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Abstract— In this paper we consider the problem of con-
trolling unstable stochastic linear systems through a commu-
nication channel between the sensors and the actuators. We
propose an LQG architecture which separates the design of
suitable regulators, referred to as Plant Encoder/Decoders, from
the design of the channel encoder/decoder. The mathematical
model we propose encompasses the most important features
of today’s wireless channels such as limited channel capacity,
decoding delay and packet loss, while still being amenable
to analytic treatment. We then restrict our discussion to
linear plant encoder/decoders subject to signal-to-noise (SNR)
limitations and packet losses, deriving stability conditions and
optimal parameters for the controller design in the cheap-
control setting. Through our analysis we are able to recover
several results available in the literature that treated packet
loss and quantization error separately.

I. INTRODUCTION

Traditionally control theory and communication theory
have been developed independently and have reached consid-
erable success in developing fundamental tools for designing
information technology systems. On one side, the major
objective of control theory was to develop tools to stabilize
unstable plants and optimize some performance metrics in
closed loop under the assumption that the communication
channel between sensors and controller and between con-
troller and plant were ideal, i.e. without distortion, packet
loss or delay. On the other side, the major objective of
communication theory was to develop tools to transmit
information from a stable source to a receiver though a possi-
bly noisy communication channel where the communication
protocols had no feedback on the source. One of the reasons
for the success of these theories was that, in many control
applications, the effects of the communication channel im-
pairments was negligible , compared to the effects of noise
and uncertainty in the plants, while in many communication
applications the time dynamics of the source statistics was
slow , compared to the transmission rates of the protocols,
so that the source could be safely assumed to be stationary.
With the advent of wireless communication, the Internet and
the need for high performance control systems, this sharp
separation between control and communication has begun to
be questioned and a growing body of literature has appeared
from both the communication and the control community,
that tries to analyze the interaction between control and
communications.
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For instance, one line of research has addressed the
problem of stabilization of an unstable plant through a
rate-limited erasure channel where no performance index
is considered besides stability [11], [21], [9]. Another line
of research has applied information theoretic tools to find
relationships between feedback performance and channel
capacity [10], and has shown that Shannon’s capacity is not
sufficient to characterize a communication channel from a
control perspective [14]. Differently, other researchers have
tried to tackle the channel limitations by using analog models
in order to avoid the difficulties associated with explicit
design of encoder/decoder for digital transmission, and to
optimize some performance metrics among all possible sta-
bilizing controllers [5], [13], [18]. Along these lines, other
groups have modeled the limited capacity of the channel
through a constraint on the maximum signal-to-noise (SNR)
ratio and found fundamental limits that depend on the un-
stable eigenvalues of the plant [2], [17], [3]. Finally, another
well explored approach is the analysis of control systems
subject to random packet loss [19], [6], [7], [16] under an
LQG framework.

The above cited works are just a partial, and by no means
complete, overview of the literature on control systems
subject to communication channel limits. Indeed, the current
trend is to include multiple channel limitations into the
model, such as packet loss and quantization [22], [8], which
however results in complex optimization problems.

The objective of this work is twofold. The first objective
is to provide a more realistic model of a communication
channel that, while still being mathematically amenable to
analysis, includes packet loss, delay, SNR-limitations and
quantization distortion. The second objective is to propose an
LQG approach for the design of the control blocks in order
to include performance metrics besides stability of the closed
loop system. In fact, from a practical standpoint, stability is
not sufficient and additional performance criteria need to be
satisfied, such as in the LQG framework.

Although we introduce a very general architecture for
networked control systems, in this work we limit our analysis
and design to a simplified channel model that only includes
packet loss and SNR limitations, and to a special class
of linear controllers under the standard LQG cheap-control
setting. Nonetheless, we recover several results available in
the literature and find a stability condition that depends on
both the packet loss probability and the SNR of the channel.
This work extends to a multivariable setting some previous
results which were limited to scalar plants [12].
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II. PROBLEM FORMULATION

We consider the problem of stabilizing a, possibly unsta-
ble, system across a communication channel. The plant is
modeled as a discrete-time linear time-invariant dynamical
system subject to additive measurement and process noise:

xt+1 = Axt +But + wt (1)
yt = Cxt + vt (2)

where x ∈ Rn, u ∈ Rp, y ∈ Rm, vt ∼ N (0, R), wt ∼
N (0, Q), x0 ∼ N (0, P0), and wt ⊥ vt. We also assume that
the pairs (A,B) and (A,Q) are controllable, the pair (A,C)
is observable, and R > 0.

