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The representation of complex systems as networks is inappropriate for the study of 
certain problems. We show several examples of social, biological, ecological and 
technological systems where the use of complex networks gives very limited 
information about the structure of the system. We propose to use hypergraphs to 
represent these systems by introducing the concept of the complex hyper-network. We 
define several structural measures for complex hyper-networks. These measures 
characterize hyper-network structures on the basis of node participation in different 
hyper-edges (groups) and sub-hypergraphs. We also define two clustering coefficients, 
one characterizing the transitivity in the hyper-network through the proportion of hyper-
triangles to paths of length two and the other characterizing the formation of triples of 
mutually adjacent groups in the hyper-network. All of these characteristics are studied 
in two different hyper-networks; a scientific collaboration hyper-network and an 
ecological competence hyper-network. 
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1. INTRODUCTION 

The study of complex networks represents an important area of multidisciplinary 
research involving physics, mathematics, chemistry, biology, social sciences, and 
information sciences, among others [1–5]. These systems are commonly represented by 
means of simple or directed graphs that consist of sets of nodes representing the objects 
under investigation, e.g., people or groups of people, molecular entities, computers, etc., 
joined together in pairs by links if the corresponding nodes are related by some kind of 
relationship. These networks include the Internet [6], the World Wide Web [7], social 
networks [8–11], information networks [12, 13], neural networks [14], food webs [15], 
reaction and metabolic networks [16], and protein–protein interaction networks [17].  

In some cases the use of simple or directed graphs to represent complex networks 
does not provide a complete description of the real-world systems under investigation. 
For instance, in a collaboration network represented as a simple graph we only know 
whether scientists have collaborated or not, but we can not know whether three or more 
authors linked together in the network were coauthors of the same paper or not. A 
possible solution to this problem is to represent the collaboration network as a bipartite 
graph in which a disjoint set of nodes represents papers and another disjoint set 
represents authors. However, in this case the “homogeneity” in the definition of nodes is 
lost, because we have certain nodes that represent papers and others that represent 
authors. In the study of connectivity, clustering and other topological properties, this 
distinction between two classes of nodes with completely different interpretations may 
lead to artifacts in the data [18]. 

A natural way of representing these systems is to use a generalization of graphs 
known as hypergraphs [19, 20]. In a graph a link relates only a pair of nodes, but the 
edges of the hypergraph ― known as hyper-edges ― can relate groups of more than 
two nodes. Thus, we can represent the collaboration network as a hypergraph in which 
nodes represent authors and hyper-edges represent the groups of authors that have 
published papers together. Despite the fact that complex weighted networks have been 
covered in some detail in the physical literature, there are no reports on the use of 
hypergraphs to represent complex systems. Consequently, we will formally introduce 
the hypergraph concept as a generalization for representing complex networks and will 
call them complex hyper-networks. The hypergraph concept includes, as particular 
cases, a wide variety of other mathematical structures that are appropriate for the study 
of complex networks. For instance, the hypergraph concept is a generalization of the 
graph concept [19, 20], block design [21], projective plane [22] and affine plane [23]. 
We will first show some examples of complex systems for which hypergraph 
representation is necessary. We will subsequently define several topological parameters 
for the study of complex hyper-networks and will apply them to the study of real-world 
complex hyper-networks.  
 
2. EXAMPLES OF COMPLEX HYPER-NETWORKS 
 
a) Social Networks 

In social networks nodes represent people or groups of people, normally called 
actors, that are connected by pairs according to some pattern of contact or interactions 
between them [8]. Such patterns can be of friendship, collaboration, sexual contact, 
business relationships, etc. There are some cases in which hypergraph representations of 
the social network are indispensable. These are, for instance, the supra-dyadic 
transactions in social networks in which it is necessary to consider the coordinated 
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actions of more than two actors, such as a buyer, a seller and a broker. Other examples 
include the scenarios in which not only the actors taking part in the actions are 
important, but other factors such as places or times in which the actions taking place are 
essential to describe such acts. Bonacich et al. [24] have taken such additional 
characteristics into account in extending the eigenvector centrality for hypergraphs 
representing supra-dyadic transactions. In such hyper-networks the nodes represent 
actors related by a common process, which is represented by a hyper-edge, such as a 
commercial transaction.  

