software
and hardware. Harkut and Ali [18] used RTOS and FPGA
technology in order to develop a novel fuzzy logic based
adaptive hardware scheduler for multiprocessor systems
that minimizes the processor time for scheduling activity.
Sharma, Elmiligi, and Gebali [19] explored different
methods to evaluate the performance of RTOS based on
the estimation of WCRT. Othman et al. [20] compared
different data rate services using four scheduling
algorithms in the uplink of LTE system using the uplink
Vienna simulator.

 Int. J. Com. Dig. Sys. 6, No.4, 197-204 (July-2017) 199

http://journals.uob.edu.bh

3. ANALISYS OF THE CURRENT SYSTEM DESIGN

Fig. 2 displays the components of the system, the
proper connections and the actual position of each device
in the assembly. The list of equipment and components
used in the present project to perform the tests and build
the fire alarm assembly are displayed in Table I.

TABLE I. USED EQUIPMENT AND COMPONENTS

1 Arduino Nano board
1 MQ-2 sensor
1 Cooler
1 YS-17 sensor
1 Alarm
1 Blue LED
1 Lighter
1 Oscilloscope
1 Function generator

Figure 2. Fire alarm project components

A. YS-17 flame sensor

The YS-17 flame sensor is extremely sensitive to
flame and radiation, so when a small flame of wavelength
within the range of 760nm-1100nm approximates to this
sensor, it emits a digital signal response in high level (5V)
to an input pin of the Arduino Nano board. Then, an
output pin of the Arduino Nano board sends a digital
signal response in high level to the alarm and the blue
LED. The alarm starts ringing and the blue LED starts
flashing, simulating a fire suppression actuator.

YS-17 is capable of detecting flames in a radius of
100cm from its base. Fig. 3 shows two samples of this
sensor.

Figure 3. YS-17 sensor samples

B. MQ-2 combustile gas sensor

Taking into account the MQ-2 combustible gas sensor,
when a small quantity of gas or smoke is detected by MQ-
2 sensor, it emits a digital signal with high level to an
input pin of the Arduino Nano. Then, an output pin of the

Arduino Nano returns a digital signal with high level to
the cooler, which is turned on in order to spread off such
gas.

Jiru [21], Hua et al. [22], and Min [23] suggested the
design of alarm monitoring systems using MQ-2 gas
sensor. This sensor is used for gas leakage detection in
housing and industry, as it is suitable for detecting of
LPG, butane, propane, methane, alcohol, hydrogen, and
smoke. MQ-2 is capable of distinguishing gases from
smokes, generating different output voltages. Fig. 4
displays a sample of MQ-2 sensor.

Figure 4. MQ-2 sensor sample

C. Arduino Software and Hardware

Arduino is an open-source platform used for many
designers. The microcontroller Arduino is widely used in
many control systems because of its range of advantages
such as feasibility, simplicity, ease of use, cost, and size
[24]. The Arduino may be programmed in simplified
languages, such as C/C++ and has a friendly integrated
development environment (IDE) which is able to run on
all major operating systems. Further, this device may
compute approximately 300,000 lines of program code
per second and there is a large online community with a
great amount of accessible knowledge where worldwide
users enable rapid prototyping and debugging. It is also
possible to find custom Arduino libraries and useful
support for the platform in its community [25].

Taking into account its low cost and flexibility, the
Arduino Nano board was selected to be the brain of the
present project. Displayed in Fig. 5, this device is used to
control the fire alarm project and it was programmed for
working with 0V in low state and 5V in high state. The
Arduino Nano is based on the ATmega328 and it is
compatible with the FreeRTOS platform.

Figure 5. Arduino Nano board

D. FreeRTOS Overview

FreeRTOS is a popular open source RTOS kernel on
top of which embedded applications can be built to meet
their hard real-time requirements. Such kernel receives
over 75,000 downloads per year [26]. By using
FreeRTOS, it becomes possible to organize applications

200 Luca de Oliveira Turci: Real-Time Operating System FreeRTOS Application…

http://journals.uob.edu.bh

as a collection of independent threads (or tasks) of
execution. On a single processor (only one core), only one
thread may be processed at any time. Then, the scheduler
of this kernel is responsible for deciding which thread
should be processed by examining the priority assigned to
each thread. This kernel is designed to be small, simple,
easy to port, and maintainable. Some of the main features
of FreeRTOS are described [27].