Stabilization is a necessary requirement in any control
system, but in addition to that, often performance indices
need to be optimized in order to achieve an acceptable
behavior of the whole system. A typical choice is the steady
state performance in terms of a quadratic cost index as in
the linear-quadratic-gaussian (LQG) framework.

J = lim
T→+∞

1

T
E

[
T∑
t=1

x>t Wxt + u>t Uut

]
= lim

t→+∞
E[x>t Wxt + u>t Uut] (3)

where the two limits coincide under customary ergodicity
assumptions. We also assume that the pair (A,W ) is ob-
servable. Typical choices for the matrices W,U are W =
CTC, U = ρI .

In this paper we shall restrict to the so-called cheap
control scenario, obtained by setting ρ = 0, for which
J = limt→+∞ E[||yt||2]−trace(R) that correspond to steady
state output power minus the measurement noise power.
Hence, for ease of notation, in the cheap control scenario
we define the cost function as J := E

[
‖yt‖2

]
.

The plant output yt is measured and possibly preprocessed
by a causal Coder/Estimator (COD) that sends data at across
a non-ideal communication channel. At the other end, a
causal Decoder/Controller (DEC) processes the received
data bt and computes the control input ut required to
stabilize the plant and optimize the performance index J . A
pictorial representation is given in top panel of Figure 1. It
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Fig. 1. Scheme of control system across a communication channel.

is a standard practice to decouple the Coder/Decoder design
into two tiers: one associated to the plant (source) and the

other associated to the channel, as shown in the bottom
panel of Figure 1. The goal of the Plant Coder/Decoder
design is to stabilize the closed loop system and pos-
sibly to optimize some additional performance index. In
the control theory framework, these blocks correspond to
filters, estimators, and controllers. Differently, the goal of
the Channel Coder/Decoder design is to translate the signal
st into a signal at that is suitable for transmission over
the communication channel, in such a way that the signal
bt received from the channel can be decoded into a signal
ht that is as close as possible to the original signal st, i.e.
ht ≈ st.1

We observe that decoupling coding/decoding into Plant
Coding/Decoding and Channel Coding/Decoding may not
be the optimal strategy in the context of feedback systems
with unstable plants, as suggested by some recent work on
anytime capacity and coding/decoding for unstable plants
[14]. Nonetheless, we will stick to this approach since it
greatly simplifies the overall design and is applicable to
current communication protocols.

III. CHANNEL CODING/DECODING MODELING

As mentioned above, the objective of traditional Channel
Coding and Decoding is to transfer a (possibly continuous
valued) signal st across a noisy transmission channel and
reconstruct a signal ht at the receiver, possibly with some
delay τ , as closely as possible to original one, i.e. ht ≈ st−τ .

This is in general obtained via digital communication
techniques that require to (i) quantize the real signal st into
its quantized version sqt , (ii) encode it into a string of bits
at determined by the chosen modulation and coding (iii)
transmit this string across the channel and decode it into
another string of bits bt, (iv) map these strings of bits into a
real number ht.

Remark 1 (Scalar output): For simplicity we shall re-
strict our attention to systems with scalar output, i.e. m = 1.
In fact, encoding schemes for vector signals are not entirely
trivial, and different coding schemes would result in different
analog channel models.

The quantization noise nt = st − sqt accounts for the
distortion due to the quantization of the real-valued sig-
nal st before transmission. Under the assumption of fine
quantization, i.e., that the number of quantization levels is
sufficiently high, nt can be effectively modeled as a zero-
mean additive random process, with identically distributed
uncorrelated samples of power σ2 = E

[
n2t
]

, which is
also uncorrelated with st. The number of quantization levels
also determines the information rate Rq of the quantized
signal, which is in turn related to the signal-to-quantization
noise ratio (SQNR), α = E

[
s2t
]
/ σ2: the larger Rq , the

higher the SQNR. The maximum information rate that can

1Note that, the meaning of Plant and Channel Coding/Decoding consid-
ered in this work is different from Source and Channel Coding/Decoding
considered in classical Information Theory, where the role of Source Coding
is to remove the correlation of the signal yt to reduce its bit rate, whereas
Channel coding adds controlled redundancy to the signal before transmission
over the channel to increase its robustness to transmit errors.
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be reliably transferred through a communication channel is
upper limited by the Shannon capacity Rc of the channel,
so it must hold Rq < Rc. Accordingly, the SQNR cannot
be increased above a certain threshold α∗, which depends
on Rc, i.e. α < α∗(Rc). Therefore in our framework, the
Shannon Capacity Rc basically determines an upper bound
on the possible SQNR α.