 
b) Reaction and Metabolic Networks 

A chemical reaction is a process in which a set of chemical compounds known as 
educts, iE , react in certain stoichiometric proportions, ie , to be transformed into a set of 
other chemical compounds named products, iP , which are produced in certain 
stoichiometric quantities ip :  

�� ++→++ 22112211 PpPpEeEe  
A chemical reaction can be described as a weighted directed hyper-edge in a 

directed hypergraph where nodes are the chemicals and hyper-edges are the reactions 
[25]. The absence of a well-developed theory for the structural analysis of (directed) 
hypergraphs means that two alternative representations of a chemical reaction are 
commonly used. The first is the bipartite graph, in which a set of nodes represents 
educts and products and the other set represents the reaction itself. The other 
representation consists of the substrate graph, which considers educts and products as 
nodes – two nodes are connected if the corresponding chemical compounds take part in 
the same reaction.  

Metabolic networks can be considered as particular cases of reaction networks that 
are structurally well-characterized as they can be reconstructed for many organisms up 
to genome-scale. Metabolic pathways are represented in the form of graphs in which 
nodes represent molecular entities and edges represent reactions or processes relating 
the molecules involved in the reaction. However, since a reaction may have more than 
one substrate, and more than one product, the pathway is better represented by a hyper-
network in which hyper-edges represent reactions and nodes represent molecular 
entities [26]. As reaction graphs, metabolic networks are normally represented as 
substrate or bipartite graphs. Some problems arise when these representations are used 
for the analysis of potential failure modes in the metabolic network [27].  

 
c) Protein Complex Networks 

The systematic characterization of multi-protein complexes in the whole proteome 
of an organism requires the data to be organized in the form of protein membership lists 
of the protein complexes. The most common forms of this organization are the protein-
protein interaction networks and the complex intersection graphs. In the first 
representation the nodes of the network represent proteins and an edge links two 
proteins that interact with each other. This representation, however, does not take into 
account the multi-protein complexes. In the complex intersection graph the nodes 
represent complexes, and a link exists between two complexes if they have one or more 
proteins in common. Clearly, this second representation does not provide information 
about proteins. A natural way of accounting for the information about both proteins and 
common protein membership in the complexes, such as common regulation, 
localization, turnover, or architecture, is to use a hypergraph representation. In the 
protein complex hyper-networks each protein is represented by a node and each 
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complex by a hyper-edge [28]. These kinds of hyper-networks can be visualized as 
bipartite graphs. 

 
d) Food Webs 

Trophic relations in ecological systems are normally represented through the use 
of food webs, which are oriented graphs (digraphs) whose nodes represent species and 
links represent trophic relations between species [29]. Another way of representing food 
webs is by means of competition graphs ( )GC , which have the same set of nodes as the 
food web but in which two nodes are connected if, and only if, the corresponding 
species compete for the same prey in the food web [30]. In the competition graph we 
can only know if two linked species have some common prey, but we can not know the 
composition of the whole group of species that compete for common prey. In order to 
solve this problem a competition hypergraph has been proposed in which nodes 
represent species in the food web and hyper-edges represent groups of species that 
compete for common prey [31]. It has been shown that in many cases competition 
hyper-networks yield a more detailed description of the predation relations among the 
species in the food web than competition graphs. A food web and its competition 
network and hyper-network are illustrated in Fig. 1.  
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FIG 1. Food web for a Malaysian rain forest, its competition network and hyper-network 
and the transposed incidence matrix representing the hyper-network. 
 

d) Other complex systems 
There are other fields in which hypergraphs have been used to study complex 

systems and there are many others in which the use of hyper-networks may provide an 
interesting alternative. Harn et al. [32] used hyper-networks to study the software 
evolution process in which an evolutionary hypergraph was defined as a labeled, 
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directed and acyclic hypergraph. A different application of hypergraphs was developed 
by Krackhardt and Kilduff, who studied the so-called Simmelian tied dyads, which are 
dyads embedded in three-person cliques, in three entrepreneurial firms [33]. 
Hypergraphs have also appeared as a natural consequence of an L-percolation process in 
complex networks, as studied by da Fontoura Costa [34], as well as in the detection of 
hidden groups in communication networks [35]. All of these applications clearly 
indicate the importance of hypergraphs for representing and studying complex systems. 