 Very small memory footprint, low overhead, and very
fast execution.

 Ideally suited to embedded real-time applications that
use microcontrollers;

 Tick-less option for low power applications;

 FreeRTOS may be assigned as a hard real-time
system or soft real-time system by selecting
appropriate task and interrupt priorities.

 The scheduler may be preemptive or cooperative.

 Asynchronous events may invoke scheduler decision
points.

 The scheduler algorithm is highest priority first and
scheduler decision points also occur at regular clock
frequency.

 FreeRTOS allows the creation of binary semaphores.

 Tasks are either non-blocking or will block after a
fixed period of time.

 Tasks are independent modules.

 Tasks may be tested in isolation.

 No processing time is wasted by polling for events
that have not occurred.

 The kernel is responsible for executing timing,
resulting in fewer interdependencies between
modules and allowing the software to evolve in a
predictable way.

 Codes are executed only when there is some event
that must be done.

 The idle task is created automatically and are used to
measure processing capacity or to place the processor
into a low-power mode, enhancing the efficiency gain
and decreasing the power consumption.

 The scheduler may be suspended;

 There are three heap models as part of distribution.

 The disabling of interrupts handles the critical section
processing.

 Mutexes, recursive mutexes, counting semaphores,
binary semaphores, queues, software timers, event
groups, stack overflowing checking, and tick hook
functions may be implemented using FreeRTOS.

 Is supplied as a set of C programming language
source files.

Many examples of applications and researches using
FreeRTOS are available. Qaralleh et al. [28] used
FreeRTOS to exploit an ARM Generic Interrupt
Controller (GIC). Rutagangibwa and Krishnamurthy [29]
applied FreeRTOS applications in industrial control
systems.

In the present paper, a code in terms of thread blocks
independent of each other using FreeRTOS was
implemented. Each thread is responsible for monitoring a
respective function presented in the fire alarm project. The
features of each thread are displayed and explained in
topic 4 Algorithm.

4. ALGORITHM

An algorithm was developed in Arduino IDE platform
using the FreeRTOS libraries. The algorithm has 4 threads
and 2 binary semaphores, since 2 out of 4 threads are
considered handlers that have the function of receiving the
binary semaphores.

Generally, in synchronization events, an interrupt
service routine (ISR) of the binary semaphores is used to
unblock a task when an interrupt happens [30]. Fig. 6
shows ISR giving a binary semaphore to Task 2 in order
to unblock this task and put the Task 1 in a blocked state,
waiting for the semaphore to start running again.

Figure 6. ISR giving a binary semaphore to Task 2 [30]

A. Threads

Threads in FreeRTOS are called tasks. Each thread is
a small program in its own right. Normally, a thread runs
forever within an infinite loop and must not be allowed to
return from their implementing function. The threads
handled by FreeRTOS are normally characterized by
stack size and priority [30].

The scheduler used in FreeRTOS provides
determinism by allowing the user to assign the priority of
each thread. Hence, the scheduler handles the threads
using the priority to know which thread will run next. The
scheduler will always process the highest priority thread
which is able to run within a defined period of time. In

 Int. J. Com. Dig. Sys. 6, No.4, 197-204 (July-2017) 201

http://journals.uob.edu.bh

this project, the scheduler is based on preemptive
scheduling.

A task is considered in the blocked state always when
it is waiting for an event. There are two ways in which
tasks may enter in the blocked state, by temporal events or
synchronization events. Temporal event is considered as a
delay period expiring, or an absolute time to be reached
and may be used intentionally by the designer of the
algorithm, calling the function void vTaskDelayUntil
(TickType_t *pxPreviousWakeTime, TickType_t
xTimeIncrement);. The parameter pxPreviousWakeTime is
used to set a fixed frequency at which a task will execute
periodically and hold the last time that a task was left in
the blocked state. The parameter xTimeIncrement sets the
time that a task will be waiting in the blocked state. This
time is converted in ticks by using the macro
pdMS_TO_TICKS().