The encoding of the quantized signal typically involves
two concatenated codes, an inner and an outer code for
forward error correction and detection of residual errors
(frame check) at the receiver, respectively. As a consequence
three scenarios are possible at the receiver: (i) the transmitted
string at is decoded correctly, i.e. bt = at, (ii) the decoded
string contains errors that are detected by the outer decoder,
which drops the message (erasure) (iii) the decoded string
contains errors that are not detected by the outer decoder,
which accepts a message bt 6= at. These events can be
modeled via the binary variables γt, νt ∈ {0, 1}, where
γt = 0 indicates that an erasure occurred, while γt = 1
denotes that the message was accepted by the receiver, which
means that it is either correct or affected by undetected
errors. The binary variable νt discriminates between these
two last events, so that (νt, γt) = (1, 1) means that an
undetected decoding error occurred, and (νt, γt) = (0, 1)
that no error occurred.

The probability of the erasure and undetected error events,
denoted by ε := P[γt = 0] and ε0 := P[νt = 1|γt = 1],
respectively, depend on the forward error correction and
frame check schemes adopted. In case of undetected errors,
the difference between the reconstructed signal ht and the
quantized signal at the transmitter sqt , i.e. mt = ht − sqt ,
would typically be much larger than the quantization noise
nt. For the sake of completeness, we hence included it in
the proposed general channel model, though we observe that
redundancy codes are usually designed in order to guarantee
ε0 � ε, so that undetected error event is typically negligible
in modern communication systems. Finally, the decoding
of the string bt from past strings at requires some delay
τ , therefore the reconstructed signal ht is related to the
transmitted signal st−τ . This mathematical modeling of a
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Fig. 2. Equivalent model of Channel COD/DEC using traditional codes

digital communication channel is summarized in Fig. 2, and
it is characterized by the parameters ε0, ε, α, τ . These pa-
rameters are clearly dependent, since, for example, reducing
the erasure probability ε requires to increase the delay τ or
reduce the SQNR α. A discussion about this dependence is
beyond the scope of this paper and it is left for future work.

IV. LQG ARCHITECTURE

Based on the channel model described above, which is
independent of the control application, our goal is therefore
to optimally design the Plant Coding block Ft and the
Plant Decoding block Gt to minimize the performance cost
J , and gain insights in the role played by the channel
parameters (σ2, ε, τ) depicted in Figure 3 in this regard.
The encoder and the decoder can be time-varying and must
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Fig. 3. General scheme of Networked Control System model with implicit
channel COD/DEC

be causal, i.e. depend only on the past information set. We
denote the history of a generic signal f up to time t as
f t = (ft, ft−1, . . . , f0). The information set available to
the coder always includes the plant outputs yt and the past
quantization errors nt−1. However, it may also include the
past channel erasure γt−1 in case of perfect channel feedback
from the receiver to the transmitter, which can be practically
implemented via a reliable ACK mechanism. Note that in
this scenario, if the plant decoder Gt is deterministic and
known to the plant coder Ft, then perfect channel feedback
implies that the plant coder can reconstruct the past plant
inputs ut−τ , except in the case of undetected errors. The two
scenarios (respectively, without and with channel feedback)
are summarized in the following equations:

st = Ft(yt, st−1, nt−1) (4)
st = Ft(yt, st−1, nt−1, γt−1) (5)

The information set of the decoder includes, besides its
past outputs ut−1, also the output from the channel decoder
ht and the packet loss sequence γt, i.e.

ut = Gt(ht, γt, ut−1) (6)

Note that the decoding error events νt are not known to the
receiver nor to the transmitter.