 
3. HYPERGRAPH DEFINITIONS 

A hypergraph is represented by a pair ( )EVH ,= , where { }NvvvV ,,, m21=  is the 
set of nodes and { }mEEEE ,,, 21 m=  is the set of hyper-edges, such that ∅≠iE  and 

t
i

i VE = . A hyper-edge iE  is a sub-set of V  [19, 20]. Two nodes are adjacent in 

( )EVH ,=  if there is a hyper-edge iE  that contains both of these nodes. A simple 
hypergraph is a hypergraph H such that .⊆ ⇒ =i jE E i j  A simple graph is a simple 
hypergraph, each edge of which has cardinality 2 [19, 20]. We will refer to complex 
hyper-networks as hypergraphs that represent a complex system, such as those 
previously described in this work. 

A hypergraph H  can be represented by an incidence matrix ( ) [ ]ijeEHE ==  such 
that { }1,0∈ije , in which each of the N rows is associated with a vertex and each of the 
m columns is associated with a hyper-edge, where ije = 1  if ji Ev ∈  and ije = 0  if 

ji Ev ∉ .  Thus, any Boolean matrix may be considered as the incidence matrix of a 
hypergraph. The degree of the node v  is the sum of the corresponding row of the 
incidence matrix of H . This is equal to the number of hyper-edges that the node 
belongs to [19].

The adjacency matrix, ( )HA , of the hypergraph ( )EVH ,=  is a square symmetric 
matrix whose entries ija   are the number of hyper-edges that contain both nodes iv  and 

jv : the diagonal entries of ( )HA  are zero. This can be obtained from the incidence 
matrix of H  as follows: 

( ) DEEA −= TH  
where TE  is the transpose of the incidence matrix and D is the diagonal matrix whose 
diagonal entries are the degrees of the vertices. More formally, ( )HA  is a VV ×  
matrix with diagonal entries 0=iiA , for Vvi ∈ , and off-diagonal entries 

 { }kjikij EvvEEA ⊂∈= },{: , for Vvv ji ∈, , ji ≠ . 

Since ( )HA  is symmetric, and its entries are non-negative integers, it may be 
viewed as the adjacency matrix of a multigraph G′ , i.e., a graph having multiple links 
between nodes, called the associated graph of ( )EVH ,=  [36]. Consequently, all those 
topological parameters of a hyper-network that are derived from its adjacency matrix 
are numerically “identical” to those derived from the corresponding associated 
multigraph. However, it should be noted that multigraphs, or more generally weighted 
networks, and hyper-networks are two different ways of representing complex systems 
and they provide different information about the topology of such systems. Even the 
information given by the associated multigraph of a hypergraph is not as complete as 
that given by the proper hyper-network. For instance, on using the associated 
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multigraph we can not say whether a group of nodes are related by the same relation 
(multiedge) or not, i.e., the associated multigraph is not a supra-dyadic representation of 
the complex system. 

A walk of length l in ( )EVH ,=  is defined to be a sequence of (not necessarily 
different) vertices ( )121 ,,,, +ll vvvv m  such that for each li ,,2,1 l=  there is a hyper-edge 
containing iv  and 1+iv . The walk is closed (CW) if 11 vvl =+ . A path is a walk in which 
all vertices and hyper-edges are distinct. A cycle is a CW in which all vertices and 
hyper-edges are distinct. 

For a set },...,2,1{ mJ ⊂  we call the family ):(),( JjEH jJV ∈=  the partial 
hypergraph of ( )EVH ,=  generated by the set .J  For a set VA ⊂  we call the family 

),1:(),( φ≠∩≤≤∩= AEmjAEH jjEA  the sub-hypergraph of ( )EVH ,=  induced by 
the set of vertices .A  Partial hypergraphs and sub-hypergraph induced by sets of vertices 
are both particular cases of a sub-hypergraph of ( )EVH ,= . In general, for a set 

},...,2,1{ mJ ⊂ and a set VA ⊂  we call the family ),:(),( φ≠∩∈∩= AEJjAEH jjJA  
the sub-hypergraph of ( )EVH ,=  induced by the sets A  and .J  

The dual of a hypergraph ( )EVH ,=  is a hypergraph ( )*** , EEVH == , whose 
vertices correspond to the edges of H  with edges { }.in  :* HEvEE jiji ∈=  Clearly, the 

incidence matrix of *H  is the transpose of the incidence matrix of H  and so we have 

( ) .
** HH =  The reader is referred to the literature for more details on hypergraphs [19, 

20].  
 