The prototype void ATaskFunction (void
*pvParameters) is responsible for implementing the task
whereas the function xTaskCreate() API is used to create a
new task. I developed the 4 tasks as follows:

1) xTaskCreate(vHeatSensor, "Thread 1", 200, NULL,
1, NULL); This task has priority 1, the highest
priority of the system and is responsible for detecting
the presence of fire in the system as well as giving the
Binary Semaphore 1 to the ISR in order to activate
the Handler 1. This thread must occupy the CPU
immediately and start running whenever some
presence of fire is detected by the YS-17 flame
sensor. After giving the Binary Semaphore 1 to the
ISR, this task is placed into the blocked state for 500
ms, using the function vTaskDelayUntil(
&xLastWakeTime,(500/ portTICK_PERIOD_MS));.

2) xTaskCreate (xGasSensor, "Thread 2", 200, NULL,
2, NULL); This task has priority 2 in the system and
is responsible for monitoring the presence of gas or
smoke. This thread is responsible for giving the
Binary Semaphore 2 to the ISR in order to activate
the Handler 2. The Thread 2 is enabled since the MQ-
2 gas sensor detects some presence of gas or smoke
in the system. However, as Thread 1 has the highest
priority of the system, Thread 1 is the most important
thread and must be running whenever some presence
of fire is detected. In this case, even if some presence
of gas or smoke is detected, Thread 2 would not be
able to run, because only one thread should occupy
the CPU any time. After giving the Binary
Semaphore 2 to the ISR, this task is placed into the
blocked state for 500 ms, using the function
vTaskDelayUntil(&xLastWakeTime, (500 /
portTICK_PERIOD_MS));.

3) xTaskCreate (vFireSuppression, "Handler 1", 200,
NULL, 2, NULL); This task has priority 2 and is
responsible for taking xBinarySemaphore from the
ISR to activate the alarm and turn on the blue LED
indicating the presence of fire in the system.

4) xTaskCreate (vActivateAlarm, "Handler 2", 200,
NULL, 3, NULL); This task has priority 3 and is
responsible for taking xBinarySemaphore2 from the
ISR and activating the cooler to spread the gas.

B. Binary Semaphores

Basically, the binary semaphore may be considered as
a queue with a length of one. This queue may be either
full or empty. Hence, the name binary emerges. When
ISR gives the binary semaphore to the task, the queue is
considered full. Otherwise, when ISR takes the semaphore
from the task, the queue is considered empty. When a
queue is considered full, only the task that has the binary
semaphore may be running, unless a task with higher
priority causes an interrupt process and immediately owns
license to occupy the CPU. On the other hand, when a
queue is considered empty, any task may start running
any time it is called by an event. The same process occurs
in the algorithm of the current project, when two binary
semaphores are handled by ISR.

In Fig. 7, the Task 2 remains waiting for the
semaphore, which is given by Task 1. When an interrupt
occurs, the semaphore is finally given and Task 2 start
running. An interrupt happens when determined event is
recognized by the system. For instance, the presence of
fire or the presence of smoke or gas detected by the
sensors are events that cause interrupts.

Figure 7 . Semaphore application

 The binary semaphores were implemented as
follows:

1) vSemaphoreCreateBinary(xBinarySemaphore); This
semaphore is responsible for activating the Handler 1.
ISR always gives this binary semaphore to Handler 1
whenever some presence of fire is detected by the
sensor of flame in the Thread 1.

2) vSemaphoreCreateBinary(xBinarySemaphore2);
This semaphore is responsible for activating the
Handler 2. ISR gives this binary semaphore to
Handler 2 whenever some presence of gas or smoke
is detected by the sensor of gas in the Thread 2,
unless there is some presence of fire in the system,
because Thread 1 has the highest priority in the
system and must occupy the CPU and start running
immediately.

202 Luca de Oliveira Turci: Real-Time Operating System FreeRTOS Application…

http://journals.uob.edu.bh

5. EXPERIMENTS AND RESULTS

The analysis of the performance of a RTOS is
extremely important and may not be a trivial assignment.
According to [31], it is not possible to measure the
features of a RTOS with reliability without an external
device. A qualitative analysis of the performance of
FreeRTOS kernel was carried out.