In the framework developed above, the objective is to solve
the following optimization problem:

minFt,Gt J (7)

s.t.
E[s2t ]

E[n2t ]
≤ α (8)

This a formidable optimization problem since it poses only
mild conditions on the possible classes of control functions
F and G, which leads to a large design parameter space.
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Most of the channel models and control architectures studied
in the context of NCS can be cast as a special case of the
optimization problem (7)-(8).

In general, the channel parameters (α, ε, τ) are assumed to
be given. Moreover, they are studied separately. For example,
great attention has been given to lossy communication where
only the packet loss parameter ε is considered and the
SQNR constraint given in Eqn. (8) is neglected [19], [15],
[6], [7]. Another area of active research is the SQNR-
constrained control that corresponds to the problem where
the channel model includes only the quantization noise σ2

and the channel power constraint in Eqn. (8) [2], [13],
[17], [18], [3]. Only recently, there has been an attempt
to consider more realistic channel models, for instance by
including both packet loss and quantization distortion [22],
[8]. In this work we address the special case of the general
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Fig. 4. Special scheme of Networked Control System for scalar output
plants

optimization problem (7)-(8) shown in Fig. 4. We consider a
channel model that includes simultaneously i.i.d packet loss,
quantization noise and a limited SQNR α, but assumes no
decoding delay and no undetected packet error, i.e.

τ = 0, ε0 = 0, (9)

Moreover, we restrict our design space to the Plant De-
coding block and we consider no Plant Coding, i.e. st =
Ft(yt, st−1) = yt. Finally, we restrict the Plant Decoder
to be the cascade of a linear state estimator and a state
feedback, i.e.,

ξt = Aξt−1+But−1+γtK
(
ht−C(Aξt−1+But−1)

)
(10)

ut = Lξt (11)
ht = γt(yt + nt) (12)

Note that the estimator is time-varying since it depends on
the sequence γt. This scheme is the same as was proposed
in [15], and does not coincide with the true optimal Kalman
filter as in [19]. However, it has the advantage of being
computationally simpler and allowing explicit computation
of the performance J , as will be shown in the next section.

V. DYNAMICAL EQUATIONS

We now derive the dynamical equations which govern
the state as well as the error evolution for the estimator in

equation (10). In order to do so it is convenient to consider
the “predictor” x̂t so that

x̂t+1 = Ax̂t +But + γtG [ht − Cx̂t]
ξt = x̂t + γtK [ht − Cx̂t]
ut = Lξt = L [I − γtKC] x̂t + γtLKht

(13)

where G := AK. This system has the form of a “Kalman-
like” estimator with constant gain K. If the gain K is
chosen to be the “optimal” Kalman gain,2 which we shall
denote by K∗, then x̂t = x̂t|t−1 and ξt = x̂(t|t), which
are respectively the optimal (constant gain) one-step-ahead
predictor and estimator of the state xt.

Consider the error x̃t := xt − x̂t. The corresponding up-
date equation is therefore:

x̃t+1 = xt+1 − x̂t+1

= (A− γtGC)x̃t + vt − γtG(wt + nt)

Substituting ut from (13) in the predictor, the equation of
the feedback loop system is:[

x̂t+1

x̃t+1

]
=

[
(A+BL) γt(A+BL)KC

0 A(I − γtKC)

] [
x̂t
x̃t

]
+

+

[
0
I

]
vt +

[
γt(A+BL)K
−γtAK

] [
wt + nt

]
yt =

[
C C

] [ x̂t
x̃t

]
+ wt

Defining

P := Var{[x̂>t , x̃>t ]>} =

[
P11 P12

P21 P22

]
Āγ :=

[
(A+BL) γ(A+BL)KC

0 A(I − γKC)

]
and using the fact that

[
x̂t

x̃t

]
, vt and wt + nt are pairwise

uncorrelated, it follows that:

P = (1− ε)Ā1PĀ
>
1 + εĀ0PĀ

>
0 +

[
0
I

]
Q
[

0 I
]

+

+(1− ε)(1 + α)

[
(A+BL)K
−AK

]
R

[
(A+BL)K
−AK

]>

+

+α(1− ε)Φ̄P Φ̄>

(14)
where

Φ̄ :=

[
(A+BL)KC (A+BL)KC
−AKC −AKC

]
For ease of notation we define the operator on the right hand
side of (14) as M(K,L, P ), so that (14) can be written in
compact form as P =M(K,L, P ).