4. SUB-HYPERGRAPH CENTRALITY  
Let H  be a simple hypergraph of order N . Since the adjacency matrix, A , of H  

is a symmetric matrix with real entries, there exists an orthogonal matrix )( ijuU =   

such that ,TUDUA =  where ),...,,( NdiagD λλλ 21=  whose diagonal entries are the 
eigenvalues of A , and the columns of U  are the corresponding eigenvectors that form 
an orthogonal basis of the Euclidean space Nℜ . It must be emphasized that, if the 
hypergraph H  is connected, then the symmetric and non-negative matrix A  is 
irreducible. As a consequence, the main eigenvalue A  has a positive eigenvector of 
multiplicity one. This fact facilitates the extension, to the case of hypergraphs, of the 
use of the main eigenvector as a measure of centrality. The following result that was 
obtained in [37] will be useful in extending the definition of subgraph centrality [38] to 
hypergraphs.  
Theorem 1: Let iv  and jv  be vertices of a hypergraph H . Let A  be the adjacency 
matrix of H . Then, the number of walks of length k  in H , from iv  to jv , is the entry in 

position ( ji, ) of the matrix .kA  
From the above theorem we can see that walks of length k  in H , from iv  to jv , 

are ( ) .)(
1

k
s

N

s
jsisij

k
k uuAij λµ ∑

=
==    

Hence, the number kW  of walks of length k  in H is given by  
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==
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Moreover, the number of closed walks of length k starting and ending on vertex iv  in 
H  is given by the local spectral moments ( )ikµ , which are simply defined as the i th 
diagonal entry of the k th power of the adjacency matrix, A: 

( ) ( ) ( ) k
s

N

s
isii

k
k ui λµ ∑

=
==

1

2A , (1) 

and the number kCW  of  closed-walks of length k  in H is given by 

,)(
1

∑∑
=

==
N

s

k
s

i
kk iCW λµ i.e., the trace of .kA  

We define the sub-hypergraph centrality of the vertex v  as the “sum” of closed 
walks of different lengths in the network starting and ending at vertex v . As this sum 
includes both trivial and non-trivial closed walks, we must consider all sub-
hypergraphs, i.e., acyclic and cyclic. The contribution of these closed walks decreases 
as the length of the walks increases. In other words, shorter closed walks have more 
influence on the centrality of the vertex than longer closed walks. This rule is based on 
the observation that motifs in real-world networks are small sub-hypergraphs. The 
extreme case is that of closed walks with a length of only two, giving a weight of zero 
to longer walks. This case corresponds to a vertex “degree centrality” )( iV vd  defined as 

the number of vertices adjacent to iv , that is, { }ijjiV vvvvd ∼= :)( .  On the other 
hand, the use of the sum of closed walks to define sub-hypergraph centrality 

presupposes a mathematical problem as the series ∑
∞

=
∞=

0
)(

k
k iµ  diverges. 

Consequently, we avoid this problem by scaling the contribution of closed walks to the 
centrality of the vertex by dividing them by the factorial of the order of the spectral 
moment. The sub-hypergraph centrality of vertex iv  in the network is then given by: 

( ) ( )
∑

∞

=

=
0 !k

k
SH k

i
iC

µ
. (2) 

Let λ  be the main eigenvalue of A. For any non-negative integer k  and any 
{ },,...,1 ni ∈  k

k i λµ ≤)( , series (2) – whose terms are non-negative – converges. 