The worst case response time of a task and worst case
response time of an interrupt are considered together the
most important characteristic of a real-time system.
Besides that, the most important specification of a RTOS
is the amount of time that the interrupts are disabled, so
interrupt latency is a component which must be analyzed
to obtain a good idea of the real-time capabilities [31].

According to Barabanov [6], Aroca and Caurin [31],
Ganssle [32], and Franke [33] a PC parallel port is used
to obtain an interrupt and give a response to this interrupt,
as one of the most accurate methods used to measure
execution time through output ports. An external signal
generator varying in frequency from 1kHz to 30kHz is
used to generate an external stimulus and an oscilloscope
is also used in order to measure the latency to handle
interrupts, measure the jitter to find a random variation
from one latency measurement to another one, and obtain
the worst case response time to evaluate the quality of the
system, as shown in Fig. 8.

Figure 8. Experiment setup [31]

According to Karim, Prevost, and Rad [34], latency
may be considered as the time difference between the
moment that an interrupt happens and the moment that a
response is generated from the associated interrupt
handler. This parameter is analyzed externally,
considering the RTOS under test in conjunction with the
external equipment used. High latencies are not desired
and may debilitate the system performance.

Jitter may be considered as a random variation
between each latency value and is obtained from several
latency measurements. The jitter is a parameter that can
cause a notorious impact in a RTOS. In order to figure out
the jitter, the time variance between two consecutive
latency measurements is calculated. The greatest value
encountered is pointed out as the worst jitter of the
system.

WCRT may be described as the inverse of the
maximum interruption frequency with reliability. In order
to obtain such parameter, the input signal frequency from

the function generator should be slightly incremented and
the output signal should start changing. Then, the
maximum interruption frequency that is readable on the
oscilloscope screen with reliability is used to calculate the
WCRT.

In total, 50 independent samples of measurement were
taken. The Fig. 9 and Fig. 10 show the results of latency
and WCRT, respectively, for most significant sample that
has been obtained.

The Table II displays the results obtained during the
tests accomplished using FreeRTOS.

Figure 9. Obtained results for latency

Figure 10. Obtained results for WCRT

TABLE II. OBTAINED RESULTS FOR THE MOST SIGNIFICANT SAMPLE

USING FREERTOS

Jitter Latency WCTR (1/f)

25 µS 13µS 3.19×10-5s

The values showed in the Table II are considered
within the criteria that defines a hard real-time system
as a system which has a jitter no higher than 100µs in
tasks that has cycles of up to 10ms, according to
OMAC (Open Modular Architecture for Control) user
group [35].

 Int. J. Com. Dig. Sys. 6, No.4, 197-204 (July-2017) 203

http://journals.uob.edu.bh

6. CONCLUSION

In the present project, the performance of the
FreeRTOS kernel using Arduino Nano board was
analyzed together with external equipments (oscilloscope
and function generator) and some practical methods
through several parameters. The explanation about the
importance of using RTOS in critical time systems as fire
alarm projects was also accomplished and proved.

Considering the circumstances of the experiments, it
is possible to conclude that the FreeRTOS kernel really
presented determinism and reliability. Such kernel may
be considered useful and flexible with free open source
libraries. The FreeRTOS libraries are written in C
programming language, being very easy to become
acquainted with.

The kernel presented satisfactory results, meeting
temporal requirements within the criteria that defines a
hard real-time system as a system with a jitter no higher
than 100µs in tasks with cycles up to 10ms [35]. The
tests also showed that FreeRTOS has a good task
scheduler, presenting little changes in the measurements
with very low times.

The embedded system Arduino Nano demonstrated a
good performance with simplicity, low cost, reliability,
and feasibility. The board has a very small size,
demonstrating a good capability of being installed in
small fire alarm projects. As displayed in the experiments,
this device may be considered useful for the proposed
application and other applications involving RTOS.

The MQ-2 sensor presented enough performance,
being able to differentiate gases from smoke. The YS-17
flame sensor also presented a good acting, respecting the
time and deadlines of the respective threads.

Finally, it is possible to conclude that there is a very
rich field involving RTOS applications for embedded
tasks. RTOS are also very important to handle critical
time systems, specially for hard real-time systems, as fire
alarm project, which becomes useless after missing the
deadline.