In this work we consider as cost function only the steady
state plant output E[||yt||2] in Eqn. (3), i.e. we assume no cost
in energy expenditure for the control. This is known as the
cheap-control scenario in LQG control and it is equivalent
of setting W := C>C and U = 0 in Eqn. (3) which takes
the form:

J = E
[
x>t C

>Cxt
]

=
[
C C

]
P

[
C>

C>

]
(15)

2Within the class of constant gain linear estimators.
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Hence, the LQG-type optimal control problem is written as:

J∗ := min
K,L

J

s.t. P =M(K,L, P ) (16)
P ≥ 0

and L∗, K∗ will denote the optimal gains.

VI. SOLUTION TO THE OPTIMAL CHEAP-CONTROL
SCENARIO

We now derive the solution to the LQG-type optimal
control problem (16). The proof technique is borrowed from
[4] and goes through the introduction of the Lagrangian

L(P,Λ, L,K) := J + Tr{Λ (P −M(K,L, P ))} (17)
s.t. P = P> ≥ 0 Λ = Λ> ≥ 0

Accorning to the matrix maximum principle [1] the necessary
conditions for optimality of K∗ and L∗ are

∂L
∂P

= 0
∂L
∂Λ

= 0
∂L
∂L

= 0
∂L
∂K

= 0 (18)

For future reference let us introduce the partition

Λ :=

[
Λ11 Λ12

Λ21 Λ22

]
where all blocks have size n×n. The following proposition
summarizes the optimality conditions.

Proposition 1: Consider the LQG-type control problem
(16); the optimal gains K∗, L∗ can be found solving the
necessary conditions (18) for stationarity of the Lagrangian
(17) and are given by

K∗ = P ∗22C
>Σ−1α

L∗ = −
(
B>Λ∗11B

)−1
B>Λ∗11A

(19)

where

Σα :=

(
1 +

1

α

)(
R+ CP ∗22C

>)+
1

α
CP ∗11C

> (20)

and P ∗11, P ∗22, Λ∗11 and Λ∗22 are found solving the following
(coupled) Riccati-type equations

P ∗11 = AL∗P ∗11A
>
L∗+

+(1− ε)AL∗P ∗22C
>Σ−1α CP ∗22A

>
L∗

(21)

P ∗22 = AP ∗22A
> +Q+

−(1− ε)AP ∗22C>Σ−1α CP ∗22A
> (22)

Λ∗11 = A>L∗Λ∗11AL∗

− 1−ε
α C>(K∗)>A>L∗Λ∗11AL∗K∗C+

+ 1−ε
α C>(K∗)>A>Λ∗22AK

∗C + C>C
(23)

Λ∗22 = εA>Λ∗22A− 1−ε
α C>(K∗)>A>Λ∗22AK

∗C+
(1− ε)(I −K∗C)>A>Λ∗22A(I −K∗C)+
+(1− ε)A>L∗Λ∗11AL∗ + C>C +Q
−(1− ε)(I −K∗C)>A>L∗Λ∗11AL∗(I −K∗C)+
+ 1−ε

α C>(K∗)>A>L∗Λ∗11AL∗K∗C
(24)

where AL∗ := A+BL∗.

�

Remark 2 (Loss of separation principle): It is clear
that, in general, the optimal values L∗ and K∗ cannot be
found separately and, hence, the separation principle does
not hold. In fact it is apparent from (20) and (22) that
the (steady state) state error covariance P ∗22 depends on
the state variance P ∗11, and hence on the control gain L∗.
It is interesting to observe that this dependence vanishes
when α → ∞ and, then, the separation principle holds
asymptotically, as the quantization noise variance tends
to zero. In fact K∗ depends only on P ∗22 and L∗ only
on Λ∗11 and the equations for Λ∗11 and P ∗22 are decoupled
(note that Σ∞ = R + CP ∗22C

>). This is coherent with the
findings in [20] where the same happens when the control
packet arrival probability ν is equal to one (see Fig. 2 and
equations (24-29) in [20]).