( ) λλµ e
kk

i
k

k

k

k =≤∑∑
∞

=

∞

= 00 !!
 (3) 

Thus, the sub-hypergraph centrality of any vertex iv  is bounded above by 
.)( λeiCSH ≤  The following result shows that the sub-hypergraph centrality can be 

obtained mathematically from the spectrum of the adjacency matrix of the network. 
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Theorem 2: Let ),( EVH =  be a simple hypergraph of order .N  If ,Vvi ∈  then the 
sub-hypergraph centrality ( )iCSH  may be expressed as follows: 

( ) ( )∑
=

=
N

j
ijSH

jeuiC
1

2 λ  (4) 

Proof:  Using expressions (1) and  (2), we obtain 

( ) ( )
∑ ∑

∞

= = 












=

0 1

2

!k

N

j

ij
k
j

SH k
u

iC
λ

. (5) 

By reordering the terms of series (7), we obtain the absolutely convergent series: 

( ) ( ) ,
! 1

2

1 0

2
∑∑ ∑
==

∞

=






=













 N

j
ij

N

j k

k
j

ij
jeu

k
u λλ

 (6) 

which, clearly, also converges to )(iCSH , proving the main result.  
A global characterization of the network H  can be carried out by obtaining the mean 

of the average sub-hypergraph centrality: ( )∑
=

=
N

i
SHSH iC

N
C

1

1 . It has been 

recommended that the use of centralization instead of centrality is more appropriate for 
these sorts of global measures [8]. An analytical expression for SHC  can be obtained 
using a procedure analogous to that described to prove the previous theorem, showing 
that SHC  depends only on the eigenvalues and size of the adjacency matrix of the 
network: 

( ) ∑∑
==

==
N

i

N

i
SHSH

ie
N

iC
N

C
11

11 λ        (7) 

 
5. CLUSTERING COEFFICIENT  

One of the most important topological parameters used in the study of complex 
networks is the clustering coefficient. The clustering coefficient measures the degree of 
cliquishness that a network has. Watts and Strogatz defined a local clustering coefficient 
that describes “what proportion of acquaintances of a vertex know each other” [14]. In 
this respect, the global clustering of a network is obtained as the average of the local 
clustering coefficients for all nodes in the network. It has been stated that this kind of 
“average of an average” [39] is often not very informative and that a better alternative is 
to use the following definition of clustering coefficient for a network, which is also 
known in the sociology literature as the transitivity coefficient [8]: 

( )
twolengthofpathsofnumber

trianglesofnumber
gesdjacent edpairs of anumber of 

trianglesofnumberGC
     

  6  3
2

×=×=  (8) 

The factor of three in the numerator compensates for the fact that each triangle 
contributes three connected triples and ensures that ( ) 12 =GC  for the complete graph 
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NK . In the case of multigraphs, i.e., graphs with multiple edges, this proportion is not 
maintained and the multigraph is represented as a simple graph to calculate the 
clustering coefficient. A similar situation is presented for hypergraphs. Thus, in those 
cases in which the hypergraph has multi-hyper-edges we will consider them as simple 
hyper-edges. More formally, we define an associated simple graph HG  to the hyper-
network  H , in which two nodes of HG  are adjacent if, and only if, they are adjacent in 
H . This is equivalent to removing the multiple links between vertices in H .  In order 
to account for the cliquishness of a hypergraph we have to modify (8) to the following 
expression: 

( )
 2

  6
2 pathsnumber of 

ngleshyper-triaofnumberHC
−

×= ,        (9) 

where a hyper-triangle is defined as a sequence of three different vertices and three 
different hyper-edges of the form: irkqjpi vEvEvEv ,,,,,, , in which the three nodes are 
mutually adjacent and a 2-path is path of length 2, i.e., a sequence of the type 

kqjpi vEvEv ,,,,   (we recall that in a path all vertices and hyper-edges are distinct).  
We will use the associate graph HG  to compute the clustering coefficient of H . 

We can use the number of closed walks of length three in HG  to count the number of 
hyper-triangles in the hyper-network. However, we have to exclude those CWs of 
length three that are not hyper-triangles. For instance, in Fig. 1 it is shown that 

21103422 ,,,,,, vEvEvEv  is an example of hyper-triangle but neither 

2252422 ,,,,,, vEvEvEv  nor 2253422 ,,,,,, vEvEvEv  are hyper-triangles despite the fact 
that they are CWs of length three. The CWs of length three that are not hyper-triangles 
come from the nodes that are on the same hyper-edge. For the sake of simplicity in the 
terminology we will call them “false” hyper-triangles. 