REFERENCES

[1] E. K. Addai, S. K. Tulashie, J. Annan, I. Yeboah, “Trend of fire

outbreaks in Ghana and ways to prevent these incidents,” Safety

and Health at Work, vol. 7, iss. 4, pp. 284-292, Dec. 2016.

[2] P. Navitas, “Improving resilience against urban fire hazards

through environmental design in dense urban areas in Surabaya,

Indonesia,” Procedia - Soc. Behav. Sci., vol. 135, pp. 178-183,
Aug. 2014.

[3] R. Campbell, “Fires in industrial or manufacturing properties,”

Nat. Fire Protection Assoc., Apr. 2016.

[4] A. Damm, J. Reisinger, W. Schwabl, H. Kopetz, “The real-time

operating system of MARS,” ACM SIGOPS Oper. Sys. Review,

vol. 23, iss. 3, pp. 141-157, Jul. 1989.

[5] D. Culbert, “System and method for dynamic resource
management across tasks in real-time operating systems,” U.S.

Patent 5 838 968, Nov. 17, 1998.

[6] M. Barabanov, “A linux-based real-time operating system ,” M.S.
thesis, Comp. Science, New Mexico Inst. of Mining and Technol.,

Socorro, New Mexico, 1997.

[7] S. Tabirca, L. T. Yang, T. Tabirca, “Fire hazard safety
optimization,” in Int. Conf. Comput. Sci., ICCS 2015, Procedia

Comput. Sci., vol. 51, pp. 2759-2763.

[8] X. Wang, S. Lo, H. Zhang, W. Wang, “A novel conceptual fire
hazard ranking distribution system based on multisensory

technology ,” in 2013 Int.Conf. on Performance-based Fire and

Fire Protection Eng., pp. 567-576.

[9] E. Planas-Cuchi, H. Motiel, J. Casal, “A survey of the origin, type

and consequences of fire accidents in process plants and in the

transportation of hazardous materials,” Trans. IChemE, vol. 75,
Part B, pp. 3-8, Feb. 1997.

[10] W. Dong, L. Wang, G. Yu, Z. Mei, “Design of wireless automatic

fire alarm system,” Procedia Eng., vol. 135, pp. 413-417, Feb.
2016.

[11] M. Shu-guang, “Construction of wireless fire alarm system based

on Zigbee technology,” Procedia Eng., vol. 11, pp. 308-313, May
2011.

[12] C. Jing, F. Jigqi, “Fire alarm system based on multi-sensor bayes

network,” vol. 29, pp. 2551-2555, Feb. 2012.

[13] Q. Yu, D. Zheng, Y. Fu, A. Dong, “Intelligent fire alarm system

based on fuzzy neural network,” in Int. Sys. App., 2009. ISA

2009. Int. Work. on IEEE, May 2009.

[14] H. He, H. Qin, Y. Shui, K. Oleksandr, “Lithium-ion battery SoC

estimation with UKF and RTOS µC/OS-II platform,” in Int. Conf.

on Applied Energy, ICAE 2014, vol. 61, pp. 468-471.

[15] F. M. Proctor, W. P. Shackleford, “Real-time operating system

timing jitter and its impact on motor control,” Proceedings of the

SPIE Sens. Cont. Intell. Manuf.II, vol. 4563, pp. 10-16, Oct. 2001.

[16] A. K. B. Salem, S. B. Othman, H. Abdelkrim, S. B. Saoud,

“RTOS for SoC embedded control applications, ” in Des. Technol.

Integra. Sys. Nanoscale Era, 2008.

[17] M. Vetromile, L. Ost, C. A. M. Marcon, C. Reif, F. Hessel,

“RTOS scheduler implementation in hardware and software for
real time applications, ” in Rapid System Prototyping, 2006.

Seventeenth IEEE Int. Workshop.

[18] D. G. Harkut, M. S. Ali, “Adaptive fuzzy hardware scheduler for

real time operating system, ” Int. J. Com. Dig. Sys. 5, no. 6, Nov.

2016.