A. Analysis for invertible B

In order to gain a better insight on the role of the packet
loss probability ε and SQNR α we consider a MISO systems
where the input-to-state matrix B is square and invertible,
i.e. we have n independent control inputs. Recall also that
we have restricted our attention to the scalar output case, so
that the matrix C is a row-vector. Under this scenario, the
optimal gain L∗ in (19) reduces to

L∗ = −
(
B>Λ∗11B

)−1
B>Λ∗11A

= −B−1A
(25)

where, as argued in [4], Λ11 > 0 has been used.
For this choice of L∗ it is apparent that P ∗11 = 0 and so

P ∗22 and the optimal gain K∗ satisfy:

P ∗22 = AP ∗22A
> +Q

−ηAP ∗22C>(CP ∗22C
> +R)−1CP ∗22A

> (26)
K∗ = ηP ∗22C

>(CP ∗22C
> +R)−1 (27)

where η := 1−ε
1− 1

α

. Using the results in [16] it can be seen
that when C is rank one, the matrix P ∗22 in (26) exists and is
unique if and only if η > 1− 1∏

i |λui |2
, where {λui } represent

the unstable eigenvalues of the matrix A. Therefore, from
(26), we get

1− ε
1 + 1

α

> 1− 1∏
i |λui |2

(28)

from which we observe that the packet erasure probability
ε, and the SQNR α concur in determining the system
performance, as briefly discussed below.

B. Discussion and related work

We have seen that the design of the optimal control gain
L and the estimator gain K are coupled; the separation
principle is recaptured when either the SQNR α goes to
infinity or B is invertible. It is also expected that when B
is not invertible the stability condition of Eqn. (28) is likely
to provide a condition that is only necessary for stability but
not sufficient.

Note also that we recover some of the results available in
the literature as special cases. In fact if we let α→∞, then
this is equivalent to consider a channel with infinite capacity
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and we obtain the same stability condition in the lossy
network literature [19], [16]. Alternatively, if we assume no
packet loss in the channel, i.e. ε = 0, and recalling that
α ≤ α∗, then the stability condition can be rewritten as

1− 1∏
i |λui |2

<
1

1 + 1
α∗

= 1− 1

1 + α∗

that leads to
SQNR∗ >

∏
i

|λui |2 − 1

which is the same stability condition presented in the context
of SNR-limited control system in [2].

Finally, the bound provided by Eqn. (28) will be useful to
compare different communication protocols. In fact, by using
a corse quantizer, it is possible to reduce the transmission rate
Rq , thus allowing more redundant channel coding schemes
and consequently a smaller packet loss probability ε. How-
ever, a coarser quantizer also gives a smaller α = SQNR∗.
Conversely, when the channel capacity is limited, increasing
α will require an increase of the transmit rate Rq that, in
turn, may yield higher packet loss rates. Therefore, α and ε
are generally coupled and cannot be designed separately. In
a scenario where ε and α are decoupled, e.g., when packet
losses are mainly due to random interference bursts produced
by external emitters, a large SQNR will loosen the constraint
on the erasure probability, thus increasing the robustness of
the system to packet losses.

VII. CONCLUSIONS AND FUTURE WORK

We have considered an LQG cheap-control problem under
communication constraints. In particular, we have proposed
a model that accounts for signal quantization, packet era-
sure, packet error and delay. We have argued in fact that
there is a tight connection between these parameters that
is not captured by the Shannon capacity of the channel.
We then have restricted our attention to a specific control
architecture in which the plant outputs are transmitted via
a bandlimited channel and subsequently processed through
the cascade of a state estimator followed by a linear (state)
feedback controller; for the ease of exposition we did not
consider delays, while both limited rate and packet drops
have been included in our analysis. We have derived the
optimal solution for a general MISO system under the “cheap
control” scenario (i.e. no penalty on the control signal) and
showed that the separation principle does not hold in general.
When the input-to-state matrix B is invertible the optimal
controller has a dead-beat structure and the optimal estimator
is a Kalman-like constant gain estimator (which accounts
for the packet drop probability). Conditions for stability are
derived in terms a modified algebraic Riccati equation and
recapture results from the literature as special cases.

Future work will include the analysis of the general LQG
problem, i.e. ρ 6= 0 for MIMO plants, i.e. y ∈ Rm,m > 1,
and we will explore more sophisticated control schemes with
possibl y a compensator before transmission, i.e. Ft is such
that st 6= yt, in general.
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