The number of CW of length three containing only one hyper-edge iE  is given by 

.
3 







= i

i
E

t  These are the number of CWs of length three formed inside a single hyper-

edge and, consequently, are not hyper-triangles, e.g., 2252422 ,,,,,, vEvEvEv  in Fig. 1.  
In general, to calculate the number of false hyper-triangles we need to use the inclusion-
exclusion principle. The cardinal of the intersection of hyper-edges 

kiii EEE ,...,,
21

, 

h
k

r
iiii rk

E
1

...21
=

=α  is denoted by 
kiii ...21

α . The number of false hyper-triangles is then 

∑
=

+−=
m

j
j

j at
1

1)1( , where ∑ 







=

kiii

kiii
ka

...2,1

21

3
...α

 (we only consider the terms in which the 

combinatorial expression makes sense).  
On the other hand, we have to count the number of 2-paths in the hyper-network, 

which is the denominator of the expression of the clustering coefficient (11). In this 
respect, we need to identify the number of walks of length two between nodes in the 
same hyper-edge iE  because they do not constitute a path of length two, i.e., they are 
“false” 2-paths. The number of false 2-paths is tp 3= , where t is the number of false 
hyper-triangles. The clustering coefficient of the hyper-network is now given by: 
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3
2 µ

µ
   (10) 

which, by substitution, gives the expression of the clustering coefficient for a hyper-
network as presented in the following theorem. 
Theorem 3: Let t  be the number of false hyper-triangles of a hyper-network H . 
Let Nλλλ ,...,, 21  be the eigenvalues of HG  and let )( ijuU =  denote an orthogonal matrix 
whose columns are the corresponding eigenvectors, which form an orthogonal basis of 
the Euclidean space Nℜ .  The clustering coefficient of H  is given by: 

∑ ∑

∑

= =

=

−













−











−
=

N

s
s

N

j
is

N

s
s

tu

t
HC

1

2

2

1

1

3

2

61

6
)(

λ

λ
       (11) 

 The clustering coefficient for the competition network in Fig. 1 is ( ) 25.02 =HC , 
which indicates that 1/4 of the 18 triples of nodes participating in at least two different 
competence groups do participate in three different groups. They are 1042 ,, vvv  and 

1052 ,, vvv , which form the hyper-triangles 21103422 ,,,,,, vEvEvEv  and 

21103522 ,,,,,, vEvEvEv , respectively.  
It is feasible that we could be interested in knowing the proportion of triples of 

groups that are mutually adjacent in the hyper-network forming triangles with respect to 
the number of triples of groups that only form two pairs of adjacent groups. For 
instance, if we consider three different groups 321 ,, EEE  in a hyper-network it is 
possible to form three pairs of adjacent groups: 21 , EE , 31 , EE  and 32 , EE  and only one 
triangle of mutually adjacent groups. If we now define the clustering coefficient of the 
dual of the hyper-network we will obtain the proportion of triples of groups forming 
triangles with respect to the number of triples forming adjacent groups: 

( )
gesdjacent edpairs of anumber of 

trianglesofnumberHC    * ×= 3
2      (12) 

which in terms of the graph spectrum is given by the following expression: 

∑ ∑

∑

= =

=














−










=

m

s
s

m

j
is

m

s
s

b

HC

1

2

2

1

1

3

2

1

*)(

µ

µ
       (13) 

where mµµµ ,...,, 21 are the eigenvalues of the simple graph *HG  and )( ijbB = denotes 
an orthogonal matrix whose columns are the corresponding eigenvectors that form an 
orthogonal basis of the Euclidean space mℜ .   

In the competition hyper-network represented in Fig. 1 the values of ( ) 1*2 =HC , 
which indicates that the three competence groups in the network are mutually adjacent. 
In this case the trophic species 2 predates together with competitors in the competition 
groups 21 , EE ; species 4 and 5 participate in the competition groups 32 , EE , and species 
10 competes with predators in groups 31 , EE . 