[19] M. Sharma, H. Elmiligi, F. Gebali, “Performance evaluation of
real-time systems, ” Int. J. Com. Dig. Sys. 4, no.1, Jan. 2015.

[20] A. Othman, S. Y. Ameen, A. Al-Omary, H. Al-Rizzo,

“Comparative performance of subcarrier schedulers in uplink
LTE-A under high users' mobility, ” Int. J. Com. Dig. Sys. 4, no.

4, Oct. 2015.

[21] P. Jiru, “Design of intelligent and monitoring system,” in
Instrumentation, Measurement, Computer, Communication and

Control (IMCCC), 2013 Third International Conf. on.

[22] W. Hua, W. Cheng, Z. Guangyuan, F. Weidan, “Design of
distributed wireless security alarm system,” in Computer Sci. &

Serv. Sys. (CSSS), 2012 Int.Conference on.

[23] L. Min, “The design of SMS alarm dystem on CORTEX M3 +
SIM900A,” Robots & Intelligent Sys. (ICRIS), 2016 Int. Conf. on.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10855
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10855
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6820822
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6820822
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6392590
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6392590
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7754734

204 Luca de Oliveira Turci: Real-Time Operating System FreeRTOS Application…

http://journals.uob.edu.bh

[24] Q. A. Al-Haija, M. A. Tarayrah, H. Al-Qadeeb, A. Al-Lwaimi,
“A tiny RSA cryptosystem based on Arduino microcontroller

useful for small scale networks, ” Procedia Comuter Sci., vol. 34,

pp. 639-646, 2014.

[25] A. S. Ali, Z. Zanzinger, D. Debose, B. Stephens, “Open source

building science sensors (OSBSS): a low-cost Arduino-based

platform for long-term indoor environmental data collection, ”
Build. and Environ., vol. 100, pp. 114-126, May 2016.

[26] J. Mistry, M. Naylor, J. Woodcock, “Adapting FreeRTOS for

multicore: an experience report,” in Wiley InterScience. [Online].
Available: https://www.cs.york.ac.uk/fp/multicore-freertos/spe-

mistry.pdf

[27] R. Goyette, “FreeRTOS Overview,” in An Analysis and
Description of the Inner Workings of the FreeRTOS, Ottawa,

Canada: Carleton Univ., pp. 2-4, Apr. 2007.

[28] E. Qaralleh, D. Lima, T. Gomes, A. Tavares, S. Pinto, “HcM-
FreeRTOS: hardware-centric FreeRTOS for ARM multicore,” in

Emerging Techn. & Factory Automation (ETFA), 2015 IEEE

20th Conf.on.

[29] V. Rutagangibwa, B. Krishnamurthy, “A survey on the

implementation of real time systems for industrial automation

aplications,” IJIRST –Int. J. Innovative Res. in Sci. & Techn.,
vol. 1, iss. 7, pp. 174-177, Dec. 2014.

[30] R. Barry, “Resources manegement, ” in Using the FreeRTOS
Real Time Kernel: a Practical Guide, Renesas RX600 ed., Real
Time Engineers Ltd., 2011.

[31] R. V. Aroca, G. Caurin, “A real time operating systems (RTOS)
comparison, ” Universidade de São Paulo (USP), São Carlos,

Brazil. [Online]. Available:

http://www.lisha.ufsc.br/wso/wso2009/papers/st04_03.pdf

[32] J. Ganssle, “The firmware handbook,” 1st ed., Elsevier, 2004.

[33] M. Franke, “Seminar paper: a quantitative comparison of realtime

linux solutions, ” Germany: Chemnizt Univ. Techn., Department
of Comput. Sci., Mar. 2007.

[34] S. M. A. Karim, J. J. Prevost, P. Rad, “Efficient real-time mobile

computation in the cloud using containers, ” Int. J. Com. Dig. Sys.
5, no. 1, Jan. 2016.

[35] J. Hatch, “Windows CE real-time performance architecture, ” In

Windows Hardware Eng. Conf., 2006.

Luca de Oliveira Turci received the

Control and Automation Engineering

degree from Universidade Federal de

Ouro Preto, Ouro Preto, Brazil in

2016.

He was a member of Control and

Automation Engineering department

whereas developed this project.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7295717
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7295717