 
6. ANALYSIS OF REAL-WORLD HYPER-NETWORKS 
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We will consider here two complex hyper-networks representing a collaboration 
network and a competence graph in an ecological system. The collaboration network 
was extracted from the bibliography of the book “Product Graphs” by Imrich and 
Klavžar [40]. The original network is a bipartite author-by-paper network where link 
(i,j) represents a situation where author i is the (co)author of the paper j [41]. We 
transformed this information into a complex hyper-network in which nodes are authors 
and hyper-edges are papers in such a way that all coauthors of a paper are linked by the 
same hyper-edge. The second network consists of the trophic relation between species 
in the marine ecosystem of Benguela, which is off the southwest coast of South Africa 
[42]. We represent this network as a competence graph, as explained before, and in this 
way we obtain the Benguela competence hyper-network in which nodes are species and 
hyperlinks join together all species competing for the same prey. For the sake of 
comparison we also consider the author-by-author complex networks, representing 
those pairs of authors that have published a joint paper, as well as the competence graph 
of the Benguela food web. 

We begin by analyzing the characteristics of the degree of centrality in the hyper-
networks studied and compare them with the corresponding network representations of 
the same complex systems. One of the distinctive characteristics of centrality measures 
is that they allow the nodes of the network to be ranked in order to determine the most 
central ones in such a system. The relative degree of centrality for the most central 
authors in the “Graph Product” collaboration network are plotted in Fig. 2A according 
to three different representations of the system: network, weighted network and hyper-
network. As can be seen, the ranking obtained for the authors is completely different for 
the three representation methods. It was found that Hell is the most central author in the 
simple network, whereas Klavžar and Imrich are more prominent in the weighted 
network and in the hyper-network, respectively. There are some other authors that 
appear highly ranked in one of the representations but do not appear among the top ten 
authors in the others. For instance, Zhu is ranked as the fifth author according to the 
hyper-network representation but does not appear among the top ten authors in the 
network and weighted network. Imrich and Klavžar are the most central authors in the 
complex hyper-network. This means that they appear in the largest number of hyper-
edges, which represent the different collaboration groups in the hyper-network. We give 
the term collaboration group to the set of authors that collaborate together in a paper. 
Imrich and Klavžar participate in 26 and 22 collaboration groups, respectively, while 
Hell participates in only 8 collaboration groups – despite the fact that he has 12 
collaborators. It is clear that you can have N collaborators but participate in only one 
collaboration group if all your collaborators participate in the same paper. The 
importance of participating in different collaboration groups is evident from the 
following perspective. If your N collaborators are in only one group and all of them can 
share the same series of ideas, i.e., they form a “school”. However, if you are taking part 
in two or more collaboration groups you will be in touch with more than one school of 
thought and share ideas from different perspectives. This makes nodes participating in 
larger numbers of collaboration groups (hyper-edges) the most central nodes in the 
hyper-network. 

A similar situation is represented in Fig. 2B, where the relative degrees based on 
simple network and hyper-network are plotted for all species in the competence network 
and hyper-network of the Benguela ecosystem. In the competence network there are 10 
species ranked as the most central ones, all of which have a degree equal to 22. This 
means that each of these species competes for 22 types of prey. For instance, anchovy,  
horse and chub mackerel all compete for the same number of prey as sharks and birds in 
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that they all have a centrality degree equal to 22 in the competence network. The 
possibility exists that most of the prey for which a group of species compete are the 
same. We assign the term competence group to this group of species that compete for 
the same prey. The competence network does not allow us to know in how many 
competence groups a particular species is participating. However, this information can 
be obtained in a straightforward way from the competence hyper-network. In this case 
the node degree corresponds to the number of competence groups in which a species is 
participating. In the hyper-network representation of the Benguela ecosystem, sharks are 
the most central species followed by birds and seals. Sharks participate in 18 different 
competition groups while birds participate in 16 and seals in 15. In contrast, anchovy,  
horse and chub mackerel participate in only 4 competence groups, which makes sharks, 
birds and seals the most central species in the competence hyper-network.  
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FIG 2. Ranking of nodes according to the relative degree centrality. Authors in the 
collaboration network and hyper-network of “Graph Product” (top) and species in 
the competition network and hyper-network for a  Malaysian rain forest food web 
(bottom). 
 
We also studied the sub-hypergraph centrality of complex hyper-networks by 

calculating )(iCSH  and SHC  for the two hyper-networks studied here as well as their 
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equivalent values for the corresponding simple networks. In the “Product Graphs” 
collaboration hyper-network there are significant differences in the ranking of nodes 
compared to that observed in the collaboration network. )(iCSH  in the hyper-network 
ranks Klavžar as the most central author, followed by Imrich, Mohar and Gutman (see 
Fig. 3A). Hell, who is the most central author in the collaboration network, is not among 
the top ten authors in the hyper-network. In general, 50% of the authors ranked in the 
top ten most central nodes in the hyper-network do not appear in the network and vice-
versa. On the other hand, there are significant differences between the ranking 
introduced by )(iCSH  in the hyper-network and that obtained by node degrees – as can 
be seen by comparing Figs. 2A and 3A.  
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FIG 3. Ranking of nodes according to the relative subgraph centrality. Authors in 
the collaboration network and hyper-network of “Graph Product” (top) and 
species in the competition network and hyper-network for a Malaysian rain forest 
food web (bottom). 
 
In the Benguela ecosystem the competence hyper-network clearly identifies 

sharks, birds and seals as the most central species according to the sub-hypergraph 
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centrality. In the competence network there are 7 species that are ranked as the most 
central ones. They include sharks and birds – but not seals – along with horse and chub 
mackerel, hake, other pelagics and other groundfish. 

The clustering coefficient of the Benguela competence hyper-network is 
( ) 067.02 =HC  because there are 14 hyper-triangles and 625 paths of length two. Only 

two hyper-triangles exist in the “Graph Product” collaboration network, which has a 
clustering of ( ) 016.02 =HC  (there are 377 paths of length 2). These values indicate a 
low transitivity in the hyper-network as the number of hyper-triangles formed is low 
compared to the number of paths of length 2. Each hyper-triangle in a hyper-network 
represents a triple of nodes that join together three different groups (hyper-edges). For 
instance, the hyper-triangle 21103422 ,,,,,, vEvEvEv  is formed by three trophic species 
( 1042 ,, vvv ) that join together three different competence groups ( 321 ,, EEE ). Thus, the 
clustering coefficient of the hyper-network ( )HC2  measures the proportion of triples of 
nodes that join three different groups with respect to the number of triples that only join 
two different groups. With the aim of extracting more conclusive results concerning the 
role played by transitivity in complex hyper-networks, we propose the further study of 
random hyper-networks in order to show whether real-world hyper-networks show, for 
instance, “small-world” characteristics as observed for complex networks. A value of 

( ) 963.0*2 =HC  is obtained for the competition graph of the Benguela ecosystem, 
which is close to 1. This result indicates a high level of interrelationship between the 
different competition groups in these ecosystems. An analysis of this factor for a greater 
dataset of food webs is necessary to obtain definitive conclusions about the role of this 
interrelation in ecological systems. The collaboration network on “Product Graphs” also 
shows a high value of the clustering coefficient between collaborating groups, 

( ) 758.0*2 =HC . This result is not unexpected given the limited scope of the 
collaboration topic, which makes the different groups working in the field collaborate to 
a large extent. 

 
7. CONCLUSIONS 

We have introduced here some basic principles for the use of more general 
representations of complex systems based on hypergraphs. We have coined the term 
complex hyper-networks to designate such systems in which nodes are grouped together 
in multi-dyadic relationships represented by hyper-edges. The use of complex hyper-
networks appears to be a necessity for exploring several social, technological, biological 
and ecological systems beyond the traditional dyadic representation of node-node 
relationships. We have introduced several valuable measures for studying complex 
hyper-networks, such as node and sub-hypergraph centralities as well as clustering 
coefficients for both hyper-networks and their duals. The application of these measures 
to the study of two real-world complex systems – representing a collaboration hyper-
network and a competition hyper-network in an ecological system – has shown some of 
the main differences between complex networks and hyper-networks. However, a large 
number of open questions remain concerning the representation of complex networks as 
hypergraphs. For instance, are complex hyper-networks “small-worlds”? Do complex 
hyper-networks show “scale-free” characteristics? What is the large-scale structural 
organization of complex hyper-networks? How robust are complex hyper-networks to 
random failures and attacks? We hope that the current work encourages the 
investigation of these and many other questions and that the main tools developed here 
can help in this area. 
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